
CDA 4506
Design and Implementation of Data 
Communication Networks

Lecture Set 3
Dr. R. Lent



Simple Communication Model

P1 P2 PN

Transport 
(TCP/UDP)

Network (IP)

Link & PHY

Network (IP)

Link & PHY

Q1 Q2 QN

Transport 
(TCP/UDP)

Network (IP)

Link & PHY

Source 
IP addr

Dest
IP addr

Source 
Port num

Dest
Port num



Chapter 4 roadmap

4.1 Introduction and Network Service Models
4.2 Routing Principles
4.3 Hierarchical Routing
4.4 The Internet (IP) Protocol
4.5 Routing in the Internet
4.6 What’s Inside a Router
4.7 IPv6



Network layer functions

n Transport packet from sending to 
receiving hosts 

n Network layer protocols in every
host, router

Three important functions:
n Path determination: route taken by 

packets from source to dest. 
Routing algorithms

n Forwarding: move packets from 
router’s input to appropriate router 
output

n Call setup: some network 
architectures require router call 
setup along path before data flows

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical



Network service model

Q: What service model for 
“channel” transporting packets 
from sender to receiver?

n guaranteed bandwidth?
n preservation of inter-packet 

timing (no jitter)?
n loss-free delivery?
n in-order delivery?
n congestion feedback to 

sender?

? ??
virtual circuit

or 
datagram?

The most important
abstraction provided 

by network layer:

se
rv

ic
e 

ab
st

ra
ct

io
n



Virtual circuits

n Call setup, teardown for each call before data can flow
n Each packet carries VC identifier (not destination host ID)
n Every router on source-dest path maintains “state” for each 

passing connection
n Similar to a Network layer connection-oriented service
n transport-layer connection only involves two end systems

n Link, router resources (bandwidth, buffers) may be allocated to 
VC to get circuit-like performance

“Source-to-dest path behaves much like telephone circuit”
n performance-wise
n network actions along source-to-dest path



Virtual circuits: signaling protocols

n used to setup, maintain  teardown VC
n used in ATM, frame-relay, X.25

application
transport
network
data link
physical

application
transport
network
data link
physical

1. Initiate call 2. incoming call
3. Accept call4. Call connected

5. Data flow begins 6. Receive data



Datagram networks: the Internet model

n No call setup at network layer
n Routers: no state about end-to-end connections

n No network-level concept of “connection”
n Packets forwarded using destination host address

n Routing or forwarding table
n Packets between same source-dest pair may take different paths

application
transport
network
data link
physical

application
transport
network
data link
physical

1. Send data 2. Receive data



Datagram or VC network: why?

Datagram (Internet)
n data exchange among 

computers
n “elastic” service, no strict 

timing req. 
n “smart” end systems 

(computers)
n can adapt, perform control, 

error recovery
n simple inside network, 

complexity at “edge” 
(easier to interconnect 
networks)

n many link types 
n different characteristics
n uniform service difficult

VC (e.g. ATM)
n evolved from telephony
n human conversation: 

n strict timing, reliability 
requirements

n need for guaranteed 
service

n Complex system!
n “dumb” end systems

n telephones
n complexity inside 

network



Routing

Graph abstraction for routing 
algorithms:

n graph nodes are routers
n graph edges are physical 

links
n link cost: delay, $ cost, or 

congestion level

Goal: determine “good” path
(sequence of routers) thru 

network from source to dest.

Routing protocol

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

n “good” path:
n typically means minimum 

cost path
n other def’s possible



The Internet Network layer

forwarding
table

Host, router network layer functions:

Routing protocols
•path selection
•RIP, OSPF, BGP

IP protocol
•addressing conventions
•datagram format
•packet handling conventions

ICMP protocol
•error reporting
•router “signaling”

Transport layer: TCP, UDP

Link layer

physical layer

Network
layer



IP Addressing: introduction

n IP address: 32-bit identifier for 

host, router interface

n interface: connection between 

host/router and physical link

n router’s typically have 

multiple interfaces

n host may have multiple 

interfaces

n IP addresses associated 

with each interface

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.1 = 11011111 00000001 00000001 00000001

223 1 11



IP Addressing

n IP address: 

n network part (high order 
bits)

n host part (low order bits) 

n What’s a network ? (from IP 

address perspective)

n device interfaces with 
same network part of IP 
address

n can physically reach each 
other without intervening 
router

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

network consisting of 3 IP networks
(for IP addresses starting with 223, 
first 24 bits are network address)

