CDA 4506
Design and Implementation of Data
Communication Networks

Lecture Set 4
Dr. R. Lent

Chapter 3: Transport Layer

Our goals:

understand principles
behind transport layer
services:

= multiplexing/demultip
lexing

= reliable data transfer
= flow control
m congestion control

learn about transport layer
protocols in the Internet:

m UDP: connectionless
transport

m TCP: connection-oriented
transport

m TCP congestion control

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP

m segment structure

= reliable data transfer

m flow control

® connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

Transport services and protocols

provide logical communication

between app processes cppication
running on different hosts networc
i network
transport protocols run in end physical | data Ik
systems
= send side: breaks app Ltk

mesSsages into segments, physical

passes to network layer

m rcvside: reassembles
segments into messages,

passes to app layer . ; application

L=~ =<] transport

more than one transport = o ework
. (A (2 n

protocol available to apps [[Consica

m Internet: TCP and UDP

Transport vs. network layer

network layer: logical
communication
between hosts

transport layer: logical
communication
between processes

= relies on, enhances,
network layer services

Household analogy:

12 kids sending letters to
12 kids

processes = kids

app messages = letters
In envelopes

hosts = houses

transport protocol = Ann
and Bill

network-layer protocol =
postal service

|nternet transport-layer protocols

reliable, in-order

delivery (TCP)
. network
1. congestlon control data link network
physical data link

physical

2. flow control
3. connection setup network

data link

unreliable, unordered s

delivery: UDP

1. no-frills extension of :
“best-effort” IP

services not available:

m delay guarantees

m bandwidth guarantees

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

m segment structure

= reliable data transfer

m flow control

® connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

Multiplexing/demultiplexing

- Demultiplexing at rcv host: —

delivering received segments
to correct socket

[] =socket O = process

_ Multiplexing at send host: _

gathering data from multiple
sockets, enveloping data with
header (later used for

demultiplexing)

application o application @ application
L | T] 1 —
transport transport transport
network network network
link link link
physical physical physical
host 1 host 2 host 3

How demultiplexing works

host receives IP datagrams

= each datagram has source
|IP address, destination IP
address

= each datagram carries 1
transport-layer segment

= each segment has source,
destination port number
(recall: well-known port
numbers for specific
applications)
host uses IP addresses & port

numbers to direct segment to
appropriate socket

< 32 bits >

source port #| dest port #

other header fields

application
data
(message)

TCP/UDP segment format

Connectionless demultiplexing

Create sockets with port When host receives UDP
numbers: segment:

Dat agr anSocket mySocket1l = new m checks destination port
Dat agr antocket (99111) ; number in Segment

Dat agr anSocket nySocket 2 = new

m directs UDP segment to

Dat agr antSocket (99222) ;)
_ - socket with that port
UDP socket identified by number

two-tuple: IP datagrams with

(dest IP address, dest port number) different source |IP
addresses and/or source
port numbers directed to
same socket

Connectionless demux (cont)

Dat agr anfSocket server Socket = new Dat agr anSocket (6428) ;

A A

SP: 6428

DP: 9157

SP: 6428

DP: 5775

client
IP: A

SP: 9157

DP: 6428

server
IP: C

SP provides “return address”

SP: 5775

DP: 6428

Client
IP:B

Connection-oriented demux

TCP socket identified by
4-tuple:

m source IP address

m source port number

m dest IP address

m dest port number

recv host uses all four

values to direct segment
to appropriate socket

Server host may support
many simultaneous TCP
sockets:

m each socket identified by
Its own 4-tuple

Web servers have
different sockets for each
connecting client

m non-persistent HTTP will

have different socket for
each request

Connection-oriented demux (cont)

SP: 80 SP: 80
DP: 9157 DP: 5775

SP: 9157 SP: 5775

client DP: 80 server DP: 80 Client
IP: A IP: C IP:B

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP

m segment structure

= reliable data transfer

m flow control

® connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

UDP: User Datagram Protocol [RFC 768]

“no frills,” “bare bones”

Internet transport protocol _
“best effort” service, UDP Why is there a UDP?
segments may be: no connection establishment
= |ost (which can add delay)
m delivered out of order simple: no connection state
to app at sender, receiver
connectionless: small segment header
= no handshaking no congestion control: UDP
between UDP sender, can blast away as fast as
receiver desired
m each UDP segment
handled independently

of others

UDP: more

often used for streaming

multimedia apps “ 32 bits >
= |oss tolerant Length, in |Source port #| dest port #
m rate sensitive bytes of UDP [length checksum

segment,

other UDP uses including
m DNS header
= SNMP Application

reliable transfer over UDP: p%ata

add reliability at application

layer (message)

= application-specific
error recovery! UDP segment format

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Sender: Receiver:

treat segment contents as compute checksum of received

f16.bit segment
sequence of 16-bit integers check if computed checksum

checksum: addition (1's equals checksum field value:
complement sum) of = NO - error detected
segment contents = YES - no error detected.
sender puts checksum But may be errors

value into UDP checksum nonetheless? More later

field

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

m segment structure

= reliable data transfer

m flow control

® connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

Principles of Reliable data transfer

important in app., transport, link layers
top-10 list of important networking topics!

