More Chaining and Storing Matrixes

February $16^{\text {th }} 2004$
Dusty Price

Sequential Approach...

64 Elements in sequence: $\mathrm{T}_{\mathrm{s}}=64 *(8+9)=1088$

Using Pipeline Approach...

Using pipelining it takes 8 units of time to fill pipeline and produce first result, each unit of time after that produces another result $\mathrm{T}_{\mathrm{p}+}=8+63$

The multiplication pipeline takes 9 units of time to fill, and produces another result after each additional unit of time
$\mathrm{T}_{\mathrm{p}^{*}}=9+63$

The combination of the two $T_{p}=T_{p+}+T_{p^{*}}=8+63+9+63=143$

Pipeline plus Chaining...

Operation using Chaining $T_{c}=17+63=80$

Review of time differences in the three approaches...

Sequential: $\mathrm{T}_{\mathrm{s}}=17 * 64=1088$

Pipelining: $\mathrm{T}_{\mathrm{p}}=8+63+9+63=143$

Chaining: $\quad \mathrm{T}_{\mathrm{c}}=17+63=80$

Storing Matrixes in a SISD Architecture w/ Memory Interleaving...

Matrix

A_{11}	$\mathrm{~A}_{12}$	$\mathrm{~A}_{13}$	$\mathrm{~A}_{14}$
	$\mathrm{~A}_{21}$	$\mathrm{~A}_{22}$	$\mathrm{~A}_{23}$
	$\mathrm{~A}_{24}$		
	$\mathrm{~A}_{32}$	$\mathrm{~A}_{33}$	$\mathrm{~A}_{34}$
	$\mathrm{~A}_{41}$	$\mathrm{~A}_{42}$	$\mathrm{~A}_{43}$
$\mathrm{~A}_{44}$			

4 Memory Modules

M_{1}	M_{2}	M_{3}	M_{4}
$\mathrm{~A}_{11}$	$\mathrm{~A}_{21}$	$\mathrm{~A}_{31}$	$\mathrm{~A}_{41}$

$\begin{array}{llll}\mathrm{A}_{12} & \mathrm{~A}_{22} & \mathrm{~A}_{32} & \mathrm{~A}_{42}\end{array}$
$\begin{array}{llll}\mathrm{A}_{13} & \mathrm{~A}_{23} & \mathrm{~A}_{33} & \mathrm{~A}_{43}\end{array}$
$\begin{array}{llll}\mathrm{A}_{14} & \mathrm{~A}_{24} & \mathrm{~A}_{34} & \mathrm{~A}_{44}\end{array}$

Storing the Matrix by Column...

Matrix

A_{11}			
$\mathrm{~A}_{12}$	$\mathrm{~A}_{13}$		$\mathrm{~A}_{14}$
$\mathrm{~A}_{21}$	$\mathrm{~A}_{22}$	$\mathrm{~A}_{23}$	$\mathrm{~A}_{24}$
$\mathrm{~A}_{31}$	$\mathrm{~A}_{32}$	$\mathrm{~A}_{33}$	$\mathrm{~A}_{34}$
$\mathrm{~A}_{41}$	$\mathrm{~A}_{42}$	$\mathrm{~A}_{43}$	$\mathrm{~A}_{44}$

4 Memory Modules

M_{1}	M_{2}	M_{3}
M_{4}		
$\mathrm{~A}_{11}$	$\mathrm{~A}_{12}$	$\mathrm{~A}_{13}$
$\mathrm{~A}_{14}$		
$\mathrm{~A}_{21}$	$\mathrm{~A}_{22}$	$\mathrm{~A}_{23}$
$\mathrm{~A}_{31}$	$\mathrm{~A}_{24}$	
$\mathrm{~A}_{32}$	$\mathrm{~A}_{33}$	$\mathrm{~A}_{34}$
$\mathrm{~A}_{41}$	$\mathrm{~A}_{42}$	$\mathrm{~A}_{43}$
	$\mathrm{~A}_{44}$	

One Row can be accessed at a time with this storage
technique.

$$
\begin{array}{llll}
\mathrm{A}_{41} & \mathrm{~A}_{42} & \mathrm{~A}_{43} & \mathrm{~A}_{44}
\end{array}
$$

Sometimes we need to access both rows and columns fast...

Matrix

A_{11}	$\mathrm{~A}_{12}$		
	$\mathrm{~A}_{13}$	$\mathrm{~A}_{14}$	
	$\mathrm{~A}_{21}$	$\mathrm{~A}_{22}$	$\mathrm{~A}_{23}$
	$\mathrm{~A}_{24}$		
	$\mathrm{~A}_{32}$	$\mathrm{~A}_{33}$	$\mathrm{~A}_{34}$
	$\mathrm{~A}_{41}$	$\mathrm{~A}_{42}$	$\mathrm{~A}_{43}$
$\mathrm{~A}_{44}$			

4 Memory Modules

By using a skewed matrix representation, we can now access each row at a time, as well as access each column at a time.

Sometimes we need access to the main diagonal as well as rows and columns...

Matrix

A_{11}	$\begin{array}{llll}\mathrm{A}_{12} & \mathrm{~A}_{13} & \mathrm{~A}_{14}\end{array}$		
A_{21}	A_{22}	A_{23}	A_{24}
A_{31}	A_{32}	A_{33}	A_{34}
A_{41}	A_{42}	A_{43}	A_{44}

5 Memory Modules

$$
\begin{array}{|lll}
\mathrm{A}_{21} & \mathrm{~A}_{22} & \mathrm{~A}_{23}
\end{array} \mathrm{~A}_{24}
$$

$$
\begin{array}{lllll}
\mathrm{A}_{34} & \boxed{\mathrm{~A}_{31}} & \mathrm{~A}_{32} & \boxed{\mathrm{~A}_{33}} \\
\mathrm{~A}_{43} & \mathrm{~A}_{44} & & \mathrm{~A}_{41} & \mathrm{~A}_{42}
\end{array}
$$

At the cost of adding another memory module and wasted space, we can now access the matrix by row, column, and main diagonal.

