
Lecture 2

Interrupt Handling
by

Euripides Montagne
University of Central Florida

Eurípides Montagne University of Central Florida 2

Outline

1. The structure of a tiny computer.

2. A program as an isolated system.

3. The interrupt mechanism.

4. The hardware/software interface.

5. Interrupt Types.

Eurípides Montagne University of Central Florida 3

Von-Neumann Machine (VN)
IP

MAR

AMDROP ADDRESS

MEMORY

A L U

Decoder

IR

Eurípides Montagne University of Central Florida 4

Instruction Cycle

Instruction cycle, or machine cycle, in VN is
composed of 2 steps:
1. Fetch Cycle: instructions are retrieved from
memory
2. Execution Cycle: instructions are executed
A hardware description language will be used to
understand how instructions are executed in VN

Eurípides Montagne University of Central Florida 5

Definitions

IP: Instruction Pointer is a register that holds the
address of the next instruction to be executed.
MAR: Memory Address Register is used to locate
a specific memory location to read or write its
content.
MEM: Main storage, or RAM (Random Access
Memory) and is used to store programs and data.

Eurípides Montagne University of Central Florida 6

Definition of MDR

MDR: Memory Data Register is a bi-directional
register used to receive the content of the memory
location addressed by MAR or to store a value in a
memory location addressed by MAR. This register
receives either instructions or data from memory

Eurípides Montagne University of Central Florida 7

Definitions Cont.

IR: Instruction Register is used to store instructions
DECODER: Depending on the value of the IR, this
device will send signals through the appropriate
lines to execute an instruction.
A: Accumulator is used to store data to be used as
input to the ALU.
ALU: Arithmetic Logic Unit is used to execute
mathematical instructions such as ADD, or
MULTIPLY

Eurípides Montagne University of Central Florida 8

Fetch Execute Cycle

In VN, the instruction cycle is given by the
following loop:

Fetch
Execute

In order to explain further details about the
fetch /execute cycle, the data movements along
different paths can be described in 4 steps.

Eurípides Montagne University of Central Florida 9

Data Movement 1

Given register IP and
MAR the transfer of
the contents of IP into
MAR is indicated as :

MAR IP

A

IP

MAR

MDROP ADDRESS

MEMORY

A L U

Decoder

Eurípides Montagne University of Central Florida 10

Data Movement 2

To transfer information
from a memory location to
the register MDR, we use:

MDR MEM[MAR]

The address of the memory
location has been stored
previously into the MAR
register

IP

MAR

MDROP ADDRESS

MEMORY

A L U

Decoder

A

MAR

Eurípides Montagne University of Central Florida 11

Data Movement 3

To transfer information from the MDR
register to a memory location, we use:

MEM [MAR] MDR
*see previous slide for diagram

The address of the memory location has been
previously stored into the MAR

Eurípides Montagne University of Central Florida 12

Instruction Register Properties

The Instruction Register (IR) has two fields:
Operation (OP) and the ADDRESS.

These fields can be accessed using the
selector operator “.”

Eurípides Montagne University of Central Florida 13

Data Movement 4

The operation field of the IR register is sent to the
DECODER as:

DECODER IR.OP

The Operation portion of the field is accessed as
IR.OP
DECODER: If the value of IR.OP==0, then the
decoder can be set to execute the fetch cycle again.

Eurípides Montagne University of Central Florida 14

Data Movement 4 Cont.

IP

MAR

MDROP ADDRESS

MEMORY

A L U

Decoder

A

DECODER IR.OP

Eurípides Montagne University of Central Florida 15

Instruction Cycle

The instruction cycle has 2 components.
Fetch cycle retrieves the instruction from
memory.
Execution cycle carries out the instruction
loaded previously.

