Dijkstra’s Algorithm Definitions

- $s =$ source node

- $N =$ set of nodes so far incorporated by the algorithm

- $c(i, j) =$ link cost from node i to node j
 - $c(i, i) = 0$
 - $c(i, j) = \infty$ if the two nodes are not directly connected
 - $c(i, j) \geq 0$ if the two nodes are directly connected

- $D(v) =$ cost of least-cost path from node s to node v currently known (at termination, $D(v)$ will be the least-cost path from s to v)
Dijkstra’s Algorithm

- **Step 1 [Initialization]**
 - $N = \{s\}$ Set of nodes so far incorporated consists of only source node
 - $D(v) = c(s, v)$ for $n \neq s$
 - Initial path costs to neighboring nodes are simply link costs

- **Step 2 [Get Next Node]**
 - Find neighboring node not in N with least-cost path from s
 - Incorporate node into N

- **Step 3 [Update Least-Cost Paths]**
 - $D(v) = \min[D(v), D(w) + c(w, v)]$ for all $w \not\in N$

- **Return to Step 2.** Algorithm terminates when all nodes have been added to T
Bellman-Ford Algorithm Definitions

• \(s \) = source node

• \(c(i, j) \) = link cost from node \(i \) to node \(j \)
 - \(c(i, i) = 0 \)
 - \(c(i, j) = \infty \) if the two nodes are not directly connected
 - \(c(i, j) \geq 0 \) if the two nodes are directly connected

• \(h \) = maximum number of links in path at current stage of the algorithm

• \(D_h(v) \) = cost of least-cost path from \(s \) to \(v \) under constraint of no more than \(h \) links
Bellman-Ford Algorithm

• Step 1 [Initialization]
 – $D_0(v) = \infty$, for all $v \neq s$
 – $D_h(s) = 0$, for all h

• Step 2 [Update]
 – For each successive $h \geq 0$:
 • For each $v \neq s$, compute
 $$D_{h+1}(v) = \min_w [D_h(w) + c(w,v)]$$
 ; $w = v$’s neighbor