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Internal Structure of Computer
Usually processor, main memory and I/O interfaces connect
through central “bus”, a collection of wires connecting all major
components through which information is transferred.

Lecture 2

First used on minicomputers in 1970s (PDP 8 and PDP 11) and
subsequently on microprocessors and all present-day systems (with
variations e.g. dedicated buses).

Bus
(set of wires)

Input device(s) Output devices

InputMainProcessor Output
interface(s)memory interface(s)

Instructions
and data
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From ITCS 3182

Main memory
Set of storage locations. Any location can be accessed at high
speed in any order (random access memory). Each location given a
unique address (a binary number starting from zero). Each
“addressable” location holds fixed number of bits (binary digits) -
normally 8 bits (a byte). WHY?

2n locations require
n-bit address

0
1
2
3
4

2n−1

Address Memory

Memory
location
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Memory used to hold machine instructions and data.

If more than 8 bits needed, consecutive locations used.

Then address given by address of first location.

First location can hold least significant or most significant byte

depending upon convention of processor:
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n
n+1
n+2
n+3

Memory

031

Most Least
significant

byte
significant

byte

32-bit word

Little endian (little end first)

Address

Address
of 32-bit word

Memory physically organized so that all
32 bit transferred simultaneously along bus
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Intel uses little endian

Mac/SUN use big endian

n
n+1
n+2
n+3

Memory

031

Most Least
significant

byte
significant

byte

32-bit word

Big endian (big end first)

Address

Address
of 32-bit word

Memory physically organized so that all
32 bit transferred simultaneously along bus
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Data path between processor and memory

Normal more than 8 bits transferred simultaneously between
processor and main memory - typically 32 bits or 64 bits for modest
performance systems:

Data bus

0 1 m-1
m m+1

m = 4 for 32 bit bus
m = 8 for 64-bit busMemoryProcessor

2m-1

Address

Address bus

Additional signals specify 1 byte, 2 bytes, 4 bytes etc. Other control signals.



 Barry Wilkinson  2002.  All rights reserved. Page 19
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at 
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 37  

BE0

BE7

Data bus

A31 - A3
Address bus

Memory modules

Processor

D63

D0

8
bits

Control bus

Example of a 64-bit processor bus (Pentium)
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Machine Instructions

Binary encoded instructions that processor will execute. Held in
memory.
Various possible formats.
First part of instruction typically specifies operation (add, subtract
etc.) - the so-called op-code.

Rest of instruction specifies the locations of the numbers
(operands) to be used in operation and where result is to be stored -
if an operation that uses stored numbers and produces a numeric
result - some operations alter the instruction sequence or produce
other effects.

Op-code Identifies operands and result location 
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Op-code encoding

Suppose 100 different operations, add subtract, multiply, divide, ... .

7 bits sufficient (26 < 100 ≤ 27). Could allocate one pattern for each
operation:

op-code

ADD (“ADD”) 0000000

SUBTRACT (“SUB”) 0000001

MULTIPLY (“MUL”) 0000010

DIVIDE (“DIV”) 0000011

. .

Sometimes more complex encoding used, e.g. first bits specify
class of operation and remainder of op-code specifies operation
within class.
Many possibilities.
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Instruction Formats
Basic way of identifying operands is by their addresses. Possible
formats:

Operation

Addresses

Operation Result 2nd operand 1st operand

(a) Three-address format

Operation 1st operand 2nd operand

(b) Two-address format

Operation Register 2nd operand

(c) Register-memory format

Operation

(d) One-address format

and result

(e) Zero-address format

2nd operand

Opcode
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Identifying the operands and result location

Various methods, known generally as the addressing modes.

Principal addressing modes

Absolute (direct) addressing Operand in memory and memory
address of the operand is held in
instruction - as in previous slide.

Immediate Addressing Operand held in the instruction.

Register Direct Addressing Operand held in register specified in
instruction.

Register Indirect Addressing Operand held in memory. Address of
operand location held in register
specified in instruction.
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Register Indirect Addressing plus Displacement 
Similar to register indirect
addressing except an offset held in
instruction added to register to form
effective address.

Implied Addressing Some operations have implicit location
for operand. Its address not specified.

PC relative addressing - used with instructions that can alter
execution sequence.
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Processor

Reads (fetches) the machine instructions (of the executable

program) from memory and performance actions specified

(executes) them).

Each machine instruction will specify usually a simply operation

such as addition, and identifies the numbers to be used.
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Control
Unit

IR

ALU
Registers

PC

Main memory

Control
Data Address

Processor
(representative)

Control
signals

signals

System
bus

Internal bus

A very simple processor

(Representative of an early microprocessor - not representative of a

modern processor)
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A very simple processor will operate in two phases, a fetch cycle to

fetch an instruction and an execute cycle to execute the fetched

instruction. These two cycles are repeated as the program is

executed.

Usually however processors will attempt to fetch the next instruction

before the previous one has been fully executed.

Really advanced processors (i.e. modern processors) may fetch

multiple instructions simultaneously and attempt to execute more

than one simultaneously.
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(a) Fetch cycle

Control
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ALU
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PC

Main memory

Control
Data Address

Instruction

Processor
(representative)

Control
signals
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System
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Internal bus

Select next
instruction
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(b) Execute cycle

Control
Unit

IR

ALU
Registers

PC

Main memory

Control
Data Address

Operands

Processor
(representative)

Control
signals

signals

System
bus

Internal bus

Select operands
Select result locationand results
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Characterizing Performance

MIPs

Traditional system figure of merit is MIPS (millions of instructions

per second), defined as:

MIPs
Number  of Instructions in Program

Program Execution Time 10
6×

---------------------------------------------------------------------------------------------=
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MFLOPs

The figure of merit, MFLOPS, (millions of floating point operations

per second) is defined as:

High performance processors may have very high MFLOP

performance i.e. thousands of MFLOPS, called gigaflops, GFLOPS.

Various benchmark programs exist with representative mixes of

instructions, for example, SPECint92 and SPECfp92 UNIX

benchmarks. 

MFLOPs
Number of Floating Point Instructions in Program

Program Execution Time 10
6×

---------------------------------------------------------------------------------------------------------------------------------=
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Clock cycles per instruction (CPI)

Clock cycles per instruction (CPI) is defined as:

CPI is independent of the clock frequency

Can be used to compare different processor designs.

CPI can be less than one if processor capable of executing more

than one instruction simultaneously (as most processors can since

mid 1990’s).