LAN



IP Addressing

How to find the networks?
n Detach each interface from 

router, host
n create “islands of isolated 

networks

223.1.1.1

223.1.1.3

223.1.1.4

223.1.2.2223.1.2.1

223.1.2.6

223.1.3.2223.1.3.1

223.1.3.27

223.1.1.2

223.1.7.0

223.1.7.1
223.1.8.0223.1.8.1

223.1.9.1

223.1.9.2

Interconnected 
system consisting

of six networks



IP Addresses

0 network host

10 network host

110 network host

1110 multicast address

A

B

C

D

class
1.0.0.0 to
127.255.255.255

128.0.0.0 to
191.255.255.255

192.0.0.0 to
223.255.255.255

224.0.0.0 to
239.255.255.255

32 bits

Given notion of “network”, let’s re-examine IP addresses:

“class-full” addressing:



IP addressing: CIDR

n Classful addressing: 

n inefficient use of address space, address space exhaustion

n e.g., class B net allocated enough addresses for 65K hosts, even if only 2K 

hosts in that network

n CIDR: Classless InterDomain Routing

n network portion of address of arbitrary length

n address format: a.b.c.d/x, where x is # bits in network portion of address

11001000  00010111 00010000  00000000

network
part

host
part

200.23.16.0/23



IP addresses: how to get one?

Q: How does host get IP address?

n Hard-coded by system admin in a file

n Wintel: control-panel->network->configuration->tcp/ip->properties

n UNIX: /etc/rc.config

n DHCP: Dynamic Host Configuration Protocol: dynamically get 

address from as server

n “plug-and-play” (more shortly)



IP addresses: how to get one?

Q: How does network get network part of IP addr?
A: gets allocated portion of its provider ISP’s address space

ISP's block          11001000  00010111  00010000  00000000    200.23.16.0/20 

Organization 0    11001000  00010111  00010000  00000000    200.23.16.0/23 
Organization 1    11001000  00010111  00010010  00000000    200.23.18.0/23 
Organization 2    11001000  00010111  00010100  00000000    200.23.20.0/23 

...                                          …..             ….                ….
Organization 7    11001000  00010111  00011110  00000000    200.23.30.0/23



Hierarchical addressing: route aggregation

“Send me anything
with addresses 
beginning 
200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

Organization 1

ISPs-R-Us “Send me anything
with addresses 
beginning 
199.31.0.0/16”

200.23.20.0/23
Organization 2

...

...

Hierarchical addressing allows efficient advertisement of routing 
information:



Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization 1

“Send me anything
with addresses 
beginning 
200.23.16.0/20”

200.23.16.0/23

200.23.18.0/23

200.23.30.0/23

Fly-By-Night-ISP

Organization 0

Organization 7
Internet

Organization 1

ISPs-R-Us “Send me anything
with addresses 
beginning 199.31.0.0/16
or 200.23.18.0/23”

200.23.20.0/23
Organization 2

...

...



IP addressing: the last word...

Q: How does an ISP get block of addresses?

A: ICANN: Internet Corporation for Assigned 

Names and Numbers

n allocates addresses

n manages DNS

n assigns domain names, resolves disputes



Getting a datagram from source to dest.

IP datagram:

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

A

B
E

misc
fields

source
IP addr

dest
IP addr data

n datagram remains 

unchanged, as it travels 

source to destination

Dest. Net.  next router  Nhops

223.1.1                             1
223.1.2      223.1.1.4        2
223.1.3      223.1.1.4        2

forwarding table in A



Getting a datagram from source to dest.

Starting at A, send IP datagram 

addressed to B:

n look up net. address of B in forwarding 

table

n find B is on same net. as A

n link layer will send datagram directly to 

B inside link-layer frame

n B and A are directly connected

Dest. Net.  next router  Nhops

223.1.1                             1
223.1.2      223.1.1.4        2
223.1.3      223.1.1.4        2

misc
fields 223.1.1.1 223.1.1.3 data

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

A

B
E

forwarding table in A



Getting a datagram from source to dest.

Dest. Net.  next router  Nhops

223.1.1                             1
223.1.2      223.1.1.4        2
223.1.3      223.1.1.4        2

Starting at A, dest. E:

n look up network address of E in 

forwarding table

n E on different network

n A, E not directly attached

n routing table: next hop router to E is 

223.1.1.4 

n link layer sends datagram to router 

223.1.1.4 inside link-layer frame

n datagram arrives at 223.1.1.4 

n continued…..

misc
fields 223.1.1.1 223.1.2.3 data

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

A

B
E

forwarding table in A



Getting a datagram from source to dest.

