
Computer Architecture

Lecture 3

Bus Architectures

Bus(es)
A bus is a hardware channel through
which information can flow between
components connected to the bus.
It allows us to simplify our current
model and to make further additions
more easily.
Only two components may communicate
through a bus at any given time.

One Bus Design

Memory

MDR MAR

A IP

BUS

1
Decoder

ADD
ALU

IR OP ADDR

C

Instruction Set

Fetch(00)
MAR <- BUS<-PC
MDR <- Memory[MAR] || PC <-PC + 1
IR <-BUS<-MDR
Decoder <- IR.Opcode
MAR<-BUS<-IR.ADDR

Store(01)
MDR<-BUS<-A
Memory[MAR]<- MDR

Load(02)
MDR <-Memory[MAR]
A <-BUS<-MDR

ADD(03)
MDR <-Memory[MAR]
C <- A + MDR (ALU<-BUS<-MDR)
A<-BUS<- C

END(04)
Stop

JMP (05)
PC IR.ADDR

Two Bus Design(modify)

Memory

MDR MAR

A IP

BUS 1

1
Decoder

ADD
ALU

IR OP ADDR

BUS 2

2 Bus Design

With the added bus, 2 pairs of
components may communicate in
parallel.
The additional bus does not change
the current instruction set.
Extra registers maybe need to allow
data to be transferred from one bus
to the other. In this example
registers A, IP, and IR are used for
this function.

2-BUS Architecture
A

ALU

OP ADDR

PC

M
E
M
O
R
Y

4

MDR

MAR

B

C
+

Decoder

Instruction Formats
The Format of the current instructions are
OP <ADDR>
To provide instructions of the format
ADD, R1, R2, R3

and
STORE R3, <ADDR>
where R1, R2 and R3 are registers we
need to add an architecture to select the
appropriate register

Register File
By utilizing a register file you can
organize the registers in one array
The control unit allows us to select the
appropriate register for the operation and
load it into its target location (either
memory or another register)
This is a crucial aspect of the Load/Store
architecture

One Bus with Register File
Load/Store Instruction Format

Memory

MDR MAR

A r3 ADRR IP

BUS

Decoder
ALU

C

Register File

r1
r2
r3
r4

OP

Select register

OP R <ADDR>
1012 015 11 9

Memory

MDR MAR

A r3 r1 IP

BUS

Decoder
ALU

C

Register File

r1
r2
r3
r4

OP

Select register

OP R No used
1012 015 11 9 8

R

One Bus with Register File
Register to Register Format

2-BUS Load/Store Architecture
with Register File

A

ALU

OP

PC

M
E
M
O
R
Y

4

MDR

MAR

Register File

Instruction Formats

The instruction format must be
modified
Three instruction formats are used

OP <ADDR>

OP R2R1

OP R <ADDR>

R3

12 0

1012

12 0

0

8 4

15

15

15

11

11 7

11

3

9

3-BUS Load/Store Architecture
with Register File

By adding a third BUS the system can
load two registers at once using each BUS
Two multiplexers need to be attached to
the output of the register file: one
connected to each BUS to send the
contents of the target register to its
destination
Another multiplexer unit is added to send
input from the third BUS into the correct
location within the register file

3-BUS Load/Store Architecture
with Register File

ALU

OP

PC

M
E
M
O
R
Y

4

MDR

MAR

Register File

Control Unit

Decoder

PC

MAR

MDR

IR

T1

T2

T3 M

T4

T5

OP ………..

Clock Unit
The Latch will only allow the change of the
value on each clock tick
By linking as a ring counter we create a clock
distributor

D

Q

0
D

Q

D

Q

1
T1

T2

T30

Clock Unit
At every clock tick the active flip-flop changes,
sending a signal to execute a different step of
the current instruction in turn

D

Q

0
D

Q

D

Q

1

0

D

Q

1
D

Q

D

Q

0

0

D

Q

0
D

Q

D

Q

0
T1

T2

T31

T1

T2

T3

T1

T2

T3

Control Unit
OP ………..

