Syllabus

Professor: Euripides Montagne Tele.: 823-2684 email: eurip@cs.ucf.edu

Lecture meetings:
MWF 11:30 (noon) – 12:20 p.m. (ENG2 105)

Office hours:
Office hours: MW from 9:00 a.m. to 11:00 a.m (CSB 239)
TR from 4:30:00 p.m. to 6:30 p.m (CSB 239)

TA: Jingfei Kong Tele.: (407) 823-3228 email: jfkong@cs.ucf.edu

Office hours:
WF from 2:00 p.m. to 4:00 p.m (CSB 107)

Course Outline: This course is intended to provide students an understanding in the fundamental concepts and design principles of computer architecture. The students will gain a sufficient understanding of the relationships between higher-level programming languages and machine language.

Course Topics: Organization and architecture of computer systems hardware; register transfer notation; Instruction set architecture (ISA); addressing modes; computer arithmetic; processor design for sequential execution, pipelining and superscalars; memory systems; virtual memory; I/O system; interrupt handling; introduction to multiprocessors.

Prerequisites:
- CDA 3103 – Computer Organization

Required textbook:

Style of Class Meetings:
Class meetings will not consist of traditional lectures, with the instructor doing most of the talking and the student doing most of the listening. Rather, meetings will consist of discussions on each topic and the instructor will help guide the discussion by asking questions.
Grading Policy:

- (20%) Exam #1 – closed book, closed notes exam given in class.
- (20%) Exam #2 – closed book, closed notes exam given in class.
- (25%) Final Exam – closed book, closed notes comprehensive exam given during final exam week. **Note: You must score at least 60% on this exam to pass the course.**
- (25%) Programming project (Teams of two) – a large, multi-part simulation of a Computer Architecture. The grade for this project will be divided between your C code, one or more demonstrations of your project, your documentation and homeworks given on selected topics from the project
- (10%) Home works

Letter grades: 90% - 100% = A; 80% - 89% = B; 70% - 79% = C

Note: Any academic dishonesty (including, but not limited to, Cheating, copying and/or plagiarism) with respect to any exam or assignment in this class will result in a grade of F, following by the usual procedures for dealing with such behavior, as describe in the **UCF Golden Rule : a handbook for students.**

The Semester Plan: Tentative.

Week 1 - Logistics, team organization. Introduction to computer Architecture.
 - Flynn’s Taxonomy
Week 2 – SISD architecture, register transfer notation.
 – Cost of a Die, Performance, Amdahl's Law
Jan. 21 - **Martin Luther King Jr. Day**
Week 3 – ISA, instruction encodings, addressing modes. Interrupt handling(Case Studies: IBM 360, B5000, MIPS)
 - Computer Arithmetic, Floating point arithmetic, Pipelining in the ALU.
Week 4 - Vector processing, Memory Interleaving(Cray-1).
 - Chaining, loop unrolling, skewed matrix representation.
Week 5 – Review
 – First Midterm Exam.
Week 6 – The Processor Data Path and Control Unit.
 - Pipeleined Execution. Pipeline data path.
Week 7 - Pipeline Data Hazards.
 - Control Hazards. Exception Handling.
Week 8 - ILP:Superscalars. Scoreboarding(CDC6600), Tomasulo's Algorithm.
 - MIPS and IA-64 Architectures.
Week 9 – Systolic Arrays and Data Flow Architectures.
 - **Spring Break(3/14 to 3/19)**
Week 10 - Review
 - Second Midterm Exam.
Week 11 - Cache Memory
Virtual Memory

Week 12 - I/O Devices and Performance Measures.
- RAID

Week 13 – Detecting Parallelism in Programs.
- Multiprocessors.

Week 12 – Interconnection Networks
- Review

Final Exam (April 27 2005 from 10:00 to 12:50)

Website: http://www/courses/cda4150/spring05

Important Dates:
- Classes Begin **January 10th**.
- Withdrawal Deadline is **March 4th**.
- Classes End **April 25th**.
- Spring Holidays are:
 - Martin Luther King Jr. Day **January 17th**.
 - Spring Break **March 14 - 19**.