-
O
O O
S, = |receiver I
8 —= DrOCEss process
O 1
dt send -
+— L()relioble Chcmnel)j rdt_send() deliver data()
8_ 5 reliable data reliable data
o > transfer protocol transfer protocol
% O (sending side) (receiving side)
=

udt_send ()i Irdt_rcv ()

1A—b()unrelicuble chonnel):

(a) provided service (b) service implementation

characteristics of unreliable channel will determine complexity of
reliable data transfer protocol (rdt)

Reliable data transfer: getting started

rdt _send(): called from above, (e.g., by
app.). Passed data to
deliver to receiver upper layer

\ rdt send()

reliable data
fransfer protocol
(sending side)

udt send() | packet

send
side

deliver data(): called by rdt to
deliver data to upper

/

data Tdeliver_data ()

reliable data
fransfer protocol
(receiving side)

receive
side

packet Irdt_rcv ()

T—b()unrelioble channel)J

udt_send(): called by rdt,
to transfer packet over
unreliable channel to receiver

rdt _rcv(): called when packet arrives on
rcv-side of channel

Reliable data transfer: getting started

we'll:
incrementally develop sender, receiver sides of reliable
data transfer protocol (rdt)
consider only unidirectional data transfer
= but control info will flow on both directions!

use finite state machines (FSM) to specify sender, receiver

event causing state transition
actions taken on state transition

state: when in this “state” —_— T—
next state uniquely
determined by next

event

event

actions

Rdt1.0: reiable transfer over areliable channel

underlying channel perfectly reliable
= no bit errors
= no loss of packets
separate FSMs for sender, receiver:
= sender sends data into underlying channel
= receiver read data from underlying channel

rdt_send(data) "8/ Wait for
call from
below

“*/ Wait for
call from
above

rdt_rcv(packet)

extract (packet,data)

packet = make pkt(data) deliver_data(data)

udt_send(packet)

sender receiver

Rdt2.0: channedl with bit errors

Underlying channel may flip bits in packet
= recall: UDP checksum detects bit errors

The question: how to recover from errors:

m acknowledgements (ACKSs): receiver explicitly tells sender that pkt
was received OK

m negative acknowledgements (NAKS): receiver explicitly tells sender
that pkt had errors

m sender retransmits pkt on receipt of NAK

New mechanisms in r dt 2. O (beyond r dt 1. 0):

= error detection
= receiver feedback: control msgs (ACK,NAK) rcvr->sender

Rdt2.0: FSM specification

sender receiver

rdt_send(data) rdt_rcv(rcvpkt) &&

snkpkt = make_pkt(data, checksum) corrupt(rcvpkt)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && udt_send(NAK)
ISNAK(rcvpkt) S ()

udt_send(sndpkt) Wﬁlift for
call from

below

Walit for
call from
above

rdt_rcv(rcvpkt) && isACK(rcvpkt) u
2 rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt2.0 has afatal flaw!

What happens if ACK/NAK Handling duplicates:

corrupted? sender adds sequence number
sender doesn’t know what to each pkt

happened at receiver!

.) . sender retransmits current pkt if
can’t just retransmit: possible

, ACK/NAK garbled
duplicate _ _
receiver discards (doesn’t

What to do? deliver up) duplicate pkt

sender ACKs/NAKSs receiver’s

ACK/NAK? What if sender

ACK/NAK lost?

retransmit, but this might cause [~ stop and walit

retransmission of a correctly Sender sends one packet,

received pkt! then waits for receiver

response

rdt2.1: sender, handles garbled ACK/NAK's

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISNAK(rcvpkt))

udt_send(sndpkt)

Wait for
ACK or
NAK O

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& ISACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

} L
rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
iSNAK (rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

dt2.1: receiver, handles garbled ACK/NAKSs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
\ sndpkt = make_pkt(ACK, chksum)
\ udt_send(sndpkt)
v(rcvpkt) && (corrupt(rcvpkt) \\
kt = make pkt(NAK, chksum) \
send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)
sndpkt = make_pkt(NAK, chksum)

O udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

cv(rcvpkt) &&
t corrupt(rcvpkt) && O
s_seql(rcvpkt)
kt = make pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqgl(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt2.1: discussion

Sender:
seq # added to pkt
two seq. #'s (0,1) will suffice.
Why?
must check if received
ACK/NAK corrupted
twice as many states

= state must “remember”
whether “current” pkt has
Oorlseq. #

Receiver:

must check if received
packet is duplicate

= state indicates whether O
or 1 is expected pkt seq
#

note: receiver can not know
If its last ACK/NAK received
OK at sender

rdt2.2: aNAK-free protocol

same functionality as rdt2.1, using NAKs only

Instead of NAK, receiver sends ACK for last pkt
received OK

m receiver must explicitly include seq # of pkt being ACKed

duplicate ACK at sender results in same action as NAK:
retransmit current pkt

rdt2.2: sender, receiver fragments

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)
rdt_rcv(rcvpkt) &&

N (corrupt(rcvpkt) ||
aitforAC iISACK(rcvpkt,1))

0

from above

udt_send(sndpkt)

sender FSM

fragment rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)
rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
has_seql(rcvpkt))

Wait for
0 from
below

receiver FSM
fragment
'\ /

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

udt_send(sndpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

rdt3.0: channels with errors and loss

New assumption: underlying Approach: sender waits
channel can also lose “reasonable” amount of time for
packets (data or ACKS) ACK
= checksum, seq. #, ACKs, retransmits if no ACK received in
retransmissions will be of this time
help, but not enough if pkt (or ACK) just delayed (not
Q: how to deal with loss? lost): o |
= sender waits until certain = retransmission will be
data or ACK lost, then duplicate, but use of seg.
retransmits #'s a_lready handle§ 1:>t/h|s ,
: ® receiver must specify se
= yuck: drawbacks? of pkt being ACﬁ)(e g 9

requires countdown timer

rdt3.0 sender

rdt_send(data)

rdt_rcv(rcvpkt) &&

\ sndpkt = make_pkt(0, data, checksum) (corrupt(rcvpkt) ||
\ udt_send(sndpkt) iISACK(rcvpkt,1))
start_timer
rdt_rcv(rcvpk) \ L
L ‘ Wait for < Wait for :
call Ofrom ACKO timeout

above

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,1)

stop_timer

timeout

udt_send(sndpkt)
start_timer

udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)

L

rdt_send(data)
rdt_rcv(rcvpkt) &&

L

(corrupt(rcvpkt) ||
iISACK(rcvpkt,0)) udt_send(sndpkt)

start_timer

L

sndpkt = make_pkt(1, data, checksum)

rdt3.0 In action

sender receiver
I<’r
sena kaO rcv pktO
send ACKO
ov ACKO /
send pktl \
rcv pkil
send ACK]
rcvACKT
send pki0 g O
rcv pktO
send ACKO

(q) operation with no loss

sender receiver

pkt
send pktO O eV pkio

send ACKO
ov ACKO /
send pktl 7] \%(
(loss)

timeout _|
resend pkt1 %’
rcv pktl
ACK send ACK1
rcvACK o
send pkio

rcv pkio
}6/ send ACKO

(b) lost packet

rdt3.0 In action

sender receiver
pkt
NP0 ——20 oy pio
ACK send ACKO
rcv ACKO
send pkt1l pk’r]
\ rcv kil
ACK send ACKT
(loss) Xl’l/
fimeout = Pkt 4
resend pkt] \rCV Pkt |
ACK (detect duplicate)
send ACK]
rcvACK "
send pktO
rcv pkio
ACK send ACKO
(c) lost ACK

sender receiver
kt
send pki0 \% oV pki0
ACK send ACKO
rcv ACKO _
send pktl
rcv pktl
send ACK
timeout
resend pktl =
rcv pktl
rcvACK (detect duplicate)
send pkiO send ACK
rcv pkio
send ACKO

(d) premature timeout

Performance of rdt3.0

rdt3.0 works, but performance is poor
example: 1 Gbps link, 15 ms e-e prop. delay, 1KB packet:

- — _L (packet length in bits) _ _8kb/pkt — 8 mi
transmit R (transmission rate, bps) 109 bisec _ © MICTOSEC
U = L/R - 998 600027

sender pTT4+| /R 30.008

m U 4 Utilization —fraction of time sender busy sending

m 1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
m network protocol limits use of physical resources!