PC

MAR

MDR

IR

T1

T2

T3 M

T4

T5

Decoder

Each line emerging from the
decoder represents an
operation. When the decoder
is set to that operation, it
sends voltage down the
appropriate channel which is
ANDed with the signals
coming from the clock. This
allows for precise timing in the
step executions of instructions
and makes synchronization
among components possible.

Control Unit
OP ………..

PC

MAR

MDR

IR

T1

T2

T3

Fetch Cycle:
T1: MAR <- PC
T2: MDR <- M[MAR]
T3: IR <- MDR
T4: MAR <- IR.ADDR
T5: Decoder <- IR.OP
The chain of flip-flops will be
as long in clock ticks as the
longest command takes to
execute.

M

T4

T5

Decoder

One-Address Format
The operation is 4 bits and the remaining
12 are address bits
This gives the availability of 2 4

operations and 2 12 memory locations

OP <ADDR>
12 015 11

One-Address Format

0000 is the Fetch operation(hidden
instruction)
It is a hidden instruction that cannot be
accessed by the user

OP <ADDR>
12 015 11

15-12
0000
0001
0010
0011

…
1111

Fetch
Add

Command

Sub
Mult

Two-Address Format
The operation is performed on the
memory addresses of the first and second
operands and the value is stored back in
the location specified by the first operand
field

OP 1st Operand/
Result 2nd Operand

12 0515 11 6

Two-Address Format

100

200

CPU

Add 200 100
12 0515 11 6

This is analogous to:

Load 200

Add 100

Store 200

all performed in one
command

Three-Address Format
The operation is performed on the memory
addresses of the first and second operands
and the value is stored in the location
specified by the result address field

OP 1st OperandResult 2nd Operand

12 08 415 11 7 3

This format is not often used because
it requires three memory accesses per
operation (which is very slow)

Three-Address Format

100

200

300

CPU

Add 200300 100
12 08 415 11 7 3

This is analogous to:

Load 200

Add 100

Store 300

all performed in one
command

Another Three-Address
Format

R1
R2
R3

CPU

Add R2R3 R1
12 08 415 11 7 3

In a Load/Store machine,
the addresses are often
locations in the register file
rather than in memory.
This is very fast on a
machine with multiple-BUS
architecture.

6/1/2005 28

Addressing Modes

Direct
Immediate
Indirect
Register Direct
Register Indirect
Register Indirect plus Offset

6/1/2005 29

Direct Addressing
Used for manipulating an absolute address.
Example: LOAD R1, <ADDR>

will load the contents of <ADDR> into R1

…
…

…

100

200

Memory

CPU

LOAD 3,100
5 Registers

0
1

2

3 5

6/1/2005 30

Immediate Addressing
Used when dealing with constants.
Example: LOAD R1, #value

will load value into R1.

CPU

LOAD 3,#25
Registers

0
1

2

3 25

6/1/2005 31

Indirect Addressing
Typically used for accessing a value through a

pointer.
Example: LOAD R1,I,<ADDR>

…
…

…

500

800

Memory

CPU

LOAD 1,I,500

18

Registers

0
1

2
3

MAR

18

800800

Contents of <ADDR> stores another
address whose contents will be loaded
into R1

6/1/2005 32

Register Direct Addressing
Used to copy the contents of one register into

another.
Example: COPY R2,R1 or MOVE R2,R1

will copy contents of R1 into R2.

CPU

COPY 3,1
Registers

0
1

2

3 25

25

6/1/2005 33

Register Indirect
Addressing

Typically used for accessing a list of consecutive
memory locations.

Example: LOAD R2,<R1>

…
…

…

100

200

Memory

CPU

LOAD 2,1

18

Registers

0
1

2
3

18

MAR

200

200

will load the contents of address
stored in R1 into R2

6/1/2005 34

Register Indirect Addressing plus
Offset

Typically used when accessing array and structures.
Example: LOAD R2,R1,offset

…
…

…

100

600

Memory

CPU

LOAD 2,1,500

18

Registers

0
1

2
3

18

100

+

will load the contents of address stored in
R1+offset into R2