Eurípides Montagne University of Central Florida 16

00 Fetch Cycle

1.MAR IP
2.MDR MEM[MAR]
3.IR MDR
4.IP IP+1
5.DECODER IR.OP

1.Copy contents of IP into
MAR

2. Load content of memory
location into MDR

3. Copy value stored in
MDR into IR

4. Increment IP register
5. Select Instruction to be

executed

Eurípides Montagne University of Central Florida 17

Execution: 01 LOAD

1. Copy the IR address
value field into MAR

2. Load the content of a
memory location into
MDR

3. Copy content of
MDR into A register

4. Set Decoder to
execute Fetch Cycle

1. MAR IR.ADDR
2. MDR MEM[MAR]
3. A MDR
4. DECODER 00

Eurípides Montagne University of Central Florida 18

Execution: 02 ADD

1. MAR IR.ADDR
2. MDR MEM[MAR]
3. A A + MDR
4. DECODER 00

1. Copy the IR address
value field into MAR

2. Load content of memory
location to MDR

3. Add contents of MDR
and A register and store
result into A

4. Set Decoder to execute
Fetch cycle

Eurípides Montagne University of Central Florida 19

Execution: 03 STORE

1. Copy the IR address
value field into MAR

2. Copy A register
contents into MDR

3. Copy content of
MDR into a memory
location

4. Set Decoder to
execute fetch cycle

1. MAR IR.ADDR
2. MDR A
3. MEM[MAR] MDR
4. DECODER 00

Eurípides Montagne University of Central Florida 20

Execution: 04 END

1. STOP 1. Program ends
normally

Eurípides Montagne University of Central Florida 21

Instruction Set Architecture

01 Load
MAR IR.Address
MDR MEM[MAR]
A MDR
DECODER 00

03 Store
MAR IR.Address
MDR A
MEM[MAR] MDR
DECODER 00

04 Stop

00 Fetch (hidden instruction)
MAR IP
MDR MEM[MAR]
IR MDR
IP IP+1
DECODER IR.OP

02 Add
MAR IR.Address
MDR MEM[MAR]
A A + MDR
DECODER 00

Eurípides Montagne University of Central Florida 22

One Address Architecture

The instruction format of this one-address
architecture is:

operation<address>
Address are given in hexadecimal and are
preceded by an “x”, for instance x56

Eurípides Montagne University of Central Florida 23

Example One-Address Program

Memory Address
x20 450
x21 300
x22 750 (after program execution)
x23 Load <x20>
x24 Add <x21>
x25 Store<x22>
x26 End

Eurípides Montagne University of Central Florida 24

Programs with Errors

So far, we have a computer that can execute
programs free from errors.
What would happen if an overflow occurred
while executing an addition operation?
We need a mechanism to detect this type of
event and take appropriate actions.

Eurípides Montagne University of Central Florida 25

Overflow Detection

A flip/flop will be added to the ALU for
detecting overflow
The Fetch/Execute cycle has to be extended
to: Fetch/Execute/Interrupt cycle.
An abnormal end (ABEND) has to be
indicated.

Eurípides Montagne University of Central Florida 26

VN with Overflow Flip/Flop

IP

MAR

AMDROP ADDRESS

MEMORY

A L U

Decoder

NewIP

OldIP

OV

Eurípides Montagne University of Central Florida 27

Interrupt Cycle

In the interrupt cycle, the CPU has to check for an
interrupt each time an instruction is executed.
Modifications have to be made to the instruction set
to incorporate the interrupt cycle.
An operation code of 05 will be added to
accommodate the Interrupt Cycle.
At the end of each execution cycle, the DECODER
will be set to 05 instead of 00, to check for
interrupts at the end of each execution cycle.

Eurípides Montagne University of Central Florida 28

Interrupt Cycle 05

1. If OV=1
Then HALT

DECODER 00

1. Abnormal End
(ABEND) for
Overflow

2. Set Decoder to Fetch
Cycle

Eurípides Montagne University of Central Florida 29

ISA –Interrupt cycle

03 Store
MAR IR.Address
MDR A
MEM[MAR] MDR
DECODER 05

04 Stop

05 Abend
IF OV = 1 Then HALT
DECODER 00

01 Load
MAR IR.Address
MDR MEM[MAR]
A MDR
DECODER 05

02 Add
MAR IR.Address
MDR MEM[MAR]
A A + MDR
DECODER 05

Eurípides Montagne University of Central Florida 30

Interrupt Handling Routine

Instead of halting the machine, the flow of
execution can be transferred to an interrupt
handling routine
This is done by loading the IP register with
the start address of the interrupt handler in
memory from NEWIP.
Causes a change in the Interrupt Cycle