Arriving at 223.1.4, destined for 

223.1.2.2

n look up network address of E in router’s 

forwarding table

n E on same network as router’s interface 

223.1.2.9

n router, E directly attached

n link layer sends datagram to 223.1.2.2 

inside link-layer frame via interface 

223.1.2.9

n datagram arrives at 223.1.2.2!!! (hooray!)

misc
fields 223.1.1.1 223.1.2.3 data

Dest. Net  router  Nhops  interface

223.1.1         - 1       223.1.1.4 
223.1.2         - 1       223.1.2.9
223.1.3         - 1       223.1.3.27

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

A

B
E

forwarding table in router



IP datagram format

ver length

32 bits

data 
(variable length,
typically a TCP 

or UDP segment)

16-bit identifier

Internet
checksum

time to
live

32 bit source IP address

IP protocol version
number

header length
(bytes)

max number
remaining hops

(decremented at 
each router)

for
fragmentation/
reassembly

total datagram
length (bytes)

upper layer protocol
to deliver payload to

head.
len

type of
service

“type” of data flgs fragment
offset

upper
layer

32 bit destination IP address

Options (if any) E.g. timestamp,
record route
taken, specify
list of routers 
to visit.

how much overhead 
with TCP?

n 20 bytes of TCP
n 20 bytes of IP
n = 40 bytes + app 

layer overhead



IP Fragmentation & Reassembly

n network links have MTU 

(max.transfer size) - largest 

possible link-level frame

n different link types, different MTUs 

n large IP datagram divided 

(“fragmented”) within net

n one datagram becomes several 

datagrams

n “reassembled” only at final 

destination

n IP header bits used to identify, 

order related fragments

fragmentation: 
in: one large datagram
out: 3 smaller 
datagrams

reassembly



IP Fragmentation and Reassembly

ID
=x

offset
=0

fragflag
=0

length
=4000

ID
=x

offset
=0

fragflag
=1

length
=1500

ID
=x

offset
=1480

fragflag
=1

length
=1500

ID
=x

offset
=2960

fragflag
=0

length
=1040

One large datagram becomes
several smaller datagrams

Example
n 4000 byte datagram
n MTU = 1500 bytes



DHCP: Dynamic Host Configuration Protocol

Goal: allow host to dynamically obtain its IP address from network 
server when it joins network

Can renew its lease on address in use

Allows reuse of addresses (only hold address while connected)

Support for mobile users who want to join network 

DHCP overview:

n host broadcasts “DHCP discover” msg

n DHCP server responds with “DHCP offer” msg

n host requests IP address: “DHCP request” msg

n DHCP server sends address: “DHCP ack” msg 



DHCP client-server scenario

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

A

B
E

DHCP 
server

arriving DHCP 
client needs
address in this
network



DHCP client-server scenario

DHCP server: 223.1.2.5 arriving
client

time

DHCP discover

src : 0.0.0.0, 68     
dest.: 255.255.255.255,67
yiaddr:    0.0.0.0
transaction ID: 654

DHCP offer

src: 223.1.2.5, 67      
dest:  255.255.255.255, 68
yiaddrr: 223.1.2.4
transaction ID: 654
Lifetime: 3600 secs

DHCP request

src:  0.0.0.0, 68     
dest::  255.255.255.255, 67
yiaddrr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs

DHCP ACK

src: 223.1.2.5, 67      
dest:  255.255.255.255, 68
yiaddrr: 223.1.2.4
transaction ID: 655
Lifetime: 3600 secs



ICMP: Internet Control Message Protocol

n Used by hosts, routers, gateways to 
communication network-level 
information

n error reporting: unreachable host, 
network, port, protocol

n echo request/reply (used by ping)

n Network-layer “above” IP:

n ICMP msgs carried in IP 
datagrams

n ICMP message: type, code plus first 
8 bytes of IP datagram causing 
error

Type Code description
0        0         echo reply (ping)
3        0         dest. network unreachable
3        1         dest host unreachable
3        2         dest protocol unreachable
3        3         dest port unreachable
3        6         dest network unknown
3        7         dest host unknown
4        0         source quench (congestion

control - not used)
8        0         echo request (ping)
9        0         route advertisement
10      0         router discovery
11      0         TTL expired
12      0         bad IP header



NAT: Network Address Translation

10.0.0.1

10.0.0.2

10.0.0.3

10.0.0.4

138.76.29.7

local network
(e.g., home network)

10.0.0/24

rest of
Internet

Datagrams with source or 
destination in this network

have 10.0.0/24 address for 
source, destination (as usual)

All datagrams leaving local
network have same single source 

NAT IP address: 138.76.29.7,
different source port numbers



NAT: Network Address Translation

Motivation: local network uses just one IP address as far as outside word 

is concerned:

n no need to be allocated range of addresses from ISP: - just one IP address 

is used for all devices

n can change addresses of devices in local network without notifying outside 

world

n can change ISP without changing addresses of devices in local network

n devices inside local net not explicitly addressable, visible by outside world 

(a security plus).