CPI
Program execution time (in clock cycles)

Number of instructions in program
-----------------------------------------------------------------------------------------------------------=



 Barry Wilkinson  2002.  All rights reserved. Page 26
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at 
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 51  

Improving performance

1. Improvements in technology.

2. Software development.

3. Architectural enhancements.

Slide 52  

Pipelined processor design

Basic techniques to improve performance - always applied in high

performance systems. Operation of processor divided into number

of steps, e.g.:

1. Fetch instruction.

2. Fetch operands.

3. Execute operation.

4. Store results

or more steps.
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Instructions

Fetch
unit

Operand
fetch unit Execute

Store
results

Pipelined Processor
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Memory hierarchy

Memory organized in levels of decreasing speed but decreasing

cost/bit:

Registers Storage locations within processor
Cache memory High speed memory close to processor
Main memory Random access memory
Secondary memory not random access but not volatile. Usually

being based upon magnetic technology. 
Magnetic disk memory operates several orders of magnitude

slower than the main memory. Whereas
main memory access time is in order of 20–
100 ns, access time on a disk is in range 5–
20 ms. Difficult to improve substantially.
Gradual improvement over the years.

Virtual memory Method of hiding the memory hierarchy.
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Cache

High speed memory introduced between the processor and main

memory:

Processor
Cache

memory
Main

memory

Secondary
memory
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Instruction Set Design

The instructions that a processor can execute.

Complex Instruction Set Computers (CISC)

Early computers by necessity had small instruction sets. During the
development of computers in the 1960’s and 1970’s, trend to add
instructions to the instruction set sometimes for special purposes
(say to help the operating system) leading to sometimes very large
number of instructions and addressing modes in the instruction set.
Processor instruction sets became every complex. Idea was that
better to do in hardware if possible rather than in software.

Lecture 3
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Reduced instruction set computer (RISC)

Following issues originally lead to RISC concept:

1. Effect of the inclusion of complex instructions.

2. Best use of transistors in VLSI implementation.

3. Overhead of microcode.

4. Use of compilers.
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The basic question asked:

“Do the extra instructions indeed increase the speed of the

system?”



 Barry Wilkinson  2002.  All rights reserved. Page 30
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at 
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 59  

Inclusion of complex instructions

The inclusion of complex instructions is key issue.

Even if adding complex instructions only added one extra level of

gates to a ten-level basic machine cycle, whole CPU slowed down

by 10 per cent. 

The frequency and performance improvement of the complex

functions must first overcome this 10 per cent degradation and then

justify the additional cost.
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Use of transistors

Trade-off between size/complexity and speed. Greater VLSI

complexity leads directly to decreased component speeds.

With increasing circuit densities, a decision has to be made on best

way to utilize circuit area.

Is it to add complex instructions at risk of decreasing speed of other

operations, or should the extra space on the chip be used for other

purposes, such as a larger number of processor registers, caches

or additional execution units, which can be performed

simultaneously with the main processor functions?
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Example

DEC found 20% of VAX instructions required 60% of microcode but

were only used 0.2% of the time. Led to micro VAX-32 having

slightly reduced set of full VAX instruction set (96 per cent) but very

significant reduction in complexity.
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Microcode

Factor leading to RISC concept was changing memory technology.

CISCs often rely heavily on microprogramming (microcode) - fast

control memory inside the processor holds microinstructions

specifying the steps to perform for each machine instruction.

Microprogramming first used when main memory based upon

magnetic core stores and faster read-only control memory could be

provided. With move to semiconductor memory, gap between

achievable speed of main memory and control memory narrows.

Now, considerable overhead can appear in a microprogrammed

control unit, especially for simple machine instructions.
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Compilers

There is increased prospect for designing optimizing compilers with

fewer instructions.

Difficult for compiler to identify situations where complex

instructions can be used effectively. 

Key part of RISC development is the provision for an optimizing

compiler which can take over some of the complexities from

hardware and make best use of registers.

Slide 64  

RISC examples

IBM 801

Designed 1975–79 and publicly reported in 1982. Establishes many

of features for subsequent RISC designs: Three-register instruction

format, with register-to-register arithmetic/logical operations. Only

memory operations are to load a register from memory and to store

the contents of a register in memory.



 Barry Wilkinson  2002.  All rights reserved. Page 33
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at 
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 65  

IBM 801

All instructions have 32 bits with regular instruction formats.

Programming features include:

• 32 general purpose registers.

• 120 32-bit instructions.

• Two addressing modes: base plus index; base plus immediate.

• Optimizing compiler.

Four-stage pipeline: instruction fetch; register read or address

calculation; ALU operation; register write.
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Early university research prototypes 
RISC I/II and MIPS

RISC project –University of California at Berkeley

MIPS (Microprocessor without Interlocked Pipeline Stages) project

– Stanford University. 

Both projects resulted in the first VLSI implementations of RISCs,

the Berkeley RISC I in 1982, and the Stanford MIPS and the

Berkeley RISC II, both in 1983.
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.
 

Features of early VLSI RISCs

Features RISC I RISC II MIPS

Registers 78 138 16

Instructions 31 39 55

Addressing modes 2 2 2

Instruction formats 2 2 4

Pipeline stages 2 3 5

Slide 68  

Early Commercial RISCs

Both RISC I/II and MIPS led to commercial RISC processors:

SUN Sparc processor derived from Berkeley RISC II processor.

MIPS Computer System Corporation established purposely to

develop Stanford MIPS processor, and a series of processors

appeared, including the R2000, R3000, R4000, R5000, etc.

Motorola MC88100 RISC 32-bit microprocessor, introduced in 1988

maybe first RISC produced by major CISC microprocessor

manufacturer. 



 Barry Wilkinson  2002.  All rights reserved. Page 35
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at 
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 69  

Later Commercial RISCs

Later RISCs also incorporated superscalar operation (executing

more than one instruction in one clock cycle).

Examples

IBM RS 6000, DEC Alpha family and PowerPC family

Examples of 64-bit superscalar processors

Alpha 21164, MIPS 10 000, PowerPC 620 and the UltraSparc.
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RISC-CISC

Current position (late 1990’s - 2001)

The simplicity of the original RISC concept is probably been lost as

most current RISCs have some complexity in their instruction set

and certainly complex in their implementation to achieve their high

performance (as we shall see!)

The Intel Pentium family (Peniutm Pro onwards) retained its

complex instruction set externally but internally converts the

complex instructions into simple RISC-like instructions.
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Instruction buffer

Decoder
CISC/RISC

Superscalar RISC core

Pentium Pro

D1 D2 D3 D4

For simple instructions For complex instructionsconverting to one µ-op converting to up to 4 µ-op

µ-ops
sequencer converter
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RISC Instruction Set Design
(ITCS 3182 review)
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Processor characteristics

Use of memory and registers

Theme is to design for maximum speed avoiding the use of memory
whenever possible because memory is slower to access than
registers. 

Load and store will be only instructions for accessing memory –
leads to processors of this type as having a Load/Store instruction
format.
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For greater flexibility, three-register instruction format used for

arithmetic operations.

Thirty-two integer registers commonly chosen. Compromise

between providing compilers with enough registers, and having too

many registers to save before context switch. Also as larger register

file slower.

The thirty-two registers will be called R0–R31. Some registers given

certain uses in additional to their general purpose nature.

