
Project 3: Implementing Systolic Arrays using Verilog

University of Central Florida
School of Electrical Engineering and Computer Science

CDA 4150 Computer Architecture
Fall 2005 (Due 12/1/05)

An alternative to solve the matrix vector product in parallel are systolic arrays. The name sys-
tolic array was proposed by Kung and Leiserson to a network of processing elements that act
synchronously to solve specific problems. These networks of processing elements exploit pipelining,
parallel processing, and use simple and regular communication paths. At each computation step
the processing elements of the systolic array get data, either from another processing element(s)
or from outside the network, execute some computation, and pump data out either outside the
network or to another processing element(s). The name systolic was proposed by analogy with the
way the heart pumps blood through the circulatory system and the manner systolic array pumps
data in and out the processing elements.

The systolic array proposed by Kung and Leiserson, in the late seventies, to compute the band
matrix vector product is the one we will used through this work and we will refer to it as Kung’s
Systolic Array (KSA). The basic processing element of KSA is the Inner-Product-Step-Processor
(IPSP), which is depicted in Figure 1. An IPSP has three inputs ports and three output ports and
is defined as follows:

IPSP (a, x, y) → (a, x, y + a × x)

y + a * x

x x

y

a

a

Figure 1: data flow in a systolic processing element.

We will explain how a KSA with three processing elements computes the band matrix vector
product

1

y1

y2

y3

y4

 =

a11 a12 0 0
a21 a22 a11 0
0 a32 a33 a34

0 0 a43 a144

x1

x2

x3

x4

using the following recurrences:

y1
i = 0,

yk+1
i = yk

i + aik × xk,

yi = yn+1
i

As in KSA the matrix must enter the systolic array by diagonals the number of processing elements
required is equal to the number of diagonals w = 3 of matrix A. In Figure 2, we show how the
components of the vector x enter the systolic array from left to right, the components of the vector
y, initially zero, enter the systolic array from right to left, and the coefficients of the matrix A will
enter the systolic array, by diagonals, from top to bottom. At each step of the computation three
values enter in each IPSP, a computation is executed, each yi accumulates its partial result, and
three values are pumped out. This computation requires w steps to move the first component y1 to
the leftmost processing element and then, as the components of vector y enter the array every other
unit of time, 2n − 1 additional steps are necessary to pump out all the elements of the resulting
vector y for an overall of T (n) = w + 2n − 1. The first five steps of the of the computation are
shown in Figure 3, where it can be observed that each processing element of the systolic array is
working on the matrix vector product on every other unit of time.

a44

a34 a43

a33

a23 a32

a22

a12 a21

a11

Y2Y1

X1

Figure 2: Kung’s Systolic array to compute a band matrix vector product.

Surprisingly, the same linear systolic array computes two matrix vector products simultaneously
in T (n) = w + 2n steps using perfect shuffling as a spatial data scheduling technique. Therefore,

2

t = 0

Y1

X1

t = 1

t = 2

Y2

X2

t = 3

t = 4

Y1 Y4

X3

Y1

X1

Y1

a11

X1

Y2
a21

X1

Y1
a12

X2

 Y2
a22

X2

Figure 3: First five steps of the computation.

implementing two matrix vector product multiplication, Ax||Bz, on Kung’s systolic array is straight
forward. To carry out these matrix vector products the elements of x and z and the elements of the
matrices A and B must be arranged as illustrated in Figure 4. In this arrangement the components
of x and z are merged, using perfect shuffling, into a single array that we will refer to as the
carrier vector. The components of x are stored in the carrier vector in the odd locations and the
components of z in the even ones. similarly, each diagonal of matrix A is also merged with the
corresponding diagonal of matrix B using perfect shuffling.

b22

b12 a22 b21

a12 b11 a21

a11

Z1

X2

Z2

W 2

Y2

W 1

Y1

X1

Y1 = 0

W 1 = 0

Y2 = 0

W 2 = 0

Figure 4: Systolic array to compute the mixed tensor product.

We can simulate a classical bit using a state vectors; for instance, the values 0 and 1 of a classical
bit can be realized by a pair of mutually orthonormal state vectors:

|0〉 =

[
1
0

]
and |1〉 =

[
0
1

]

3

Where the symbols |0〉 and |1〉, are known as ket zero and ket one according to Dirac’s notation.

To move a state vector from one state to another we must use unitary transformations which are
represented by 2 × 2 matrices and we will refer to them as unitary operations or gates. As an
example, we show the unitary operations Identity(I), NOT(X) and Hadamard(H): The identity
gate just left the state vector as is:

I|0〉 =

[
1 0
0 1

] [
1
0

]
=

[
1
0

]
= |0〉

I|1〉 =

[
1 0
0 1

] [
0
1

]
=

[
0
1

]
= |1〉

the X gate flips |0〉 into |1〉 and vise versa:

X|0〉 =

[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1〉

X|1〉 =

[
0 1
1 0

] [
0
1

]
=

[
1
0

]
= |0〉

and the Hadamard (H) gate turns |0〉 and |1〉 into a equally weighted superposition state. The H
gate is defined as

H = 1√
2

[
1 1
1 −1

]

and when it is applied to |0〉 and |1〉 we obtain the following superposition:

H|0〉 = 1√
2

[
1 1
1 −1

] [
1
0

]
=

[
1
1

]

H|0〉 = 1√
2

[
1 1
1 −1

] [
0
1

]
=

[
1

−1

]

You have to implement, in Verilog, the following operations in parallel using a systolic array with
three processing elements and applying the technique used in the homework:

H|0〉 = 1√
2

[
1 1
1 −1

] [
1
0

]
=

[
1
1

]

I|0〉 =

[
1 0
0 1

] [
1
0

]
=

[
1
0

]

4

The input to systolic arrays is a 1-Dimensional vector denoted the carrier vector. As the I operation
just left the second vector as is, we can use the value ”D”. For instance.

|0〉 =

1
D
0

D

|1〉 =

0
D
1

D

Where ”D” stands for a don’t care value. The 2 vectors once loaded in the carrier vector can have
four possibilities. In Figure 5 we use ”D” in the second input vector:

|00〉 =>

1
1
0
0

 |01〉 =>

1
0
0
1

|10〉 =>

0
1
1
0

 |11〉 =>

0
0
1
1

1

D

0

D

1

D

1

D

1

0

1

0

Step 1

D = don’t care

0

1

1

0

1

1

0

0

Hadam ard Gate

1

1

1

0

α
β

00 10

α
β

1

0 -1 0

1 1 1

1

Figure 5: First step of the systolic teleportation design .

The output of the first systolic array (input for the next systolic array) has to be multiplied for
two matrices in parallel according to the following rules (see Figure 6):

1. If the value of the first component of the carrier vector is 0 use I||X

2.- If the value of the first component of the carrier vector is 1 use I||I

You must deliver in a CD:

5

1

D

1

D

1

1

1

0

Step 2

D = don’t care

0

1

1

0

1

1

0

0

CNOT Gate

1

1

0

1

CNOT
Gate

0

0

1

1

1

1

0

0

CNOT

1100

1000

α
β

α
β

0

1 1 1

0 0 0

1

Figure 6: Second step of the systolic teleportation design .

1.- A report indicating the theoretical time and the implementation time for the whole computation.

2.- The value of the final vector(for each of the four cases)

3.- all your files (implementation in Verilog).

6