NAT: Network Address Translation

Implementation: NAT router must:

n outgoing datagrams: replace (source IP address, port #) of every 
outgoing datagram to (NAT IP address, new port #)

. . . remote clients/servers will respond using (NAT IP address,
new port #) as destination addr.

n remember (in NAT translation table) every (source IP address, 
port #)  to (NAT IP address, new port #) translation pair

n incoming datagrams: replace (NAT IP address, new port #) in 
dest fields of every incoming datagram with corresponding 
(source IP address, port #) stored in NAT table



NAT: Network Address Translation

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345
D: 128.119.40.186, 80

1

10.0.0.4

138.76.29.7

1: host 10.0.0.1 
sends datagram to 
128.119.40, 80

NAT translation table
WAN side addr        LAN side addr

138.76.29.7, 5001   10.0.0.1, 3345
……                                         ……

S: 128.119.40.186, 80 
D: 10.0.0.1, 3345 4

S: 138.76.29.7, 5001
D: 128.119.40.186, 802

2: NAT router
changes datagram
source addr from
10.0.0.1, 3345 to
138.76.29.7, 5001,
updates table

S: 128.119.40.186, 80 
D: 138.76.29.7, 5001 3

3: Reply arrives
dest. address:
138.76.29.7, 5001

4: NAT router
changes datagram
dest addr from
138.76.29.7, 5001 to 10.0.0.1, 3345



NAT: Network Address Translation

n 16-bit port-number field: 

n 60,000 simultaneous connections with a single LAN-side 

address!

n NAT is controversial:

n routers should only process up to layer 3

n violates end-to-end argument

n NAT possibility must be taken into account by app designers, 

eg, P2P applications

n address shortage should instead be solved by IPv6



Routing

Graph abstraction for routing 

algorithms:

n graph nodes are routers or 

networks

n graph edges are physical links

n link cost: delay, $ cost, or 

congestion level

Goal: determine “good” path
(sequence of routers) thru 

network from source to dest.

Routing protocol

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5

n “good” path:

n typically means minimum 

cost path

n other def’s possible



Routing Algorithm classification

Global or decentralized information?

Global:

n all routers have complete topology, 

link cost info

n “link state” algorithms

Decentralized:

n router knows physically-connected 

neighbors, link costs to neighbors

n iterative process of computation, 

exchange of info with neighbors

n “distance vector” algorithms

Static or dynamic?

Static:

n routes change slowly over time

Dynamic:

n routes change more quickly

n periodic update

n in response to link cost changes

Deterministic or Random?

n Non-det: Random, Flooding, hot potato

n Deterministic: DV, LS



(1) A Link-State Routing Algorithm

Dijkstra’s algorithm

n Net topology, link costs known to all 

nodes

n accomplished via “link state 

broadcast” 

n all nodes have same info

n Computes least cost paths from one 

node (‘source”) to all other nodes

n gives routing table for that node

n Iterative: after k iterations, knows 

least cost path to k destinations

Notation:

n c(i,j): link cost from node i to j. cost 

infinite if not direct neighbors

n D(V): current value of cost of path 

from source to dest. V

n p(V): predecessor node along path 

from source to V, that is next V

n N: set of nodes whose least cost path 

is definitively known



Dijsktra’s Algorithm

1  Initialization:
2    N = {A} 
3    for all nodes v 
4      if v adjacent to A 
5        then D(v) = c(A,v) 
6        else D(v) = infinity 
7 
8   Loop
9     find w not in N such that D(w) is a minimum 
10    add w to N 
11    update D(v) for all v adjacent to w and not in N: 
12       D(v) = min( D(v), D(w) + c(w,v) ) 
13    /* new cost to v is either old cost to v or known 
14     shortest path cost to w plus cost from w to v */ 
15  until all nodes in N

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5



Dijkstra’s algorithm: example

Step
0
1
2
3
4
5

start N
A

AD
ADE

ADEB
ADEBC

ADEBCF

D(B),p(B)
2,A
2,A
2,A

D(C),p(C)
5,A
4,D
3,E
3,E

D(D),p(D)
1,A

D(E),p(E)
infinity

2,D

D(F),p(F)
infinity
infinity

4,E
4,E
4,E

A

ED

CB

F
2

2
1

3

1

1

2

5
3

5



Dijkstra’s algorithm, discussion

Algorithm complexity: n nodes
n each iteration: need to check all nodes, w, not in N
n n*(n+1)/2 comparisons: O(n2)
n more efficient implementations possible: O(nlogn)