One register will permanently store the number zero - R0. It could

be any register. DEC Alpha processor, for example, uses R31 to

hold zero. 
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Floating Point Instructions

All present-day processors provide for floating point numbers, and
have instructions to perform arithmetic on floating point numbers.

Usually, separate registers provided for holding floating point
numbers, say F0 to F31.

Always nowadays use the industry standard IEEE standard floating
point formats (ANSI/IEEE 754-1985)

– either 24 bits (rarely used single precision), 32 bits (single
extended precision), 64 bits (double precisions), or 80 bits (a double
extended precision format). (Also 128 bits now)

One register could hold zero in floating point format permanently,
say F0 (F31 in the DEC Alpha).
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Operand and instruction size

Closely linked to allowable complexity of fabrication technology.
Thirty-two bits provide reasonable precision for integers, but by late
1990s, 64-bit processors became quite common, coupled with 64-
bit memory addressing.

Very few significant architectural differences between processors
with different operand sizes in terms of control techniques – the
main differences are in number of gates to make up the registers
and ALUs etc. and number of internal data lines.

Need to specify size of the number being processed, 8 bits, 16 bits,
32 bits, 64 bits (or greater). 

Size of 8 bits provided principally to handle ASCII characters.
16-bit size not particularly useful. Other sizes provided for
increasing precision at expense of increasing memory
requirements. 
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Instructions length of 32 bits is commonly chosen for RISCs,

Not possible to specify even a 32-bit constant or 32 bit address in a
32-bit instruction.
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Size of the memory address

n bits in the address allows 2n locations to be addressed. 

As the allowable complexity of chips increases, so more bits are
provided to address memory. 

1970s – 16-bit addresses, providing for 64 Kbytes.

1980s – Increased to 20 bits (Intel 8086), 24 bits ( Motorola
MC68020)

1990 –1995 – 32-bit addresses providing up to 232 bytes (4
gigabytes)

Thirty-two bit bits easily accomodates typical main memory sizes.
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Present TREND

64 bits, provides for main memory up to 264 bytes

(18,446,744,073,709,551,616 bytes i.e. 18 × 1018 bytes). This size

of main memory unlikely to be practical for many years (if ever) but

ensures longevity of design.
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Instruction formats

Register-register instructions

Example

ADD R2,R3,R4 ;R2 = R3 + R4

Using one register, R0, to hold zero, can create a register move

operation, i.e., to copy the contents of R4 into R5:

ADD R5,R4,R0 ;R5 = R4 (+ 0)

so that a specific register move instruction unnecessary. 
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31 26 25 21 20 16 15 11

UnusedRs2Rs1Rd

Destination Source 1

Opcode

Source 2Operation

Register-register instruction format (R-R-R format)

010
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Sub Op-Codes

Could use remaining currently unused bits in instruction to specify a

sub-operation, perhaps an operation associated with a functional

unit. Then primary opcode specifies class of operations processed

by functional unit.

31 26 25 21 20 16 15 11

UnusedRs2Rs1Rd

Destination Source 1

Opcode

Source 2Operation

Register-register instruction format with sub op-code

0

Sub op-code

Arithmetic operation
specified

ADD
SUB
MUL
DIV
etc.
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Register-register-constant format

Very common requirement to be able to load or add a constant to a

register.

– generally referred to immediate addressing because the constant

is part of the instruction and immediately follows the rest of the

instruction. Term literal is sometimes used to convey the idea of the

value being literally available.

Example

ADD R2,R3,1234 ;R2 = R3 + 1234

Constant held in instruction sign-extended to no of bits of register.
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31 26 25 21 20 16 15

Rs1Rd

Destination Source 1

Opcode

Source 2Operation

Register-constant instruction format (R-R-I format)

16-bit Constant

0
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Loading large constant into a register

Single instruction cannot be used to load large constant into a
register.

Either: 
• Use memory location with a memory load 

instruction, or

• Provide extra instructions to load parts of the 

register.

Early RISC processors with 32-bit register used extra instruction (a

“load upper” instruction) for loading 32-bit constant into 32-bit

register.
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Example

To load 12345678 (hexadecimal) into a 32-bit register R2:

LDU R2,1234H ;R2 = 1234H
ADD R2,R2,5678H ;R2 = R2 + 5678H

This sequence not be sufficient for 64-bit registers – unfortunate
connection between the instruction set and the size of registers.

16

16

32

LDU

ADD

R2

1 2 3 4 H

5 6 7 8 H

1 2 3 4 H 5 6 7 8 H

LDU R2

ADD R2,R2
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Register-memory format

For loading registers from memory locations and storing registers in

memory locations.

One addressing mode, register indirect addressing with offset,

provides an addressing mode from which most other addressing

can be created.
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Register-memory format

Example:

LD R1,100[R2] ;Contents of memory location

;whose address is given by contents

;of R2 + 100 is copied in R1

ST 200[R8],R6 ;R6 is copied into memory location

;whose address is given by R8 + 200

Note: For 32-bit registers, 32 bit word transfered to/from memory
(consecutive memory locations) - applies throughout.

Rd Rs1

Rs1 Rs2
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31 26 25 21 20 16 15

Rs1Rd

Destination Address register

Opcode

Operation

Load/store instruction formats (using R-R-I format) - version 1

16-bit Offset

0

31 26 25 21 20 16 15

Rs1Rs2

Address register

Opcode

Operation

16-bit Offset

0

Source

(a) Load format

(b) Store format

Notice change order
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31 26 25 21 20 16 15 11

Rs1

Address register

Address register

Opcode

Operation

Alternative Store Instruction Format

To keep address fields consistent with other instructions. Load also
altered to be similar:

11-bit Offset

0

31 26 25 21 20 16 15 11

Rs2

Rd

Source

Opcode

Operation

11-bit Offset

0

Destination

(a) Load format

(b) Store format

Rs1 Unused

Unused

10

10
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Control Flow

Instructions to alter execution sequence dependent upon computed

value. Needed to implement high level statements such as if, while,

do-while, etc. Compilers must translate statements such as:

if (x != y) && (z < 0) {
a = b + 5;
b = b + 1;

}

into machine instructions. Unreasonable to have a unique machine

instructions for each IF statement because of vast number of

possible IF statements. Need to extract essential primitive

operations for machine instructions.

Lecture 4
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Decompose into simple IF statements of the form:

if (x relation y) goto L1;

where relation is any of usual relations allowed in high level

languages (<, >, >=, <=, ==, !=), i.e.:

if (x != y) && (z < 0) {
a = b + 5;
b = b + 1;

}
into

if (x == y) goto L1;
if (z => 0) goto L1;
a = b + 5;
b = b + 1;

L1:

More than one way of creating above IF statement.
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There is more than one way of implementing:

if (x relation y) goto L1;

with machine instructions.