Eurípides Montagne University of Central Florida 31

Interrupt Handler Takes
Control of VN

IP

MAR

AMDROP ADDRESS

MEMORY

A L U

Decoder

NewIP = 0000

OldIP

OV

(USER PROGRAM)

(INTERRUPT HANDLER)

0000

Eurípides Montagne University of Central Florida 32

05 Interrupt Cycle

If OV=1
Then IP NEWIP

DECODER 00

Jump to interrupt
handler at memory
location 1000
Set decoder to fetch
cycle

Eurípides Montagne University of Central Florida 33

Hardware/Software Bridge

03 Store
MAR IR.Address
MDR A
MEM[MAR] MDR
DECODER 05

04 Stop

05 Interrupt Handler Routine
IF OV = 1 IP NEWIP
DECODER 00

01 Load
MAR IR.Address
MDR MEM[MAR]
A MDR
DECODER 05

02 Add
MAR IR.Address
MDR MEM[MAR]
A A + MDR
DECODER 05

Eurípides Montagne University of Central Florida 34

The interrupt handler is the first extension
layer or virtual machine developed over VN
First step towards an operating system

Interrupt Handler

VN

Interrupt Handler Virtual Machine

Virtual Machine

Eurípides Montagne University of Central Florida 35

Shared Memory

The interrupt handler has to be loaded into
memory along with any user program.
Sharing memory space raises a new problem:
the user program might eventually execute an
instruction which may modify the interrupt
handler routine

Eurípides Montagne University of Central Florida 36

Shared Memory Example

Interrupt Handler is
loaded at MEM[0]
with a length of 4000
words.

User program executes:
STORE<3500>, thus

modifying the
handler routine.

Interrupt Handler

User Program

3500

4000

Eurípides Montagne University of Central Florida 37

Memory Protection

A new mechanism must be implemented in
order to protect the interrupt handler routine
from user programs.
The memory protection mechanism has three
components: a fence register, a device to
compare addresses, and a flip flop to be set if
a memory violation occurs.

Eurípides Montagne University of Central Florida 38

Memory Protection
Components

Fence Register: register loaded with the address of
the boundary between the interrupt handler routine
and the user program
Device for Address Comparisons: compares the
fence register with any addresses that the user
program attempts to access
Flip/Flop: is set to 1 if a memory violation occurs

Eurípides Montagne University of Central Florida 39

VN with Memory Protection

MAR

AMDROP ADDRESS

MEMORY

A L U

Decoder

NewIP

OldIP

IP

Address
<
Fence

Fence
(4000)

MP

OV

Eurípides Montagne University of Central Florida 40

Changes to the ISA

With the inclusion of the mechanism to
protect the Interrupt Handler, some
modifications need to be made to the ISA
(Instruction Set Architecture)
Instructions Load, Add, and Store have to be
modified to check the value of the Memory
Protection (MP) once the first step of those
instructions has executed

Eurípides Montagne University of Central Florida 41

Modified ISA

01 Load
MAR IR.Address
If MP=0 Then

MDR MEM[MAR]
A MDR

DECODER 05

02 Add
MAR IR.Address
If MP=0 Then

MDR MEM[MAR]
A A + MDR

DECODER 05

03 Store
MAR IR.Address
If MP=0 Then

MDR A
MEM[MAR] MDR

Decoder 05
05 Interrupt Handler Routine

IF OV = 1 IP NEWIP
IF MP = 1 IP NEWIP
DECODER 00

Eurípides Montagne University of Central Florida 42

Program State Word (PSW)

The PSW, or Program State Word, is a
structure that give us information about the
state of a program.
In this register, we have the IP, MODE,
Interrupt Flags, and the Mask(defined later)

Eurípides Montagne University of Central Florida 43

Program State Word

IP

Interrupt Flags MASK

OV MP
To be defined later

Eurípides Montagne University of Central Florida 44

Privileged Instructions

What if a user program attempted to modify
the fence register?