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —sg- -
last packet bit transmitted, t = L / R

first packet bit arrives
RTT

last packet bit arrives, send
ACK

ACK arrives, send next
packet, t=RTT+L/R

U = L/R 008 = 0.00027

sender RTT+L/R = 30.008

Pipelined protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts

= range of sequence numbers must be increased
= buffering at sender and/or receiver

data pc:cke’r—»

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

Two generic forms of pipelined protocols: go-Back-N, selective
repeat

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —x------------ oo
st bit transmitted, t=L /R

first packet bit arrives

last packet bit arrives, send ACK
~last bit of 2" packet arrives, send ACK
—last bit of 3" packet arrives, send ACK

RTT

ACK arrives, send nextL
packet,t=RTT+L/R

Increase utilization
/ by a factor of 3!

3% /R _ .024
sender pTT .| /R 30008

U = 0.0008

Go-Back-N

Sender:
k-bit seq # in pkt header
“window” of up to N, consecutive unack’ed pkts allowed

send_base nhextsegnum dlready sable. hof
lv i ack’ed yet sent
IRV RED0I00 | sepavea [movescee
+__ window size —%4
N

ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
= may deceive duplicate ACKs (see receiver)

timer for in-flight pkts

timeout(n): retransmit pkt n and all higher seq # pkts in window

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextseqnum,data,chksum)

udt_send(sndpkt[nextsegnum])
if (base == nextseqnum)

start_timer
nextsegnum-++
}
-, else
L ., refuse_data(data)
0"."
base=1 ‘e,

nextsegnum=1
timeout

iy start_timer
udt_send(sndpkt[base])
O udt_send(sndpkt[base+1])

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

udt_send(sndpkt[nextsegnum-1])

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
stop_timer
else
start_timer

GBN: recaiver extended FSM

default

udt_send(sndpkt) rdt_rcv(rcvpkt)
- () && notcurrupt(rcvpkt)

L T~~o - && hassegnum(rcvpkt,expectedseqgnum)
= -

expectedseqnum=1 AQextraot(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedsegnum,ACK,chksum) sndpkt = make_pkt(expectedsegnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum-++

ACK-only: always send ACK for correctly-received pkt with
highest in-order seq #

= may generate duplicate ACKs

m need only remember expect edsegnum
out-of-order pkt:

= discard (don’t buffer) -> no receiver buffering!

m Re-ACK pkt with highest in-order seq #

GBN In

. sender receiver
action
send kaO \
rcv pkio
send Pkt sencF:l) ACKO
¥ send pkt?2 \(E)(SS) rgg’ﬁg]&CK]
send pkt3
(wait) rcv pkt3, discard
¥ send ACK]
rcv ACKO
send pkt4
rcv pkt4, discard
Srgr\:dAngK% \ Seng ACKI]
kth, di d
—okt2 fimeout send ACKT

send pkt2 \‘/.

send pkf3 \ rev pki2, deliver

send pkt4 send ACK?2

send pktb rcv pkt3, deliver
\ send ACK3

Selective Repeat

receiver individually acknowledges all correctly received pkts

= buffers pkts, as needed, for eventual in-order delivery to
upper layer

sender only resends pkts for which ACK not received
= sender timer for each unACKed pkt

sender window
= N consecutive seq #'s
= again limits seq #s of sent, unACKed pkts

Selective repeat: sender, recelver windows

(buffered) but Ty :
already ack'ed (within window)

ﬂﬂﬂﬂﬂﬂﬂﬂﬂlllllllllIIIIIIIIIII |t [et

t _ indow size—24
N

send_base hexfsegnum already usable, not
Jr l ack’ed yet sent
sent, not
HHHHHHHH”H”H"""ﬂﬂﬂﬂﬂﬂﬂ H yet ack’ed I] not usable
- window size —4
i N
(a) sender view of segquence numbers
: out of order acceptable

rcv_base

(b) receiver view of sequence numbers

Selective repeat

— sender

data from above :

if next available seq # in
window, send pkt

timeout(n):
resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

mark pkt n as received

if n smallest unACKed pkt,
advance window base to nexi
unACKed seq #

— receiver

pkt nin [rcvbase, rcvbase+N-1]
send ACK(n)
out-of-order: buffer

in-order: deliver (also deliver
buffered, in-order pkts),
advance window to next not-yet-
received pkt

pkt nin [rcvbase-N,rcvbase-1]
ACK(n)