Here, we will start with the very common conditional code register

approach and then some alternatives which may be preferable for

high performance processors.
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Conditional Code Register Approach

The most common is to decompose the IF statement into two

machine instructions:

• one instruction that tests the boolean condition “(x relation y)” 

and 

• a second instruction which performs the “goto L1” if the 

relationship is true.

The result of test of the first instruction is stored in a so-called

condition code register (CCR) for the second intruction to read.
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Example
The if statement:

if (x == y) goto L1;

could be implemented by a sequence of two instructions:

CMP R1,R2 ;Compare R1 & R2 (holding x & y)

BE L1 ;Conditional branch, goto L1 if zero

L1:

Z

Write
Read

Condition code register

Z = 1 if R1 - R2 = zero otherwise Z = 0

Subtract R2 from R1
and load CCR
(SUB could be used but this
would overwrite one operand
if 2-address instruction.)

Mnemonic BZ (branch if zero) also used
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Conditional Code Register Flags

To cope with every possible Boolean condition, i.e. <, ≤, =, !=, > , ≥,

need more than one flag in CCR, zero (Z), and negative (S for sign)

necessary for basic conditions, and one conditional branch

instruction for each condition.

Other flags in CCR that usually exist include carry (C), and overflow

(O)
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Conditional Branch Instructions

Mnemonic Condition C notation Flags checked*

BL Branch if less than < S

BG Branch if greater than > S . Z

BGE Branch if greater or equal to >= S

BLE Branch if less or equal to <= S + Z

BE Branch if equal == Z

BNE Branch if not equal != Z

* assuming 2’s complement representation and not taking into

account any overflow conditions. Separate conditional branch

instructions necessary for unsigned numbers.

Logical

Logical

OR

AND
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Specifying Target Location (L1) 

Mostly, condition branch instructions used to implement small

changes in sequences or program loops of relatively short length.

Also good programming practice to limit sequence changes to short

distance from current location to avoid difficult to read code. Helps

make code relocatable. i.e. code can be loaded anywhere in

memory without having to change the branch and other addresses.
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PC-Relative Addressing

Number of locations from address of present (or next) instruction

held in instruction as an offset.

Offset added to program counter to obtain effective address.

Branch op-code Offset

Slide 100  

We have decomposed the IF statement:

if (x relation y) goto L1

into two sequential actions:

compare: (x - y);Set condition codes S,O,C,Z, etc.

branch: if (certain condition codes set) goto L1
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The problem with CCR approach

• Requires the first action (compare) to be 

performed completely before the second action 

(branch) can be started.

• The two instructions generally need to be next to 

each other.

Hence, limits the processor from executing instructions

simultaneously or not in program order (which can improve

performance).
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PowerPC 601

Uses eight 4-bit Condition Code Registers - up to eight branch

instructions each using different Condition Code Register.



 Barry Wilkinson  2002.  All rights reserved. Page 52
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at 
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 103  

Avoiding use of condition code register

Combined compare and branch instruction

An alternative which both avoids the use of a condition code register

and eliminates the necessity of a sequence of two sequential

instructions is to combine the two instructions into one conditional

branch instruction.

These instruction compares the contents of two registers, and

branches upon a specified condition:
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Combined compare and branch instructions

BEQ R1,R2,L1 ;Branch to L1 if R1 = R2

BNE R1,R2,L1 ;Branch to L1 if R1 ≠ R2

BL R1,R2,L1 ;Branch to L1 if R1 < R2

BLE R1,R2,L1 ;Branch to L1 if R1 ≤ R2

BG R1,R2,L1 ;Branch to L1 if R1 > R2

BGE R1,R2,L1 ;Branch to L1 if R1 ≥ R2

A separate instruction is needed for each condition (as in the CCR

approach).
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Combined Compare and Branch Instruction 
Format

31 26 25 21 20 16 15

Rs1Rs2

Source 2 Source 1

Opcode

Operation

Combined test and branch instruction format (using R-R-I format)

16-bit Offset

0
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Problems with this approach:

• Complex instruction!

• Limited space for offset to L1
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Branch Instruction testing for zero

Testing for zero is a very common operation in programs. Could
provide a “branch if zero” and “branch if not zero”, instructions
specifically, i.e.:

BEQZ  R3,L1 ;Branch to L1 if R3 = 0

BNEQZ R3,L1 ;Branch to L1 if R3 ≠ 0

although it would be easy to accomplish previously with R0, i.e.:

BE R3,R0,L1 ;Branch to L1 if R3 = 0

BNE R3,R0,L1 ;Branch to L1 if R3 ≠ 0

Advantage of having special instructions for testing for zero is there
is more space in the instruction to specify L1 as a bigger offset. Also
a very fast circuit could be used to test for zero.
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In many high level statement situations, what at first sight appears
to require a complex test can be reduced by a compiler to a test for
zero.

For example, the C loop:

for(i = 0; i < 10; i++) b[i] = a[i];

can be written as:

for(i = 0; i != 10; i++) b[i] = a[i];

which requires a test for (i - 10) != 0.

Code sequence could even be re-arranged to:

for(i = 9; i != 0; i--) b[i] = a[i];
b[i] = a[i];
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Using general-purpose register to hold condition 
codes

Instruction performs a compare operation, creating condition code

values loaded into a general-purpose register specified in

instruction. Subsequent branch instruction inspects register loaded

with condition codes.

Allows us to separate the two instructions in the program more

easily.
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Example

The “set on less” instruction found on the MIPS RISC processor.

The “set on less” instruction sets the destination register to 1 if one
source register is less than the other source register.

Then a “branch on not equal or not zero” can be used for the
relationship “less than”, i.e.:

STL R3,R2,R1 ;R3 = 1 if R2 < R1

BNE R3,R0,L1 ;Branch to L1 if R3 ≠ 0, if R2 < R1
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Jump instructions

Jump instruction causes unconditional change of execution

sequence to a new location. Necessary to implement more

complicated IF constructs, FOR, and WHILE loops.

Using J as the opcode mnemonic, the jump instruction is:

J L1 ;jump to L1

As with branch instructions, PC-relative addressing is used.

No registers need be specified.
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31 26 25

Opcode

Operation

Jump instruction format (I format)

26-bit Offset

0
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Jump Instruction with register-indirect 
addressing

An “address register” specified in instruction holds address of
location holding next instruction to be executed. Used, for example,
to implement SWITCH statements in a high level language. May
also be necessary for procedure return operations (see later).

J [R1] ;jump to location whose address is in R1

or even:

J 100[R1] ;jump to location whose address is in 
;R1 plus 100.

Now target address specified as an absolute address, rather than 
as a relative address. 
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31 26 25 21 20 16 15

Rs1Unused

Address register

Opcode

Operation

Jump instruction format with register indirect addressing

16-bit Offset

0
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Procedural calls

Essential ingredient of high level language programs – the facility to

execute procedures, code sequences, that are needed repeatedly

through a main program, rather than duplicate the code. 

