
Dijkstra’s Algorithm Definitions

• s = sou���rce node

• N = set of nodes so far incorporated by the algorithm

• c(i, j) = link cost from node i to node j
– c(i, i) = 0
– c(i, j) = ∞ if the two nodes are not directly connected
– c(i, j) ≥ 0 if the two nodes are directly connected

• D(v) = cost of least-cost path from node s to node v currently
known (at termination, D(v) will be the least-cost path from
s to v)

Dijkstra’s Algorithm
• Step 1 [Initialization]

– N = {s} Set of nodes so far incorporated consists of only source node
– D(v) = c(s, v) for n ≠ s
– Initial path costs to neighboring nodes are simply link costs

• Step 2 [Get Next Node]
– Find neighboring node not in N with least-cost path from s
– Incorporate node into N

• Step 3 [Update Least-Cost Paths]
– D(v) = min[D(v), D(w) + c(w, v)] for all w ∉ N

• Return to Step 2. Algorithm terminates when all nodes have been
added to T

Bellman-Ford Algorithm Definitions
• s = source node

• c(i, j) = link cost from node i to node j
– c(i, i) = 0
– c(i, j) = ∞ if the two nodes are not directly connected
– c(i, j) ≥ 0 if the two nodes are directly connected

• h = maximum number of links in path at current stage of the
algorithm

• Dh(v) = cost of least-cost path from s to v under constraint of
no more than h links

Bellman-Ford Algorithm

• Step 1 [Initialization]
– D0(v) = ∞, for all v ≠ s
– Dh(s) = 0, for all h

• Step 2 [Update]
– For each successive h ≥ 0:

• For each v ≠ s, compute
Dh+1(v)= min

w [Dh(w)+c(w,v)]
; w = v’s neighbor