otherwise:
ignore

Selective repeat In action

pktl =ent
01234567879 ﬂq_hkﬂﬂq__h%ﬁﬁ__‘““"pktD rovd, delivered, ACED sent
pktl =ent 0|1 2 3 4|56 7 89
0123456783 pktl rocwd, delivered. ACEl =ent
pkt2 =ent n iz 2 4 5| 7 819
—|01 2 3456 789 mX
(loss)
pkt3 =ent. window full
0123456783 pktd rovd., buffered. ACKI sent
01|2 34 5] 7 89
ACKD rovd, pktd =ent
oL 2 3 4|56 7 89
pktd rcvd, uf fered. ACK4 =ent
ACKE]l rowd, pkth ==nt 0 1{2 3 4 5|6 7 819
01|2 3 4 5| 7 819
pktht rovd, uffersd. ACKS =ent
01|12 3 4 56 7 89
—— pkt2 TIMEOUT, pktZ resent
01|2 3 4 5| 7 819
pkt? rocvd, pkt?, pktd pltd plth

ACK3 rowd, nothing =ent
o1

2 345

B 7 8 93

delivered. ACK?Z? ==nt
012 3 46%5

E 7 89

Selective repeat:
dilemma

sender window
(after receipt)

pktO

receiver window
(after receipt)

012|301 2

Example:
seq#s:0,1,2,3
window size=3

receiver sees no
difference in two
scenarios!

iIncorrectly passes
duplicate data as new in

(@)

Q: what relationship
between seq # size and
window size?

012301

0123012

timeout
retransmit pktQ

Ol 2 3J0 1 2

0112301 2

1230 1)2

012301

sender window
(after receipt)

pktO

—Jp receive packet
with seq number O

(a)

receiver window
(after receipt)

0123012

012|301

0123012

Oj1 2 3j0 1

012 301

Oj1 2 3j0 1 2

012 30)1 2

12430 1§2

0
ACK2

receive packet
with seq number O

(0)

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

m segment structure

= reliable data transfer

m flow control

® connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

TCP: Overview recs 793, 1122, 1323, 2018, 2581

point-to-point: full duplex data:
m one sender, one receiver m Dbi-directional data flow in
reliable, in-order byte steam: same connection
= no “message boundaries” = MSS: maximum segment
pipelined: Size
= TCP congestion and flow connection-oriented:
control set window size = handshaking (exchange of

control msgs) init's sender,
receiver state before data
exchange

flow controlled:

m sender will not overwhelm
receiver

send & receive buffers

socket
door —

socket

door
-
receive buffer

TCP
send buffer

O [Segment] —» ()

TCP segment structure

32 bits

A

v

URG: urgent data

segments!)

counting
(generally not used)™_ | SOUce port# | destport# by bytes
ACK: ACK # . sequence number of data
valid cknowledgement number (not
head [
| len—

PSH push data now I’;(;td KE)ES F Receive WindOW

(generally not usedy— Mm Urg data pnter

4
RST, SYN, FIN: | Optjgns (variable length)

\

bytes

connection estab rcvr willing
(setup, teardown / to accept
commands) L
application
Intern(’-:;tT/ data
checksu (variable length)

(as in UDP)

TCP seg. # sand ACKs

Seq. #'s:

m byte stream “number”
of first byte in
segment’s data

ACKs:

m seq # of next byte
expected from other
side

m cumulative ACK

Q: how receiver handles out-
of-order segments

m A: TCP spec doesn’t
say, - up to implementor

host ACKs
receipt

of echoed
‘Cl

Host B @
Seg=4;
' datg = .
= Cy

receipt of
‘C’, echoes
back ‘C’

simple telnet scenario

TCP Round Trip Time and Timeout

Q: how to set TCP timeout Q: how to estimate RTT?

value? Sanpl eRTT: measured time from
longer than RTT segment transmission until ACK
= but RTT varies rece.lpt .
too short: premature ® Ignhore retransmissions
timeout Sanpl eRTT will vary, want estimated
= unnecessary RTT “smoother
retransmissions = average several recent

too long: slow reaction to measurements, not jUSt current
segment loss Sanpl eRTT

TCP Round Trip Time and Timeout

Estimat edRTT = (1- a)*EstinatedRTT + a*Sanpl eRTT

Exponential weighted moving average
influence of past sample decreases exponentially fast
typical value: a =0.125

Example RTT estimation:

RTT (milliseconds)

350 7

300

N
a
o

200 A

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

o

i 1 ﬂ

L bbb ..An..mmm.;.m

g N

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

—&—SampleRTT —®—Estimated RTT

TCP Round Trip Time and Timeout

Setting the timeout

Esti mat edRTT plus “safety margin”

