
Von-Neumann Machine
IP

MAR

MEMORY

MDR AOP ADDRESSIR

Decoder

ALU

00 FETCH Cycle

MAR PC
MDR M[MAR]

IR MDR
MAR IR(ADDR)

The Fetch Cycle is a set of “hidden” instructions that the programmer
does not need to worry about.

DECODER IR(OP)

01 Load

MAR

MEMORY

MDR A
OP ADDRESSIR

Decoder

FETCH

= 00

MAR ß IR.ADDRESS
MDR ß M[MAR]
A ß MDR
Decoder ß 00

02 ADD

MAR

MEMORY

MDR A
OP ADDRESSIR

Decoder

FETCH

= 00

MAR ß IR.ADDRESS
MDR ß M[MAR]
A ß
Decoder ß 00

A + MDR

03 STORE

MAR

MDR A
OP ADDRESSIR

Decoder

FETCH

= 00

MAR ß IR.ADDRESS
MDR ß A
M[MAR] ß MDR
Decoder ß 00

MEMORY
M[MAR]

A

Error Handling
At this point, we have assumed we have no errors in our single
address machine.

However, we need to consider possible overflow errors.
An example using four bit addition:

1111110011
00000011

11111111

Since only 4 bits are allowed, how must we handle this 5th bit?

Overflow
The addition of a flip/flop to our ALU would enable us to check for this
overflow situation.

The CPU has to check for an interrupt each time an instruction i s
executed.

Therefore, we need to add a new command to the ISA, the Interrupt
Cycle (05 ABEND).

At the end of each execution cycle, the DECODER will be set to 05
instead of 00, to check for interrupts at the end of each execution cycle.

Halting at this step enables us to prevent inconsistent data.

ISA Interrupt Cycle

01 LOAD 02 ADD

04 END03 STORE

MAR ß IR.ADDRESS
MDR ß M[MAR]
A ß MDR
DECODER ß 05

MAR ß IR.ADDRESS
MDR ß M[MAR]
A ß A + MDR
DECODER ß 05

MAR ß IR.ADDRESS
MDR ß A
M[MAR] ß MDR
DECODER ß 05

05 Int. Handler Routine
IF OV = 1 then HALT
DECODER ß 00

IP

MAR

MDR AOP ADDRESSIR

Decoder

ALU

VN with Overflow Flip/Flop
NewIP

Interrupt Handler

User Program
MEMORY

OV

Interrupt Handler

Instead of stopping the program when an overflow is encountered,
the flow of execution is simply passed to an Interrupt Handler.

This also allows us to take advantage of pipelining since the program
is not halted.

To do this, the program counter (IP) is loaded with the start address
of the interrupt handler in memory from NEWIP.

05 ABEND
IF OV = 1 then IP ß NEWIP
DECODER ß 00

Virtual Machine

The Interrupt Handler is the first extension layer of the “Virtual
Machine”.

This is the first step towards an operating system.

VN

Interrupt Handler

Shared Memory

Like any other program, the Interrupt Handler must be loaded into
memory.

However, this may lead to a new problem if the currently loaded
program tries to modify the interrupt handler’s routine.

We need some way to protect the interrupt handler’s routine from
being modified by the currently loaded program.

Memory Protection

We protect the interrupt handler’s routine by adding three
components:

Fence Register - Register loaded with the address of the
boundary between the interrupt handler routine and the
user program.

Device for Address Comparison – compares the fence
register with any addresses that the user program attempts
to access.

Flip/Flop – The flip/flop is set to 1 if a memory violation
occurs.

IP

MAR

MDR AOP ADDRESSIR

Decoder

ALU

NewIP

Interrupt Handler

User Program
M

OV

VN with Memory Protection

OldIP

0

4000

Fence
(4000)

Address < Fence

MP

Updated ISA

01 LOAD 02 ADD

03 STORE

MAR ß IR.ADDRESS
IF MP = 0 then

MDR ß M[MAR]
A ß MDR

DECODER ß 05

MAR ß IR.ADDRESS
IF MP = 0 then

MDR ß M[MAR]
A ß A + MDR

DECODER ß 05

MAR ß IR.ADDRESS
IF MP = 0 then

MDR ß A
M[MAR] ß MDR

DECODER ß 05

05 Int. Handler Routine
IF OV = 1 IP ßNEWIP
IF MP = 1 IP ß NEWIP
DECODER ß 00

Program State Word(PSW)

The Program State Word (PSW) is a device
that gives us information about the
program’s current state.