The register is not protected so it does not
fall under the previous memory protection
mechanism.
Use the idea of privileged instructions to
denote which instructions are prohibited to
user programs

Eurípides Montagne University of Central Florida 45

Privileged Instruction
Implementation

To distinguish between times when privileged
instructions either are or are not allowed, the
computer operates in two modes
User mode: 0
Supervisor mode: 1
From now on, interrupt handler and supervisor are
terms that can be used interchangeably
In User mode, only a subset of the instruction set
can be used
The supervisor has access to all instructions

Eurípides Montagne University of Central Florida 46

Implementing Privileged
Instructions cont.

1. Add another flip/flop (flag) to the CPU and
denote it as the mode bit
2. Create a mechanism in the CPU to avoid the
execution of privileged instructions by user
programs
3. The instruction set has to be organized in such a
way that all privileged instructions have operation
codes greater than a given number.
-For example, if the ISA has 120 instructions,
privileged instructions will have operation codes
greater than 59

Eurípides Montagne University of Central Florida 47

Mechanism for User/Supervisor
Modes

This device compares the opcode in the Instruction Register
(IR.OP) with the opcode of the last non-privileged
instruction.
If the outcome yields a “1”, then this is a privileged
instruction.
This outcome is then compared with the mode bit.
If the mode is 0 (indicating user mode), and it is a privileged
instruction, then the Privileged Instruction bit (PI) is set to
one.
The hardware will detect the event, and the interrupt handler
routine will be executed

Eurípides Montagne University of Central Florida 48

Mechanism for User/Supervisor
Modes Cont.

IR.OP 59

>
Mode
Bit = 0

PI

Eurípides Montagne University of Central Florida 49

CPU After Mode Flag Addition

CPU

IP ModeOV MP PI

NewIP Fence

Accumulator

Supervisor
Mode

User Mode

PSW

Eurípides Montagne University of Central Florida 50

PSW After Mode and PI flag
Addition

IP

Interrupt Flags MASK

Mode
OV MP PI

To be defined later

Eurípides Montagne University of Central Florida 51

Types of Interrupts

Software Interrupts

Hardware Interrupts I/O Interrupt

External Timer

Traps

System Calls

Interrupts

Eurípides Montagne University of Central Florida 52

Traps

An interrupt is an exceptional event that is
automatically handled by the interrupt handler.
In the case of an overflow, memory addressing
violation, and the use of privileged instruction in
user mode, the handler will abort the program
These types of interrupts are called traps
All traps are going to be considered synchronous
interrupts

Eurípides Montagne University of Central Florida 53

I/O Interrupts

This type of interrupt occurs when a device sends a
signal to inform the CPU that an I/O operation has
been completed
An I/O flag is used to handle this type of interrupt
When an I/O interrupt occurs, the Program State of
the running program is saved so that it can be
restarted from the same point after the interrupt has
been handled.

Eurípides Montagne University of Central Florida 54

Saving the state of the running
program

MAR

AMDROP ADDRESS

MEMORY

A L U

Decoder

NewIP

OldIP

IP

Address
<
Fence

Fence
(4000)

MP

OV

Eurípides Montagne University of Central Florida 55

Program State Word

IP

Interrupt Flags MASK

Mode
OV MP PI To be defined later

I/O

I/O Device

Eurípides Montagne University of Central Florida 56

05 Interrupt Cycle

IF OV = 1 THEN IP NEWIP; MODE 1 (ABEND).
IF MP = 1 THEN IP NEWIP; MODE 1 (ABEND).
IF PI = 1 THEN IP NEWIP; MODE 1 (ABEND)

IF I/O = 1 THEN OLDIP IP;
IP NEWIP;
MODE 1;

DECODER 00

Eurípides Montagne University of Central Florida 57

Supervisor

The Supervisor can use both user and
privileged instructions.
Sometimes a user program requires some
services from the Supervisor, such as
opening and reading files.
A program cannot execute open or read
functions itself, and so needs a mechanism to
communicate with the Supervisor

Eurípides Montagne University of Central Florida 58

SuperVisorCall (SVC)

An SVC is also known as a System Call
It is a mechanism to request service from the
Supervisor or OS.
This mechanism is a type of interrupt, called
a software interrupt because the program
itself relinquishes control to the Supervisor
as part of its instructions.