= large variation in Est | mat edRTT - > larger
safety margin

first estimate of how much SampleRTT deviates from
Esti mat edRTT:
DevRTT = (1-b) *DevRIT +

b*| Sanpl eRTT- Est i mat edRTT|

(typically, b = 0. 25)

Then set timeout interval:

Ti neoutl nterval = EstinatedRTT + 4*DevRTT

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

m segment structure

m reliable data transfer

m flow control

® connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

TCP reliable data transfer overview

TCP creates rdt service on Retransmissions are

top of IP’s unreliable service triggered by:

Pipelined segments = timeout events
Cumulative acks = duplicate acks

TCP uses single Initially consider simplified
retransmission timer TCP sender:

= Iignore duplicate acks

= Iignore flow control,
congestion control

TCP sender events (ssmplified)

data rcvd from app: timeout:
Create segment with seq # retransmit segment that
seq # is byte-stream number caused timeout
of first data byte in segment restart timer
start timer if not already Ack recvd:
running (think of timer as for If acknowledges previously
oldest unacked segment) unacked segments
expiration interval: = update what is known to
Ti meQut | nt er val be acked

= start timer if there are
outstanding segments

TCP sender
(smplified)

Next SegNum = | ni ti al SegNum
SendBase = I nitial SeqgNum

| oop (forever) {
swi tch(event)
event: data received fromapplication above
create TCP segnent with seg# Next SeqNum
if (timer currently not running)
start timer
pass segnent to IP
Next SegNum = Next SeqNum + | engt h(dat a)
event: timer timnmeout
retransmt not-yet-acknowl edged segnent with
smal | est sequence nunber
start timer
event: ACK received, with ACK field value of y
If (y > SendBase) {
SendBase =y
If (there are currently not-yet-acknow edged

segnent s)
start tiner

}

} /* end of |oop forever */

TCP: retransmission scenarios

92 timeout —>|

«— timeout ——

O

(¢D}

)

Seq=g %‘

2, 8 Sendbase

SendBase 9

. =120 £

o

SendBase n

- 100 Se_ndllzgse n
time time

lost ACK scenario premature timeout

TCP retransmission scenarios (more)

I
o
Q
>
I
o

Q
W

g

timeout ———

loss
SendBase P\C\A’ﬂo

=120

time
Cumulative ACK scenario

Modifications

Doubling the timeout interval

m After a timeout event:;

TCP retransmits the not yet ack’d segment with the
smallest sequence number

TCP sets the next timeout interval to twice the previous
value (rather than deriving it from Est i mat edRTT and

DevRTT)
= Provides a limited form of congestion control

Fast retransmit

Fast Retransmit

Time-out period often
relatively long:

= long delay before
resending lost packet

Detect lost segments via
duplicate ACKs.

m Sender often sends
many segments back-to-
back

= If segment is lost, there
will likely be many
duplicate ACKs.

If sender receives 3 ACKs for
the same data, it supposes
that segment after ACKed
data was lost:

m fast retransmit: resend
segment before timer
expires

Packet Loss

Packet loss detected by
m Retransmission timeouts
m Duplicate ACKs (at least 3)

Packets
L fe [P s][6]]7]
Acknowledgements

1] [2]] s_3_ 3

Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKSs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y
}
a duplicate ACK for fast retransmit

already ACKed segment

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

m segment structure

= reliable data transfer

m flow control

® connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

Fow Control

speed-matching service: matching the send rate to the receiving
app’s drain rate

- flow control

sender won't overflow
receiver’s buffer by
transmitting too much,
too fast

How can it be implemented?

Window Flow Control

—— RTT —|
Source 112 W 112 W .
» {Ime
data ACKs
Destination 112 W 112 W .
time

At most W packets per RTT
packet size <= MSS bytes

Window Fow control

Limit the number of packets in the network to
window W

W~ MSS]
Source rate = T T PS

Notes:

= If W too small then rate « capacity (low utilization)
If W too big then rate > capacity => congestion

m Solution: Adapt W to network (and conditions)

W X MSS = BW x RTT

TCP Flow Control

receive side of TCP — flow control
connection has a receive sender won't overflow
buffer: receiver’s buffer by
transmitting too much,
too fast
k— RevWindow —f