Oscillations possible:
n e.g., link cost = amount of carried traffic

A

D

C

B
1 1+e

e0

e

1 1

0 0

A

D

C

B
2+e 0

00
1+e 1

A

D

C

B
0 2+e

1+e1
0 0

A

D

C

B
2+e 0

e0
1+e 1

initially
… recompute

routing
… recompute … recompute



(2) Distance Vector Routing Algorithm

iterative:

n continues until no nodes 

exchange info.

n self-terminating: no “signal” to 

stop

asynchronous:

n nodes need not exchange 

info/iterate in lock step!

distributed:

n each node communicates only

with directly-attached 

neighbors

Distance Table data structure
n each node has its own
n row for each possible destination
n column for each directly-attached neighbor 

to node
n example: in node X, for dest. Y via neighbor 

Z:

D (Y,Z)
X

distance from X to
Y, via Z as next hop

c(X,Z) + min  {D  (Y,w)}Z
w

=

=



Distance Table: example

A

E D

CB
7

8
1

2

1

2 D  ()

A

B

C

D

A

1

7

6

4

B

14

8

9

11

D

5

5

4

2

E
cost to destination via

de
st

in
at

io
n

D (C,D)
E

c(E,D) + min  {D  (C,w)}
D

w=
= 2+2  = 4

D (A,D)
E

c(E,D) + min  {D  (A,w)}
D

w=
= 2+3  = 5

D (A,B)
E

c(E,B) + min  {D  (A,w)}
B

w=
= 8+6  = 14

loop!

loop!



Distance table gives routing table

D  ()

A

B

C

D

A

1

7

6

4

B

14

8

9

11

D

5

5

4

2

E
cost to destination via

de
st

in
at

io
n

A

B

C

D

A,1

D,5

D,4

D,4

Outgoing link 
to use, cost

de
st

in
at

io
n

Distance table Routing table



Distance Vector Routing: overview

Iterative, asynchronous: each local 

iteration caused by: 

n local link cost change 

n message from neighbor: its least 

cost path change from neighbor

Distributed:

n each node notifies neighbors only

when its least cost path to any 

destination changes

n neighbors then notify their 

neighbors if necessary

wait for (change in local link 
cost of msg from neighbor)

recompute distance table

if least cost path to any dest 
has changed, notify
neighbors 

Each node:



Distance Vector Algorithm:

1  Initialization: 
2   for all adjacent nodes v: 
3      D  (*,v) = infinity        /* the * operator means "for all rows" */ 
4      D  (v,v) = c(X,v) 
5   for all destinations, y 
6      send min  D  (y,w) to each neighbor  /* w over all X's neighbors */

X
X

X
w

At all nodes, X:



Distance Vector Algorithm (cont’d):
8  loop
9    wait (until I see a link cost change to neighbor V 
10         or until I receive update from neighbor V) 
11 
12   if (c(X,V) changes by d) 
13     /* change cost to all dest's via neighbor v by d */
14     /* note: d could be positive or negative */ 
15     for all destinations y:  D  (y,V) =  D  (y,V) + d 
16 
17   else if (update received from V about destination Y) 
18     /* shortest path from V to some Y has changed  */
19     /* V has sent a new value for its  min   DV(Y,w) */ 
20     /* call this received new value is "newval"     */ 
21     for the single destination y: D  (Y,V) = c(X,V) + newval 
22 
23   if we have a new min   D  (Y,w)for any destination Y 
24      send new value of min   D  (Y,w) to all neighbors 
25 
26  forever

w

XX

X
X

X

w
w



Distance Vector Algorithm: example

X Z
12

7

Y



Distance Vector Algorithm: example

X Z
12

7

Y

D  (Y,Z)
X c(X,Z) + min  {D  (Y,w)}

w=

= 7+1 = 8

Z

D  (Z,Y)
X c(X,Y) + min  {D  (Z,w)}

w=

= 2+1 = 3

Y



Distance Vector: link cost changes

Link cost changes:

n node detects local link cost change 

n updates distance table (line 15)

n if cost change in least cost path, notify 

neighbors (lines 23,24)

X Z
14

50

Y
1

algorithm
terminates“good

news 
travels
fast”



Distance Vector: link cost changes

Link cost changes:

n good news travels fast 

n bad news travels slow - “count to 
infinity” problem!

X Z
14

50

Y
60

algorithm
continues

on!