In this register we have the IP, MODE,
Interrupt Flags, and Mask (to be defined
later).

Program State Word(PSW)

IP

Interrupt Flags Mask

OV MP Defined later.

Privileged Instruction
What would happen if a user program tried to modify a register that
shouldn’t be changed, such as the FENCE register?

Clearly we don’t want to change the FENCE value, however, the
FENCE register is not protect under the memory protection
mechanism.

By using the idea of privileged instructions we are able to denote
which instructions are allowed by the user program and which ones
are prohibited (system only instructions).

Privileged Instructions
The computer needs a way to distinguish when privileged
instructions are allowed and when they aren’t.

This can be accomplished by operating in two distinct modes.

User Mode – 0

Supervisor Mode – 1

When in user mode, the program is restricted to limited set of
instructions.

When in the CPU is in supervisor mode, all instruction are avail able.

Privileged Instruction Set

11
2
3
.
.
.
50
51
.
.
.
77

Instructions accessible in User Mode

Instructions accessible only in Supervisor Mode

User/Supervisor
Implementation

Mode
Bit = 0

IR.OP 50

PI

>

05 Interrupt Cycle
If OV = 1 THEN IP ß NEWIP; MODE ß 1 (ABEND).
If MP = 1 THEN IP ßNEWIP; MODE ß 1 (ABEND).
If PI = 1 THEN IP ßNEWIP; MODE ß 1 (ABEND).
DECODER ß 00

Types of Interrupts
Software Interrupts

Traps – Overflow Problem

System Calls – The program tells the O.S. to do something for it.

Hardware (I/O) Interrupt – When the operation assigned to the O.S. is
completed, a signal is sent.

External (Timer) – Implemented to protect against an infinite loop.

Program State Word

IP

Interrupt Flags Mask

OV MP Defined later.PI I/O

M
O
D
E

I/O Device

05 Interrupt Cycle
If OV = 1 THEN IP ß NEWIP; MODE ß 1 (ABEND).
If MP = 1 THEN IP ßNEWIP; MODE ß 1 (ABEND).
If PI = 1 THEN IP ßNEWIP; MODE ß 1 (ABEND).
If I/O = 1 THEN OLDIP ß IP

IP ß NEWIP
MODE ß 1

DECODER ß 00

Timer Interrupts
A device is needed to prevent a program from “hogging” the CPU.

This is done by setting a timer once a program starts. If the
program has not completed by the time the timer gets to zero, the
Timer Interrupt (TI) bit is set to 1.

This transfers control to the Interrupt Handler.

05 Interrupt Cycle
If OV = 1 THEN IP ß NEWIP; MODE ß 1 (ABEND).
If MP = 1 THEN IP ßNEWIP; MODE ß 1 (ABEND).
If PI = 1 THEN IP ßNEWIP; MODE ß 1 (ABEND).
If I/O = 1 THEN OLDIP ß IP

IP ß NEWIP
MODE ß 1

If TI = 1 THEN OLDIP ß IP
IP ß NEWIP
MODE ß 1

DECODER ß 00

Program State Word

IP

Interrupt Flags Mask

O V M P Defined later.P I I/O

M
O
D
E

I/O Device

T I

TIMER

SuperVisorCall (SVC)

An SVC is also known as a System Call.

It is a mechanism to request service from the Supervisor or OS.

This mechanism is a type of interrupt, called a software interrupt because
the program itself relinquishes control to the Supervisor as part of its
instructions.

System Call Example
From the previous slide1

1
2
3
.
.
.
50
51
.
.
.
77

1. Allows user programs to ask for service
(instructions found below opcode50)

2. Privileged Instructions (over opcode 50)

Program State Word

IP

Interrupt Flags Mask

O V M P Defined later.P I I/O

M
O
D
E

I/O Device

T I

TIMER

SVC

More was covered on SVC in the next
lecture...