Lecture 5 CSCI 3182 review + more
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Two basic issues to resolve in implementing procedures:

• A mechanism must be in place to be able to jump to 
procedure from various locations in calling program (or 
procedure), and to be able to return from called procedure 
to the right place in calling program (or procedure).

• A mechanism must be in place to handle passing actual 
parameters (arguments) to the procedure, and to return 
results (if a function). 

Also usually when a procedure is called, registers being used by the

calling procedure must be saved, so that they can be reused by the

called procedure.
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Methods to implement Procedures

CALL/RET instructions

Special machine instructions for both procedural call and procedural
return in complex instruction set tradition, often called CALL and
RET:.

CALL – simply an unconditional jump to the start of procedure, with
the added feature that the return address (the address of the next
instruction after the call) is retained somewhere. 

RET – to return to the main program after execution of procedure -
simply an unconditional jump to the location having the address
given by the return address.
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CALL Proc1

RET

Main program
Procedure Proc1

Return address:    Next instruction

CALL Proc1
Return address:    Next instruction

Procedure calls using CALL and RET instruction

Second call
to procedure
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Stacks

Most common method of holding return addresses – last-in-first-out
queue (LIFO), stack, Can be implemented in main memory or using
registers within the processor. Historically, main memory stacks
used because they allow almost limitless nesting and recursion of
procedures.

Procedure return address
placed on stack before calling
procedure

Procedure return address
retrieved from stack to return
to calling program at end
of procedure

Stack
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Stack Pointer

A register called a stack pointer provided inside processor to hold

the address of the “top” of the stack (the end of the stack where

items are loaded are retrieved).

Depending upon design, stack pointer either holds address of the

next free location on the stack or the address of the last item placed

on the stack.

Question: Any advantage of each approach?
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Examples

Although any register (R1 - R31) could be used in RISC, usually a

convention exists: 

MIPS uses R29 as a stack pointer pointing to next free location.

Alpha uses R30 as a stack pointer pointing to last item on stack.

Pentium has dedicated stack pointer (SP) pointing to last item on

stack.
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Stack pointerStack
100
101
102
103
104

100

As items are placed on the stack, the stack grows, and as items are

removed from the stack, the stack contracts. Although not shown in

figures here, normally memory stacks are made to grow

downwards, i.e., items are added to locations with decreasing

addresses. Why?

as item added
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CALL Proc1

RET

Main program
Procedure Proc1

Next instruction

CALL Proc1
Next instruction

Second call
to procedure

Return Address

Stack pointerStack

After second call
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Nested Procedure Calls
Stack provides storage for each return address for nested/recursive
calls.

CALL Proc1

RET

Main program
Procedure

Next instruction

Return Address

Stack pointerStack

After third call

RET

Procedure

RET

Procedure

CALL Proc2

CALL Proc3

Return Address

Return Address

Proc1 Proc2 Proc3
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Suppose 32-bit addresses stored on stack. Then, 4 bytes would be

needed for each address, and stack pointer decremented by four

each time an address is added to stack, and incremented by four as

addresses are removed from stack.

Part of CALL instruction is to decrement the stack pointer by 4 (prior

to accessing stack if stack pointer points to the last item placed on

the stack).

Part of RET instruction is to increment stack pointer by 4 (after to

accessing stack if stack pointer points to the last item placed on the

stack).
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Passing (actual) parameters using a stack

Stack can be used to hold actual parameters passed to called
procedure and passed back from called procedure.

Processors that use CALL and RET instructions also usually
provide instructions for passing items on the stack, and for taking
items off the stack, called PUSH and POP instructions.

• PUSH instruction - decrements the stack pointer before (or 
after) an item is copied onto the stack.

• POP instruction - increments the stack pointer after (or 
before) an item is copied from the stack. 

Before the call and return address pushed onto stack, parameters
are pushed onto stack. Then, within procedure, the parameters are
“popped” off the stack.
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Saving registers

Stack can be used to save the contents of registers prior to the call

(or immediately after the call inside the procedure).

Upon return (or immediately before) the registers can be restored

from the contents of the stack.

Saving/restoring registers probably best done inside called

procedure.
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Stack Frame

Convenient to specify the group of locations on stack which

contains all the parameters, results, and return address relating to

one procedure as a stack frame and have another pointer (frame

pointer) to point to the current stack frame.

Examples

MIPS processor uses R30 as a stack frame pointer

Alpha processor uses R29 as stack frame pointer

Intel Pentium has a so-called base pointer (BP) that pointers to

stack



 Barry Wilkinson  2002.  All rights reserved. Page 65
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at 
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 129  

Stack Frame

Argument 1
Argument 2

Saved

Local

registers

variables

Frame pointer

Stack pointer

Stack frame

Stack

Order of information in stack frame
will depend upon the order it is 
pushed onto the stack.

Top

Return
address
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Co-routines, those routines that call each other alternately, also do

not need to use a stack for the return address. A single register can

be used to hold the return address. The DEC Alpha processor has a

specific instruction for handling co-routines.

Problem: Work out how the registers can be used to hold the return

addresses.
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Allocated registers – Some processor designs allocate certain

registers for local use within a procedure and others as global

registers available throughout the program.

Compilers and programmers are intended to comply with these

allocations.
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Using Registers

Results could be returned faster using registers.

A stack is really only needed for nested or recursive procedures.

The stack frame of a procedure that does not call another

procedure (or itself) could easily be held in processor registers.
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Jump and Link Instruction

“jump and link”, JAL, will jump to the location whose address is

specified in the instruction and will store the return address in R31.

Return - simply unconditional jump to location whose address given

in R31.

For nesting, R31 will be stored in a memory stack, using another

register as a stack pointer, R29.
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Jump and Link Code

The code required would look like:

SUB R29,R29,4 ;Decrement stack pointer (4 bytes)

ST  [R29],R31 ;Store last return address on stack

JAL Proc_label ;jump to proc_label, and store

;return address in R31

LD R31,[R29] ;After return from call, restore

;previous return address in R31

ADD R29,R29,4 ;Increment stack pointer
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To return at the end of the procedure, we simply have:

J [R31] ;jump to location whose address is in 
;R31
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To store parameters as well on stack before the call, we would have:

SUB R29,R29,4

ST  [R29],R31

SUB R29,R29,4

ST  [R29],parameter1

SUB R29,R29,4

ST  [R29],parameter2

JAL Proc_label



 Barry Wilkinson  2002.  All rights reserved. Page 69
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at 
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 137  

Register Window

Berkeley RISC project introduced concept of providing internal

registers called the register window to simplify and increase speed

of passing parameters and to provide local registers for each

procedure. 

Idea adopted in SUN Sparc processor (which followed Berkeley

design).
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Characteristics of Procedure Calls

A procedure may call another procedure and that procedure may

call another one, but the depth of procedure calls is usually limited

over period of time to perhaps 10 or 11 levels maximum.

The register window mechanism takes advantage of this.