Distance Vector: poisoned reverse

If Z routes through Y to get to X :

n Z tells Y its (Z’s) distance to X is infinite (so Y won’t 
route to X via Z)

n will this completely solve count to infinity problem? 
X Z

14

50

Y
60

algorithm
terminates



Comparison of LS and DV algorithms

Message complexity

n LS: with n nodes, E links, O(nE) 
msgs sent each 

n DV: exchange between neighbors 
only
n convergence time varies

Speed of Convergence

n LS: O(n2) algorithm requires 
O(nE) msgs
n may have oscillations

n DV: convergence time varies
n may be routing loops

n count-to-infinity problem

Robustness: what happens if router 
malfunctions?

LS:

n node can advertise incorrect 
link cost

n each node computes only its 
own table

DV:

n DV node can advertise incorrect 
path cost

n each node’s table used by 
others 

n error propagate thru network



Chapter 4 roadmap

4.1 Introduction and Network Service Models
4.2 Routing Principles
4.3 Hierarchical Routing
4.4 The Internet (IP) Protocol
4.5 Routing in the Internet
4.6 What’s Inside a Router
4.7 IPv6
4.8 Multicast Routing
4.9 Mobility



Hierarchical Routing

scale: with 200 million 
destinations:

n can’t store all dest’s in 
routing tables!

n routing table exchange 
would swamp links!

administrative autonomy
n internet = network of networks
n each network admin may want 

to control routing in its own 
network

Our routing study thus far - idealization 
n all routers identical
n network “flat”
… not true in practice



Hierarchical Routing

n aggregate routers into 
regions, “autonomous 
systems” (AS)

n routers in same AS run 
same routing protocol
n “intra-AS” routing

protocol
n routers in different AS 

can run different intra-
AS routing protocol

n special routers in AS
n run intra-AS routing 

protocol with all other 
routers in AS

n also responsible for 
routing to destinations 
outside AS

n run inter-AS 
routing protocol 
with other 
gateway routers

gateway routers



Intra-AS and Inter-AS routing

Gateways:
•perform inter-AS 
routing amongst 
themselves
•perform intra-AS 
routers with other 
routers in their AS

inter-AS, intra-AS 
routing in 

gateway A.c

network layer

link layer

physical layer

a

b

b

a
aC

A

B
d

A.a
A.c

C.b
B.a

c
b

c



Intra-AS and Inter-AS routing

Host 
h2

a

b

b

a
aC

A

B
d c

A.a

A.c

C.b
B.a

c
b

Host
h1

Intra-AS routing
within AS A

Inter-AS
routing

between 
A and B

Intra-AS routing
within AS B

n We’ll examine specific inter-AS and intra-AS 
Internet routing protocols shortly



Chapter 4 roadmap

4.1 Introduction and Network Service Models
4.2 Routing Principles
4.3 Hierarchical Routing
4.4 The Internet (IP) Protocol
4.5 Routing in the Internet

n 4.5.1 Intra-AS routing: RIP and OSPF
n 4.5.2 Inter-AS routing: BGP

4.6 What’s Inside a Router?
4.7 IPv6
4.8 Multicast Routing
4.9 Mobility



Routing in the Internet

n The Global Internet consists of Autonomous Systems 
(AS) interconnected with each other:
n Stub AS: small corporation: one connection to other AS
n Multihomed AS: large corporation (no transit): multiple 

connections to other AS’s
n Transit AS: provider, hooking many AS’s together

n Two-level routing: 
n Intra-AS: administrator responsible for choice of routing 

algorithm within network
n Inter-AS: unique standard for inter-AS routing: BGP



Internet AS Hierarchy

Intra-AS border (exterior gateway) routers

Inter-AS interior (gateway) routers



Intra-AS Routing

n Also known as Interior Gateway Protocols (IGP)
n Most common Intra-AS routing protocols:

n RIP: Routing Information Protocol

n OSPF: Open Shortest Path First

n IGRP: Interior Gateway Routing Protocol 
(Cisco proprietary)



RIP ( Routing Information Protocol)

n Distance vector algorithm
n Included in BSD-UNIX Distribution in 1982
n Distance metric: # of hops (max = 15 hops)

n Can you guess why?

n Distance vectors: exchanged among neighbors every 
30 sec via Response Message (also called 
advertisement)

n Each advertisement: list of up to 25 destination nets 
within AS



RIP: Example

Destination Network Next  Router      Num. of hops to dest.
w A 2
y B 2
z B 7
x -- 1
…. …. ....

w x y

z

A

C

D B

Routing table in D



RIP: Example

Destination Network Next  Router      Num. of hops to dest.
w A 2
y B 2
z B A 7 5
x -- 1
…. …. ....

Routing table in D

w x y

z

A

C

D B

Dest     Next  hops
w - -
x - -
z C     4
…. …    ...