7
/ 7 / application speed-matching

data from

IP _" Process . .
service: matching the

7 / 7 / send rate to the
f——— RovBuffr ————# receiving app’s drain

rate
app process may be slow at

reading from buffer

TCP Flow control: how 1t works

k— RevWindow —f

7 / 7 Rcvr advertises spare

/ CP | application room by including value
/_' Process of RevW ndow in

% / %/ segments
f——— RevBuffer ——— Sender limits unACKed
_ | data to RcvW ndow
(Supfposde TCP receiver discards out- = guarantees receive
of-order segments) buffer doesn’t

spare room in buffer overflow

= RcvW ndow

RcvBuf f er-[Last Byt eRcvd -
Last Byt eRead]

data from
IP

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of
reliable data transfer

3.5 Connection-oriented
transport: TCP

m segment structure

= reliable data transfer

m flow control

B connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

TCP Connection Management

Recall: TCP sender, receiver establish “connection”

before exchanging data segments.

During this phase, TCP initializes variables:

= Sequence numbers

= Buffers: flow control information (RcvW ndow)

TCP also provides mechanisms to close

connections

TCP Three-way Handshake

server: Socket connecti onSocket =
Step 1: client host sends TCP wel conmeSocket . accept () ;

SYN segment to server client: Socket client Socket = new

= specifies initial seq # Socket (" host nane", "port nunber");
= no data
_ g client serverg
Step 2: server host receives

SYN, replies with SYNACK Connection SYN, sepy— ..
request A =client
segment q ~Isn

m server allocates buffers Connection

= specifies server initial granted

sequence number

= No data Connection

Step 3: client receives SYNACK, €stablished, ACK, Ack=s
, : Send ACK Crver |
replies with ACK segment, ~'SN+] .
Connection

which may contain data established

Closing a TCP Connection

Step 1: client end system sends
TCP FIN control segment to

server

Step 2: server receives FIN, replies
with ACK. Closes connection,
sends FIN.

Step 3: client receives FIN, replies
with ACK.

= Enters “timed wait” - will respond with ACK
to received FINs

Step 4. server, receives ACK.
Connection closed.

client closes socket:
client Socket . cl ose();

@ client

close

timed wait

closed

FIn

/
/
k

server@

close

Typical TCP Server Lifecycle

CLOSED server application
creates a listen socket

receive ACK
send nothing

LAST_ACK LISTEN
Fy
recalve SYMN
send FIM send SYM & ACK
h 4
CLOSE_WAIT SYN_RCVD

receive ALK
send nothing

receiye FIk

ey ESTABLISHED

Typical TCP Client Lifecycle

walt 30 seconds

CLOSED

TIME_WAIT

F Y

recere FIM
send ACK,

FIN_WAIT_2

receive ACHK
send nothing

client application
initiates a TCP connection

send SYM

SYMN_SENT

recerve ST & ACHK
send ACK.

¥

ESTABLISHED

FIN_WAIT_1

client application
initiates close connection

send FIM

Chapter 3 outline

3.1 Transport-layer
services

3.2 Multiplexing and
demultiplexing

3.3 Connectionless
transport: UDP

3.4 Principles of reliable
data transfer

3.5 Connection-oriented
transport: TCP

m segment structure

= reliable data transfer

m flow control

® connection management

3.6 Principles of
congestion control

3.7 TCP congestion
control

Network Congestion

Informally: “too many sources sending too much data too fast for
network to handle”

Different from flow control! (why?)
Effects of congestion:
m Packet loss (buffer overflow at routers)

m Retransmissions
m Reduced throughput

m long delays (queueing in router buffers)
m Network collapse:

Unnecessarily retransmitted packets
Undelivered or unusable packets

Causes of congestion: scenario 1

two senders, two Host A

recelvers in - original data out
one router, infinite

buffers i ser

Nno retransmission

Cl2+4 o : large delays
- 5 when congested
< © maximum
achievable
'} throughput
C/2
kln

Causes of congestion: scenario 2

one router, finite buffers (packet loss!)
sender retransmission of lost packets

Host A | . original data | out

| . : original data, plus
retransmitted data

finite shared output
link buffers

Causes of congestion: scenario 2 (cont’ d)

in out ,
Retransmission when packet loss: | in> | out

/
Retransmission of delayed (not lost) packet makes | i €ven larger

C/24 C/r24 C/24
5 C/I3T
[®)] - T
~ 3 3
< : < .
.5C. .léC .5(3Il
I I I
7\'in: 7\’in 7\’in 7\'in

Causes of congestion: scenario 3

four senders
multihop paths
timeout/retransmission

Q: what happens as |

] in
and |’ increase ?

Host A - I
| ., : original data out

| *,, - original data, plus
retransmitted data

finite shared output
lipk buffers

Host B

Causes/cost of congestion: scenario 3

C/2

5
®)
<'<

Ain

when a packet is dropped, any “upstream transmission
capacity used for that packet is wasted!