Depth

Time

limited Procedure call

Procedure return
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Register window

Registers for
procedure 1

Registers available
to all procedures

Register file

Registers for
procedure 4

Registers for
procedure 3

Registers for
procedure 2

Current window
pointer
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RISC II register window

0:10
0:15

0:26

0:31

Window 0

1:10
1:15

1:26

1:31

2:10

2:15

2:26

2:31 Window 2

7:317:26
7:15

7:10

6:31

6:26

6:15

6:10

Window 6

Window 7

Window 1

x:0

x:9

Global
registers

Current window
pointer, CWP
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SUN Sparc Processor

R0 to R7 8 global registers, available from all procedures 
(called g0 to g7 in assembly language)

R8 to R15 8 registers available to receive parameters and return
results (called i0 to i7 in assembly language)

R16 to R23 8 registers available for local variables
(called l0 to l7 in assembly language)

R24 to R31 8 registers available to pass parameters to next
procedure and for returning values (called o0 to o7 in
assembly language)

Instructions provided to adjust current window pointer:

save Advances current window pointer (can also increment
stack pointer to create space for local variables)

restore Move current window pointer backwards

Also jump and link and ret instructions
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Summary of register window mechanism

Advantages

• No major change necessary to instruction set -- 32 registers 

visible at any instant

• Fast -- uses internal registers rather than a stack

Disadvantages

• Need to handle overflow conditions -- still need a stack for this

• Fixed number of registers available for passing parameters and 

local variables

• Could be that existing internal first level data cache (see later) 

achieves similar performance making the mechanism now 

unnecessary.
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Exercise
The gcc SUN compiler will produce assembly language output by
including the -S flag, i.e.

gcc -S prog1.c
produces the assembly language file prog1.s. Compile the C
program:

#include <stdio.h>
void main {
int i, sum;

sum = 0;
for (i = 0; i < 10; i++) sum = sum + i;

printf(“%d\n”,sum);
}

Explain the assembly language code. Compile with the -O
optimization flag and without it. (You will find without optimization,
the register window is not used!) 
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Pipelined Processor Design

Lecture 6
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Pipelining

Basic techniques to improve the performance - always applied in

high performance systems. Adapted in RISCs and all processors.

Operation of the processor divided into number of steps, e.g.:

1. Fetch instruction.

2. Fetch operands.

3. Execute operation.

4. Store results

or more steps. Each step is performed by a separate unit (stage).
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Processor Pipeline Space-Time Diagram

Stage 2 Stage 3 Stage 4 Stage 5Stage 1 Stage 6 Stage 7
Instructions

Stage 1

Stage 7

Stage 6

Stage 5

Stage 4

Stage 3

Stage 2

I 1
1

I 6
1 I 6

2

I 4
1

I 5
3I 5

2I 5
1

I 4
2 I 4

3 I 4
4

I 7
1 I 7

2 I 7
3 I 7

4 I 7
5 I 7

6 I 7
7

I 3
6 I 3

7 I 3
8 I 3

9 I 3
10 I 3

11

I 4
5 I 4

6 I 4
7 I 4

8 I 4
9 I 4

10

I 2
7 I 2

8 I 2
9 I 2

10 I 2
11 I 2

12

I 1
8 I 1

9 I 1
10 I 1

11 I 1
12 I 1

13

I 6
3 I 6

4 I 6
5 I 6

6 I 5
7 I 6

8

I 5
4 I 5

5 I 5
6 I 5

7 I 5
8 I 5

9

I 1
4

I 3
1

I 2
1

I 1
3

I 3
2

I 2
3I 2

2

I 3
4I 3

3

I 2
5I 2

4

I 1
5 I 1

6 I 1
7

I 3
5

I 2
6

I 1
2

Processing first instruction

Time

(a) Stages

(b) Space-Time diagram

from
memory

Processing second instruction

Notation:
Subscript - instruction
Superscript - stage
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Pipeline Data Transfer

Usually, pipelines are designed using latches between stages to

hold the information being transferred from one stage to the next.

This transfer occurs in synchronism with a clock signal:

Latch Stage Stage StageLatch Latch

Clock

Latch

Data
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Processing time

Time to process s instructions using a pipeline with p stages

= p + s - 1 cycles

Stage 1

Stage p

Stage p-1

Stage 3

Stage 2

Time

p - 1 s instructions

p + s - 1 (cycles)

Last
instruction

p stages
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Speed-Up

How much faster using pipeline rather than a single homogeneous

unit?

Speed-up available in a pipeline can be given by:

Potential maximum speed-up is p, though only be achieved for an

infinite stream of tasks (s → ∞) and no hold-ups in the pipeline.

An alternative to pipelining - using multiple units each doing the
complete task. Units could be designed to operate faster than the
pipelined version, but the system would cost much more.

Speed-up
T1
Tp
------

sp
p s 1–+
----------------------= =

Note: This does not take into
account extra time due to
latches in pipeline version.
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EX

IF

IF = Fetch unit
EX = Execute unit

Fetch 1st

Execute 1st

instruction

instruction

Fetch 4th
instruction

Fetch 2nd
instruction

Fetch 3rd
instruction

Execute 2nd
instruction

Execute 3rd
instruction

Two Stage Fetch /Execute Pipeline

Time

Instructions

Fetch
unit

Execute
unit

(a) Fetch/execute stages

(b) Space-time diagram with ideal overlap
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A Two-Stage Pipeline Design

Fetch unit Execute unit

Memory

PC

Instruction

Address

MDR

MAR

+4

IR

ALU

Registers
Control

Latch

Accesses memory for data
(LD and ST instructions) Branch/jump can affect PC
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Fetch/decode/execute pipeline

Instructions

Fetch
unit

Execute
unit

(a) Fetch/decode/execute stages

Decode
unit

Execute

Fetch

(b) Ideal overlap Time

Fetch 1st
instruction

Fetch 2nd

Decode 1st
instruction

Decode 3rd Decode 4th
instruction

Execute 1st
instruction

Execute 2nd
instruction

Execute 3rd

Fetch 3rd Fetch 4th
instructions

Fetch 5th

Decode 2nd
instructionDecode

instruction instruction instruction

instruction

instruction

Recognizes instruction - separates operation and operand addresses
Relevant for complex instruction formats
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Instruction
fetch unit

Operand Execute Operand
fetch unit store unit

Four-Stage Pipeline

unit

Instruction
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Instruction 1 Instruction 2 Instruction 3 Instruction 4 Instruction 5

Instruction 1

Instruction 1

Instruction 1

Instruction 2

Instruction 2

Instruction 2

Instruction 3

Instruction 3 Instruction 4

IF = Instruction fetch unit
OF= Operand fetch unit
EX= Execute unit
OS= Operand store unit

Four-Stage Pipeline Space-Time Diagram

IF

OF

EX

OS

Time
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IF = Instruction fetch unit
OF= Operand fetch unit
EX = Execute unit
OS = Operand store unit