Advertisement
from A to D



RIP: Link Failure and Recovery

If no advertisement heard after 180 sec --> neighbor/link 
declared dead
n routes via neighbor invalidated
n new advertisements sent to neighbors
n neighbors in turn send out new advertisements (if 

tables changed)
n link failure info quickly propagates to entire net
n poison reverse used to prevent ping-pong loops 

(infinite distance = 16 hops)



RIP Table processing

n RIP routing tables managed by application-level
process called route-d (daemon)

n advertisements sent in UDP packets, periodically 
repeated

physical

link

network        forwarding
(IP)               table

Transport
(UDP)

routed

physical

link

network
(IP)

Transport
(UDP)

routed

forwarding
table



RIP Table example (continued)

Router: router.cs.ucf.edu

n Three attached class C networks (LANs)
n Router only knows routes to attached LANs
n Default router used to “go up”
n Route multicast address: 224.0.0.0
n Loopback interface (for debugging)

Destination           Gateway           Flags  Ref   Use   Interface 
-------------------- -------------------- ----- ----- ------ ---------
127.0.0.1            127.0.0.1             UH       0  26492  lo0 
192.168.2.           192.168.2.5           U        2     13  fa0 
193.55.114.          193.55.114.6          U        3  58503  le0 
192.168.3.           192.168.3.5           U        2     25  qaa0 
224.0.0.0            193.55.114.6          U        3      0  le0 
default              193.55.114.129        UG       0 143454 



OSPF (Open Shortest Path First)

n “open”: publicly available

n Uses Link State algorithm 
n LS packet dissemination
n Topology map at each node
n Route computation using Dijkstra’s algorithm

n OSPF advertisement carries one entry per neighbor router

n Advertisements disseminated to entire AS (via flooding)
n Carried in OSPF messages directly over IP (rather than TCP or 

UDP



OSPF “advanced” features (not in RIP)

n Security: all OSPF messages authenticated (to prevent malicious 
intrusion) 

n Multiple same-cost paths allowed (only one path in RIP)

n For each link, multiple cost metrics for different TOS (e.g., satellite 
link cost set “low” for best effort; high for real time)

n Integrated uni- and multicast support: 
n Multicast OSPF (MOSPF) uses same topology data base as 

OSPF

n Hierarchical OSPF in large domains.



Hierarchical OSPF



Hierarchical OSPF

n Two-level hierarchy: local area and backbone

n Link-state advertisements only within an area 
n each node has detailed area topology
n Each node only knows direction (shortest path) to nets in other 

areas

n Components:
n Area border routers: “summarize” distances  to nets in own 

area, advertise to other Area Border routers.
n Backbone routers: run OSPF routing limited to backbone.
n Boundary routers: connect to other AS’s.



Internet inter-AS routing: BGP

n BGP (Border Gateway Protocol): the de facto standard
n Path Vector protocol:

n similar to Distance Vector protocol
n each Border Gateway broadcast to neighbors (BGP 

peers) entire path (i.e., sequence of AS’s) to destination
n E.g., Gateway X may send its path to dest. Z:

Path (X,Z) = X,Y1,Y2,Y3,…,Z

n An AS is identified by a unique AS number
n BGP routes to networks (ASs), not individual hosts



Internet inter-AS routing: BGP

Suppose: gateway X send its path to peer gateway W

n W may or may not select path offered by X
n cost, policy (don’t route via competitors AS), loop prevention 

reasons.
n If W selects path advertised by X, then:

Path (W,Z) = w, Path (X,Z)
n Note: X can control incoming traffic by controlling it route 

advertisements to peers:
n e.g., don’t want to route traffic to Z -> don’t advertise any 

routes to Z



BGP: controlling who routes to you

 

Figure 4.5-BGPnew: a simple BGP scenario 

A 

B 

C 

W 
X 

Y 

legend: 

customer 
network: 

provider 
network 

 

n A,B,C are provider networks
n X,W,Y are customer (of provider networks)
n X is dual-homed: attached to two networks

n X does not want to route from B via X to C
n .. so X will not advertise to B a route to C



BGP: controlling who routes to you
 

Figure 4.5-BGPnew: a simple BGP scenario 

A 

B 

C 

W 
X 

Y 

legend: 

customer 
network: 

provider 
network 

 

n A advertises to B the path AW 
n B advertises to X the path BAW 
n Should B advertise to C the path BAW?

n No way! B gets no “revenue” for routing CBAW because neither 
W nor C are B’s customers 

n B wants to force C to route to w via A
n B wants to route only to/from its customers!



