UCF

School of Computer Science
CDA 4150 Computer Architecture
Spring 2005

Project (Due 4/22/05)

The concept of the VecHow architecture originates with the viewpoint of benefiting from
the inherent advantages posted by the vector architecture and the data flow architecture.
Sevard sientific goplications are highly daa padld in naure. They involve performing
the same sequence of operations on different data sets. The VecHow architecture
enhances the efficient pipelined processng capabilities of vector processng by
introducing a scatter-add mechanism, which uses the data flow processng dements as
additional pipdined functiond units to exploit multichaning. The key feaure is to
ensure that there is a continua stresm of data available for both the vector processor
functiona units and the data flow processing unitsto exploit data locality.

The proposed VecFlow architecture is shown in Figurel. VecFlow uses the classica
vector-register processor architecture where dl vector operations, except load and dtore,
are executed among the vector registers. As in any other vector processor, in VecHow, a
st of vector registers are used to feed data to the pipelined functiona units. In order to
achieve a higher degree of padleism, execution of sSmultaneous vector operations can
be supported by having severa functiond units working concurrently. The results coming
out from the vector functiona units (multiplications) are streamed to a “Didributor” unit
which scetters these intermediate results to the dataflow processng dements for the
reduction (addition) step of the computation. The “Didributor” dso needs to have
additiond information in order to scatter the vaues among the avalable dataflow
processors. Thus using another vector register, we aso provide the “Didributor” with the
indices array, based on which the “Didributor scatters data coming from the vector unit
towards the data flow units. Therefore we see that the input to the “Didributor” is a
packet of the form <Vauelndex>. The “Didributor” performs a modulus operation on
the index vadue using the number of DFUs units as a dividend to determine to which
dataflow unit the packet has to be sent.

\Y
X - Value |
Demulttiplexer
Row-Index
Selector ‘
Vs

| o A
: - v ||
! . . yi i
| . N) |
‘ . o . H ° ° '
| . . H i ¢ i
DFP:DaIaI_:IowProoessor 3 i i E
IQ : Instructional Queue ‘ Processing - Processing !
AS: Activity Store ! Element I Element |
V1 V, Va:Vectors S D S T
DHP \L DHP l/

The scatter-reduction step employs a set of data flow processors (DFP) and a modulus
operator (Demultiplexer in Hgure 1), which scatters the incoming data stream from the
vector processor unit among the dataflow units (DFU). These DFUs are capable of
executing concurrently. As shown in Fgure 1, the key components of the dataflow units
are a Processng Element (PE), an Ingruction Queue (1Q) and an Activity Store (AS).
These dataflow units are based on Dennis datic modd. It is obvious to note that the
speed of the pipdined vector unit in producing results is much larger than the speed of
the DFUs to apply the reduction operation. For this purpose, we have a Ingtruction Queue
(1Q) which sores the resultant packets sent by the Didtributor. The size of this Indruction
Queue, which is nothing but a regiger file, is crucid to our desgn. In our Smulation, we
will sudy the sze of this Indruction Queue by vaying the number of DFUs o that they
collectively can match the throughput of the vector processng unit, resulting in a small
regiger file per DFU. The <vaueindex> packets arrived from didributor are store in the
Q. The PE load <vauejindex> packets from the Ingtruction Queue in a firsg come firg
sarve bass and then access the activity store using the index to retrieve the gppropriate
Y[l] vadue. Then the following reduction step, Y[I] = Y[I] + vaue, is caried out to
compute a new Y[I]. The new Y]i] vaue is sored back in the activity store while it is a

patid result of the computation of the Y_[I] vadue But when the find Y _[I] vaues is
computed, it is sent back to Memory.

As a find note we will discuss a few other issues. The execution of any gpplication is
first preceded by an initidization phase involving a sat of actions performed to ensure the
smooth execution of the gpplication. Firgly, we need to load the vector registers with the
aopropriate data. This loading is performed by specid pipdined Load-Store units, which
are desgned to move one word of data per clock cycle from the memory to the
appropriate vector registers. Secondly we need to consder the latency of the pipeined
functiond units. It is not mandatory that dl gpplications make use of both the vector and
dataflow processors. But in some gpplications, the dataflow processors may aso need to
be initidized with appropriate data. In this scenario, the vaues that need to be loaded into
the data flow unity for ingance, counters with initid vaues) is firg fed into the vector
regigers and then aong with an index register, they are used to directly produce a
<counter-vaueindex> packet which the digtributor will send to the appropriate data flow
unit to initidize some memory locationsin the data flow unit.

You have to smulate the execution of the sparse matrix product, y =Ax, on Vecflow. The
matrix has to be compressed using the transpose jagged diagona storage format (TJDS),
as you did in HW2, and then mapped onto Vecflow as explained in cass. You have to
cdculate de arivd rae, |,the number of data vaues sent to each DFU, and the
departure rate of each DFU.

You mus ddiver in an envelope: afloppy with the programs and input data used, the
resulting output from your smulation program, and the report.

Note from TA:

You must print out the final result of Y and verify the correctness of your result.
I recommend you use ibm32 matrix (HW?2) as reference input.

You must send your zipped source code file to jfkong@cs.ucf.edu.
The file should be named YourLastName YourFirstName Project.zip)

Don't forget to turn in your paper report in class.

Thanks

Another Note from TA:

If your programming language is c/c++, be sure to make your program be compiled well either with gcc on eola or with
VC 6.0 under windows .

Add a readme file describing how to compile and run your program into your source code.

Be sure to meet all the above requirements, otherwise you will be responsible for the subsequent consequence.

Any question? jfkong@cs.ucf.edu

Thanks

jkong
文本框
Note from TA:

You must print out the final result of Y and verify the correctness of your result.
I recommend you use ibm32 matrix (HW2) as reference input.

You must send your zipped source code file to jfkong@cs.ucf.edu.
The file should be named YourLastName_YourFirstName_Project.zip)

Don't forget to turn in your paper report in class.

Thanks

jkong
文本框
Another Note from TA:

If your programming language is c/c++, be sure to make your program be compiled well either with gcc on eola or with VC 6.0 under windows .

Add a readme file describing how to compile and run your program into your source code.

Be sure to meet all the above requirements, otherwise you will be responsible for the subsequent consequence.

Any question? jfkong@cs.ucf.edu

Thanks