Eurípides Montagne University of Central Florida 59

System Calls

There are two types of system calls:
1. Allows user programs to ask for service
(instructions found below opcode 59)
2. Privileged Instructions (over opcode 59)

Eurípides Montagne University of Central Florida 60

SCVT

The System Call Vector Table(SCVT) contains a
different memory address location for the beginning
of each service call
Service calls are actually programs because they
require multiple instructions to execute
Each memory address contained in the SCVT
points to runtime library, generally written in
assembly language, which contains instructions to
execute the call

Eurípides Montagne University of Central Florida 61

Runtime Libraries

Runtime Libraries: precompiled procedures
that can be called at runtime
Runtime Libraries set a new flip/flop, called
the SVC flag, to “1”, which causes the
system to switch to Supervisor Mode in the
Interrupt Cycle

Eurípides Montagne University of Central Florida 62

Properties of Runtime Libraries

Libraries are shared by all programs
Are not allowed to be modified by any
program.

Eurípides Montagne University of Central Florida 63

SVC Instruction Format

SVC(index) is the format for system calls.
The index is the entry point in the SCVT

Read SVC(index) (IR.OP=SVC, IR.ADDR=index)Compiler

Eurípides Montagne University of Central Florida 64

80 SVC(index)

80 SVC(index)
OLDIP IP;
B IR.ADDRESS

IP RTL-ADDRESS

DECODER 05

Save IP of current program
The Index value is
temporarily loaded into
register B
Address of Runtime
Library

Transfer to Interrupt Cycle

Eurípides Montagne University of Central Florida 65

SVC(read) = 80(4)

MAR

AMDROP ADDRESS

MEMORY

A L U

Decoder

NewIP

OldIP

IP

Address
<
Fence

Fence
(4000)

RTL-Address

B

1

3

MP

2

OV

Eurípides Montagne University of Central Florida 66

Runtime Library and SVCT
Example

User Program
-
-
SVC(4)
-
-
-
-

Runtime Library for
“Read”

SVCFLAG=1

LOADIP OLD-IP

I.H. searching code
for “Read”

IF SVCFLAG=1
IP SCVT[B]

LOADIP OLD-IP

Address
Open

Address
Close

Address
Write

Address
Read

Address
End SCVT

1 2 3 4 5

Eurípides Montagne University of Central Florida 67

The IP is overwritten!!!

User Program
-
-
SVC(4)
-
-
-
-

Runtime Library for
“Read”

SVCFLAG=1

LOADIP OLD-IP

I.H. searching code
for “Read”

IF SVCFLAG=1
IP SCVT[B]

LOADIP OLD-IP

When SVC(4) is executed “OLDIP IP” and
after executing “SVCFLAG = 1”, “OLDIP IP”
in the interrupt cycle.

Eurípides Montagne University of Central Florida 68

80 SVC(index)

80 SVC(index)
OLDIP IP;
B IR.ADDRESS

IP RTL-ADDRESS

DECODER 05

Save IP of current program
The Index value is
temporarily loaded into
register B
Address of Runtime
Library

Transfer to Interrupt Cycle

Eurípides Montagne University of Central Florida 69

05 Interrupt Cycle

If OV=1 Then IP NEWIP; MODE 1 (ABEND)
If MP=1 Then IP NEWIP; MODE 1 (ABEND)
If PI=1 Then IP NEWIP; MODE 1 (ABEND)
IF I/O = 1 THEN OLDIP IP;

IP NEWIP;
MODE 1;

If SVC=1, THEN OLDIP IP;
IP NEWIP;
MODE 1;

DECODER 00

Eurípides Montagne University of Central Florida 70

How can we handle nested
interrupts?