BGP operation

Q: What does a BGP router do?

n Receiving and filtering route advertisements from directly 
attached neighbor(s)

n Route selection
n To route to destination X, which path (of several advertised) 

will be taken?
n Sending route advertisements to neighbors



Why different Intra- and Inter-AS routing ?

Policy:
n Inter-AS: admin wants control over how its traffic routed, who routes 

through its net. 
n Intra-AS: single admin, so no policy decisions needed

Scale:
n hierarchical routing saves table size, reduced update traffic

Performance:
n Intra-AS: can focus on performance
n Inter-AS: policy may dominate over performance



Router Architecture Overview

Two key router functions: 
n run routing algorithms/protocol (RIP, OSPF, BGP)
n switching datagrams from incoming to outgoing link



Input Port Functions

Decentralized switching:
n given datagram dest., lookup output port 

using routing table in input port memory
n goal: complete input port processing at ‘line 

speed’
n queuing: if datagrams arrive faster than 

forwarding rate into switch fabric

Physical layer:
bit-level reception

Data link layer:
e.g., Ethernet
see chapter 5



Input Port Queuing

n Fabric slower that input ports combined -> queueing may occur at 
input queues 

n Head-of-the-Line (HOL) blocking: queued datagram at front of 
queue prevents others in queue from moving forward

n queueing delay and loss due to input buffer overflow!



Three types of switching fabrics



Switching Via Memory

First generation routers:
n packet copied by system’s (single) CPU
n speed limited by memory bandwidth (2 bus crossings 
per datagram)

Input
Port

Output
Port

Memory

System Bus

Modern routers:
n input port processor performs lookup, copy into 
memory
n Cisco Catalyst 8500



Switching Via a Bus

n datagram from input port memory
to output port memory via a shared 
bus

n bus contention: switching speed 
limited by bus bandwidth

n 1 Gbps bus, Cisco 1900: sufficient 
speed for access and enterprise 
routers (not regional or backbone)



Switching Via An Interconnection Network

n overcome  bus bandwidth limitations
n Banyan networks, other interconnection nets initially 

developed to connect processors in multiprocessor
n Advanced design: fragmenting datagram into fixed 

length cells, switch cells through the fabric. 
n Cisco 12000: switches Gbps through the 

interconnection network



Output Ports

n Buffering required when datagrams arrive from fabric 
faster than the transmission rate

n Scheduling discipline chooses among queued 
datagrams for transmission



Output port queueing

n buffering when arrival rate via switch exceeds output 
line speed

n queueing (delay) and loss due to output port buffer 
overflow!



IPv6

n Initial motivation: 32-bit address space completely 
allocated by 2008.  

n Additional motivation:
n header format helps speed processing/forwarding
n header changes to facilitate QoS 
n new “anycast” address: route to “best” of several 

replicated servers 

n IPv6 datagram format:
n fixed-length 40 byte header
n no fragmentation allowed



IPv6 Header (Cont)

Priority: identify priority among datagrams in flow
Flow Label: identify datagrams in same “flow.” 

(concept of “flow” not well defined).
Next header: identify upper layer protocol for data 



Other Changes from IPv4

n Checksum: removed entirely to reduce processing 
time at each hop

n Options: allowed, but outside of header, indicated by 
“Next Header” field

n ICMPv6: new version of ICMP
n additional message types, e.g. “Packet Too Big”
n multicast group management functions



Transition From IPv4 To IPv6

n Not all routers can be upgraded simultaneous
n no “flag days”
n How will the network operate with mixed IPv4 and IPv6 

routers? 

n Two proposed approaches:
n Dual Stack: some routers with dual stack (v6, v4) can 

“translate” between formats
n Tunneling: IPv6 carried as payload in IPv4 datagram 

among IPv4 routers



Dual Stack Approach

A B E F

IPv6 IPv6 IPv6 IPv6

C D

IPv4 IPv4

Flow: X
Src: A
Dest: F

data

Flow: ??
Src: A
Dest: F

data

Src:A
Dest: F

data

A-to-B:
IPv6

Src:A
Dest: F

data

B-to-C:
IPv4

B-to-C:
IPv4

B-to-C:
IPv6



Tunneling
A B E F

IPv6 IPv6 IPv6 IPv6

tunnelLogical view:

Physical view:
A B E F

IPv6 IPv6 IPv6 IPv6

C D

IPv4 IPv4

Flow: X
Src: A
Dest: F

data

Flow: X
Src: A
Dest: F

data

Flow: X
Src: A
Dest: F

data

Src:B
Dest: E

Flow: X
Src: A
Dest: F

data

Src:B
Dest: E

A-to-B:
IPv6

E-to-F:
IPv6

B-to-C:
IPv6 inside

IPv4

B-to-C:
IPv6 inside

IPv4