Approaches towards congestion control

Two broad approaches towards congestion control:

End-end congestion control: Network-assisted congestion
no explicit feedback from control:
network routers provide feedback to end
congestion inferred from end- systems:
system observed loss, delay m To sender (Choke packet),
approach taken by TCP or

m To receiver and from there
to sender. E.g. single bit
indicating congestion (SNA,
DECDhit, TCP/IP ECN, ATM)

TCP Congestion Control

end-end control (no network
assistance)

sender limits transmission:
Last Byt eSent - Last Byt eAcked

£ CongWn
Roughly,

How does sender perceive

CongWin
RTT

rate = Bytes/sec

congestion?

loss event = timeout or 3
duplicate acks

Two mechanisms:

CongW n is dynamic, function of
perceived network congestion

= Slow start
= Congestion Avoidance:
AIMD

Reaction to timeout
events

TCP Tahoe (Jacobson 1988)

window

e

SS: Slow Start
CA: Congestion Avoidance

TCP Slow Start

When connection begins, When connection begins,
CongWn =1 MSS increase rate exponentially fast
= Example: MSS = 500 bytes until first loss event
& RTT =200 msec - _ 7
= initial rate = 20 kbps GO --- e ----------------- -
available bandwidth may be ®25 e
MSS/RTT gzo I R R R
- desiabletoquikyramp © | [
up to respectable rate 1 RSN AR AN N m—
: : —— ssthresh
OO 075 1 1?5

time (seconds)

TCP Slow Start (more)

When connection begins,
increase rate exponentially until

first loss event:

= double CongW n every RTT

= done by incrementing
CongW n for every ACK

received

Summary: initial rate is slow but

ramps up exponentially fast

@ Host A Host B@

«—RTT—

W

%

TCPAIMD

additive increase: increase multiplicative decrease: cut
CongWin by 1 MSS every RTT in CongWin in half after loss
the absence of loss events: event
probing

congestion
window

24 Kbytes —

16 Kbytes —

8 Kbytes —

» time

Long-lived TCP connection

Congestion Avoidance

sender
cwnd

1

| data packet

receiver

ACK

9

7

window size
[8)] [8)]

n

gl — ssthresh

— cwnd

TE I TR Tr TP TN TRIRT TR PONTY- FRTTATIRTEIRTITN

e

BB

cwnd = cwnd + 1 (for each cwnd ACKS)

1 1.5 2 25
time (seconds)

Reaction to Timeout Events

After 3 dup ACKSs:

m CongWin is cut in half

= window then grows linearly

But after timeout event:

m CongWin instead set to 1 MSS;
= window then grows exponentially

m to a threshold, then grows linearly

—— Philosophy:

» 3 dup ACKs indicates network
capable of delivering some
segments

stimeout is “more alarming”

Refinement

Q: When should the
exponential
increase switch to
linear?

A: When CongW n
gets to 1/2 of its
value before

e e
o O N b
| | | |

congestion window size
(segments)

6_
timeout. .
2_
0 T T T T T T T T T T T T T T
Implementation: 1 23 45 6 7. g 9 10 11 12 13 14 15
i . bl Threshold Transmission round
Variable

At loss event, Threshold is
set to 1/2 of CongWin just
before loss event

Summary: TCP Congestion Control

When CongW n is below Thr eshol d, sender in slow-start phase,

window grows exponentially.

When CongW n is above Thr eshol d, sender is in congestion-

avoidance phase, window grows linearly.

When a triple duplicate ACK occurs, Thr eshol d set to
CongW n/ 2 and CongW n set to Thr eshol d.

When timeout occurs, Thr eshol d setto CongW n/ 2 and
CongW n is setto 1 MSS.

TCP Fairness

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have

average rate of R/K

TCP connection 1

L

bottleneck
router

connection 2 :
capacity R

Why Is TCP fair?

Two competing sessions:
Additive increase gives slope of 1, as throughout increases
multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput 0

Connection 1 throughput R

Fairness (more)

Fairness and UDP Fairness and parallel TCP connections
Multimedia apps often do not nothing prevents app from opening
use TCP parallel connections between 2 hosts.

m do not want rate throttled by Web browsers do this
congestion control Example: link of rate R supporting 10
Instead use UDP: connections;
= pump audio/video at m new app asks for 1 TCP, gets
constant rate, tolerate rate R/11
packet loss = new app asks for 10 TCPs, gets

R/2 !