Four-stage Pipeline “Instruction-Time Diagram”

An alternative diagram:

IF OF EX OS

Time

1st

2nd

3rd

4th IF OF

EX OSIF OF

IF OF EX

Instruction
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Information Transfer in Four-Stage Pipeline

Register-Register Instructions

ADD R3, R2, R1

ADD

R3

R2

R1

PC

IF OF EX OS

Register file

Clock

Instruction

Address

Memory

ALU

Latch

Instruction

After instruction fetched:
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Information Transfer in Four-Stage Pipeline

Register-Register Instructions

ADD R3, R2, R1

ADD

R3

V2

V1

PC

IF OF EX OS

R1 Values

Register file

Clock

Instruction

Address

Memory

ALU

Latch R2

Instruction

After operands fetched:
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Information Transfer in Four-Stage Pipeline

Register-Register Instructions

ADD R3, R2, R1

R3

ResultPC

IF OF EX OS

Register file

Clock

Instruction

Address

Memory

ALU

Latch

Instruction

After execution (addition):

ADD

V2

V1
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Information Transfer in Four-Stage Pipeline

Register-Register Instructions

ADD R3, R2, R1

PC

IF OF EX OS

Values

Register file

R3,result

Clock

Instruction

Address

Memory

ALU

Latch

Instruction

After result stored:
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Information Transfer in Four-Stage Pipeline

Register-Register Instructions

ADD R3, R2, R1

ADD

R3

R2

R1

R3

ADD

R3

V2

V1

ResultPC

IF OF EX OS

R1 Values

Register file

R3,result

Clock

Instruction

Address

Memory

ALU

Latch R2

Instruction

Overall:
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Register-Constant Instructions (Immediate addressing)

ADD R3, R2, 123

ADD

R3

R2

123

R3

ADD

R3

V2

123

ResultPC

IF OF EX OS

Value

Register file

R3,result

Clock

Instr.

Addr.

Memory

ALU

Latch R2

Instruction
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Instruction fetch Operand fetch Execute Operand store

Instruction Registers

ALU

Registers
memory

MAR MDR IR

Alternative way of depicting pipeline showing data register twice
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 Four-Stage Pipeline

Branch Instructions

Bcond R1, R2, L1

Bcond

R1

R2

Offset

Bcond

V1

V2

Offset

ResultPC

IF OF EX/BR OS

R1 Values

Register file

True/False, Offset

Clock

Instruction

Address

Memory

ALU

R2

Offset+

Test

This stage not used

Add Offset to PC if TRUE. Need to take into acount
PC already incremented

Subtract
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Simpler Branch Instruction

BEQZ R1, L1

BEQZ

R1

Offset

BEQZ

V1

Offset

ResultPC

IF OF EX/BR OS

R1 Value

Register file

True/False, Offset

Clock

Instruction

Address

Memory

Offset
+

Test
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Load and Store Instructions

Need at least one extra stage to handle memory accesses. Early
RISC processor arrangement was to place memory stage (MEM)
between EX and OS as below. Now a five-stage pipeline.

LD R1, 100[R2]

LD

R1

R2

100

R1

LD

R1

V2

100

AddrPC

IF OF EX

MEMValue

Register file

R1, value

Clock

Instruction

Address

Instruction

ALU

R2

R1

Value

OS

LD

Data memory

memory

DataAddress

Compute effective address

+
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ST 100[R2], R1

ST

R1

R2

100

V1

ST

V1

V2

100

AddrPC

IF OF EX

MEMValues

Register file

Clock

Instruction

Address

Instruction

ALU

R1

OS

ST

Data memory

memory

DataAddress

Compute effective address

+

This stage not used

Note: Convenient to have separate instruction and data memories
connecting to processor pipeline - usually separate cache
memories, see later.

R2
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Instructions

(a) Units

(b) Instruction usage

Fetch
instruction

Fetch
operands Access

Memory

Store
results

from registers in register
Execute

(Compute)

Load

Store

Arithmetic

Branch

Usage of Stages

Instruction passes through stage
but without any actions taking place

Time
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Number of Pipeline Stages

As the number of stages is increased, one would expect the time for

each stage to decrease, i.e. the clock period to decrease and the

speed to increase.

However one must take into account the pipeline latch delay. 
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Optimum Number of Pipeline Stages*

Suppose one homogeneous unit doing everything takes T time

units.

With p pipeline stages with equally distributed work, each stage

takes T/p.

Let tL = time for latch to operate. 

Then:

Execution time tex = (p + s - 1) × (T/p + tL)

* Adapted from “Computer Architecture and Implementation” by H. G. Cragon, Cambridge
University Press, 2000.
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Optimum Number of Pipeline Stages*

800

600

400

200

0 21 22 23 24 25

Tex

Number of pipeline stages, p
26 27

Typical results (T = 128, tL = 2):

Optimum about 16 stages
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To get optimal value:

Differentiate tex with respect to p, set to zero and solve. Get:

* Adapted from “Computer Architecture and Implementation” by H. G. Cragon, Cambridge
University Press, 2000.

poptimum
T s 1–( )

tL
---------------------=
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5-stage pipeline represents an early RISC design - “underpipelined”

Most recent processors have more stages.

Examples

Assignment: Find out for me!
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Dealing with memory access taking more time 
than other operations

Example

Seven-stage instruction pipeline with two stages for accessing

memory:

IF1 IF2 OF EX MEM1 MEM2 OS
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IF1

IF2

OF
EX

MEM1

MEM2

OS

PC

Instr. 1

PC

Instr. 2

2 cycles to fetch instruction

2 cycles to access data memory
Time

Need memory capable of above operation (i.e. interleaved memory)



 Barry Wilkinson  2002.  All rights reserved. Page 88
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at 
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 175  

Instruction Pipeline Hazards

Major causes for breakdown or hesitation of an instruction pipeline:

1. Resource conflicts.

2. Control dependencies

3. Data dependencies between instructions

Lecture 7

Slide 176  

Resource conflicts

Occur when a resource such as memory, registers, or a functional

unit is required by more than one instruction at the same time.
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Example - memory conflict

Memory
IF MEM

Pipeline

Two units accessing memory simultaneously
(Different instructions)
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Early solution

Fetch two instructions and then execute them sequentially.

Fetch/execute overlap

Two

Fetch
unit

(a) Fetch/execute stages

Fetch

(b) Fetching two instructions simultaneously
Time

Execute
unit

Fetch 1st/2nd
instructions Free

Execute 1st
instruction Free Execute 3rd

instruction

Free Fetch 3rd/4th
instructions Free

Execute 2nd
instructionExecute

Instructions

Lower efficiency
CPI = 3/2
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Better Solutions

Resource conflicts can always be resolved by duplicating the

resource, for example having two memory module ports or two

functional units.

