Dijkstra's Algorithm Definitions

- s = source node
- N = set of nodes so far incorporated by the algorithm
- c(i, j) = link cost from node i to node j- c(i, i) = 0
 - $-c(i, j) = \infty$ if the two nodes are not directly connected
 - $-c(i, j) \ge 0$ if the two nodes are directly connected
- D(v) = cost of least-cost path from node s to node v currently known (at termination, D(v) will be the least-cost path from s to v)

Dijkstra's Algorithm

- Step 1 [Initialization]
 - $N = \{s\}$ Set of nodes so far incorporated consists of only source node
 - $D(v) = c(s, v) \text{ for } n \neq s$
 - Initial path costs to neighboring nodes are simply link costs
- Step 2 [Get Next Node]
 - Find neighboring node not in N with least-cost path from s
 - Incorporate node into N
- Step 3 [Update Least-Cost Paths]
 - D(v) = min[D(v), D(w) + c(w, v)] for all $w \notin N$
- Return to Step 2. Algorithm terminates when all nodes have been added to T

Bellman-Ford Algorithm Definitions

- s = source node
- c(i, j) = link cost from node i to node j
 - c(i, i) = 0
 - $c(i, j) = \infty$ if the two nodes are not directly connected
 - $c(i, j) \ge 0$ if the two nodes are directly connected
- h = maximum number of links in path at current stage of the algorithm
- $D_h(v) = cost$ of least-cost path from s to v under constraint of no more than h links

Bellman-Ford Algorithm

- Step 1 [Initialization]
 - $-D_0(v) = \infty$, for all $v \neq s$
 - $-D_h(s) = 0$, for all h
- Step 2 [Update]
 - For each successive $h \ge 0$:
 - For each $v \neq s$, compute $D_{h+1}(v) = \min_{w} [D_{h}(w) + c(w, v)]$; w = v's neighbor