Introducing the concept of a “Stack”.
1.- The “OLDIP” register is used as an stack pointer
2.- OLDIP register will be rename Stack Pointer (SP)

Eurípides Montagne University of Central Florida 71

MAR

AMDROP ADDRESS

MEMORY

A L U

Decoder

NewIP

SP

The Stack will store all return
addresses

IP

Address
<
Fence

Fence
(4000)

RTL-Address

B

1

3
1

stack

MP

2

OV

Eurípides Montagne University of Central Florida 72

05 Interrupt Cycle
Including the stack mechanism

If OV=1 Then IP NEWIP; MODE 1 (ABEND)
If MP=1 Then IP NEWIP; MODE 1 (ABEND)
If PI=1 Then IP NEWIP; MODE 1 (ABEND)
IF I/O = 1 THEN MEM[SP] IP; SP SP +1

IP NEWIP;
MODE 1;

If SVC=1, THEN MEM[SP] IP; SP SP +1
IP NEWIP;
MODE 1;

DECODER 00

Eurípides Montagne University of Central Florida 73

Program State Word
including the SVC flag

IP

Interrupt Flags MASK

Mode
OV MP PI

To be defined later
I/O SVC

Eurípides Montagne University of Central Florida 74

Timer Interrupt

What if a program has an infinite loop?
We can add a time register, set to a specific value
before a program stops, which is decremented with
each clock tick
When the timer reaches zero, the Timer Interrupt bit
(TI) is set to “1”, indicating that a timer interrupt
has occurred and transferring control to the
interrupt handler
Prevents a program from monopolizing the CPU

Eurípides Montagne University of Central Florida 75

Timer Interrupt cont.

IP

Mode

OV MP PI

NewIP Fence

Accumulator

TI

Timer

SP

SVC Supervisor
Mode

User Mode

Eurípides Montagne University of Central Florida 76

Program State Word

IP

Interrupt Flags MASK

Mode
OV MP PI

To be defined later
I/OTI SVC

Eurípides Montagne University of Central Florida 77

Interrupt Vector

Switching between user and supervisor modes must
be done as quickly as possible
In the case of the VN machine, control is
transferred to the interrupt handler, which then
analyzes the flags and determines which is the
appropriate course of action to take.
A faster form of switching directly to the procedure
or routine that handles the interrupt can be
implemented using an interrupt vector

Eurípides Montagne University of Central Florida 78

Interrupt Vector, cont.

The idea of an interrupt vector consists of
partitioning the interrupt handler into several
programs, one for each type of interrupt.
The starting addresses of each program are
kept in an array, called the interrupt vector,
which is stored in main memory.

Eurípides Montagne University of Central Florida 79

Interrupt Vector Structure

For each type of interrupt, there is a
corresponding entry in the array, called IHV.
Instead of transferring control just to the
Interrupt Handler, we specify the element in
the array that corresponds to the interrupt
that occurred.
This way, the routine that handles that
interrupt is automatically executed.

Eurípides Montagne University of Central Florida 80

05 Interrupt Cycle with the
Interrupt Vector

If OV=1 Then IP IHV[0]; Mode 1
If MP=1 Then IP IHV[1]; Mode 1
If PI=1 Then IP IHV[2]; Mode 1

If TI=1 Then MEM[SP] IP; SP SP +1;
IP IHV[3];
MODE 1;

OV

IP

TI

PI

I/O

0

2

3

4

5

1

SVC

Eurípides Montagne University of Central Florida 81

05 Interrupt Cycle with the
Interrupt Vector, Cont.

If I/O=1 Then MEM[SP] IP; SP SP +1;
IP IHV[4];
MODE 1;

If SVC=1 Then MEM[SP] IP; SP SP +1;
IP IHV[5];

MODE 1;

DECODER 00;

OV

IP

TI

PI

I/O

0

2

3

4

5

1

SVC

Eurípides Montagne University of Central Florida 82

Multiprogramming and Timers

Multiprogramming: allowing two or more
user programs to reside in memory
If we want to run both programs, each
program, P1 and P2, can be given alternating
time on the CPU, letting neither one
dominate CPU usage.

Eurípides Montagne University of Central Florida 83

Process Concept

In order to implement multiprogramming we
need to utilize the concept of a process.

Process: defined as a program in execution

We’ll explore this concept further in the next
lecture.