To eliminate main memory/cache memory conflicts

• Have only load and store instructions accessing memory - 

then a single pipeline unit to access data memory ok, and

• Separate pipeline units for reading/writing data and for 

instruction fetch.
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IF MEM
Pipeline

Instruction
memory

Data
memory
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Control Dependencies

Instruction execution is dependent upon a condition existing in the

program:

if (condition) {

statements;

}

i.e by the use of conditional branch instructions. 
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Branch instructions in a pipeline

Effect of conditional branch instruction in pipeline when instruction 
causes change of sequence - have to abandon already fetched 
instructions.

Start-up Conditional
branch

instruction

Abandon
instructions

Stages

Target computed

Next
instruction
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Typically, 10–20 per cent of instructions in a program are branch

instructions.

Example of effect

• Five-stage pipeline
• 10 ns pipeline clock period
• Instruction which subsequently cleared the pipeline at 

the end of its execution occurred every ten instructions

For a continuous stream of instructions, average instruction
processing of ten instructions:

i.e. a 40 per cent increase in instruction processing time.

9 10 ns 1 50 ns×+×
10

------------------------------------------------------- 14 ns=
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Conditional branch instructions used in 
programs for:

1. Creating repetitive loops of instructions, terminating the loop
when a specific condition occurs (loop counter = 0 or
arithmetic computational result occurs).

2. To exit a loop if an error condition or other exceptional
condition occurs.

Branch usually occurs in 1 when the terminating test is done at the

end of the loop (as in DO–WHILE or REPEAT–UNTIL statements)

Does not usually occur in 2 or when the terminating test is done at

the beginning of a loop (as in FOR and WHILE statements).
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To implement the FOR loop FOR (i=0;i<=100;i++) loop body,

we might have:

SUB R4,R4,R4
ADD R5,R0,100

L2: CMP R4,R5
BG  L1 ;Exit if i > 100

.
Loop body

.
ADD R4,R4,1
J L2

L1:

where i is held in R4. R5 is used to hold the terminating value of i.
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To implement the WHILE loop WHILE (i==j) loop body, we

might have:

L2: CMP R4,R5
BNE L1

.
Loop body

.
J L2

L1:

where i is held in R4 and j is held in R5.
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To implement the DO loop body WHILE (i==j), we might have:

L2:  .
Loop body

 .
CMP R4,R5
BE L2

Simple change from WHILE to DO–WHILE would change the type

of branch instruction.
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Strategies to reduce number of times pipeline 
breaks down due to conditional branch 

instructions

1. Instruction buffers to fetch both possible instructions.

2. Delayed branch instructions.

3. Dynamic prediction logic to fetch the most likely next instruction
after a branch instruction.

4. Static prediction.
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1. Instruction buffers

Memory

Fetch
unit

Buffer for
sequential
instructions

Buffer for target
(non-sequential)

instructions

Remainder of
instruction pipeline

BrU
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Replicating first stages of pipeline

IF OF EX

OS

MEM
IF OF EX

Fetch sequential

Fetch from 

instructions

target location

Register file
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2. Delayed branch instructions

Execute

Fetch
Branch

instruction
Next

instruction

Execute
next inst.

Branch if
selected

(a) Two-stage pipeline Time

Compute
address

Instruction executed irrespective
of outcome of branch.
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Example

ADD R3,R4,R5; ;does not affect branch
SUB R2,R2,1
BZ L1

.
L1: .

.

Move the add instruction to after the branch, i.e.:

SUB  R2,R2,1
BZD L1
ADD  R3,R4,R5

.
L1: .

.
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Execute

Fetch BZD L1
ADD

Execute
ADD

Branch if
selected

Two-stage pipeline Time

Compute
address

R3,R4,R5
SUB

R2,R2,1

Execute
SUB
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Fetch

Other
stages

Branch
instruction

Branch if
selected

(b) n-stage pipeline

Next (n-1) instructions

Time

Branch
outcome
is known

Compute
address

Could be extended for an-stage pipeline:

However not very effective. Compilers can find one instruction to

place after branch typically 70% of time, but a second instruction

30% of the time. Delayed branch usually limited to one delay slot.
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With all branches automatically delayed, use a NOP instruction

whenever an instruction could not be found to place after the

branch, i.e.:

SUB R2,R2,1
BZD L1
NOP

.

.
L1: .

.

A compiler can easily insert these NOPs.
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SUN Sparc V8 processor

Has delayed branch instructions with an annul bit in the instruction

to annul the next instruction.

Left undefined if a delayed branch instruction is placed immediately

after a delayed branch instruction!!
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3. Dynamic Prediction logic

Various methods of predicting the next address, mainly based upon

expected repetitive usage of the branch instruction.

Usual form of prediction look-up table is a branch history table, also

called more accurately a branch target buffer - similar to a cache.
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Instruction pipeline with branch target buffer

Address

Instruction

Fully associative look-up table
Instruction
address

Target
address

Valid
bit

Load actual target
address

Program
counter

Fetch
unit

Search
table

Instruction pipeline

In “one-bit” prediction
this becomes predicted address
next time

prediction
bit

Valid bit to deal with entries not yet used.
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One-bit prediction algorithm

One-bit prediction

Last branch action Prediction

Branch taken Take branch

Branch not taken Not take branch

History = T
Predict: Take

History = N
Predict: Not Take

Taken

Taken

Not Taken

Actual result of branch

T = taken
N = not taken

Not Taken
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Mispredictions of one-bit prediction

One-bit prediction, we always get a misprediction when a branch

instruction implementing the loop is last encountered as we then fall

through the loop rather than repeat the body.

However, usually we encounter the complete loop again, i.e. the

program comes back to re-execute the loop.

In that case, we get another misprediction if the prediction is

updated from the last misprediction.

Hence, given a loop with n repetitions, 2 will be mispredicted and n

− 2 will be predicted correctly with a single bit predictor.



 Barry Wilkinson  2002.  All rights reserved. Page 101
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at 
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 201  

Instruction pipeline with branch target buffer
Two bit prediction

(various algorithms for setting bits and intepreting them)

Address

Instruction

Fully associative look-up table
Instruction
address

Target
address

Valid
bit

Load actual target
address

Program
counter

Fetch
unit

Search
table

Instruction pipeline

Two bits for prediction
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Two-bit prediction algorithms

One two-bit prediction algorithm is based upon the history of
previous actions of a branch instruction as shown below.

History refers to the last two actions of a specific branch instruction.
Only in one case is the prediction not to take the branch, and that is
when the previous two times the branch instruction was executed,
the branch was not taken; instead execution continued sequentially.

Two-bit prediction

History of branch actions
Prediction

Branch taken Branch taken Take branch

Branch not taken Branch taken Take branch

Branch taken Branch not taken Take branch

Branch not taken Branch not taken Not take branch

Last timeTime before
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History = TT
Predict: Take

History = NT
Predict: Take

History = NN
Predict:

History = TN
Predict: Take

Not take

Taken Not Taken
Not TakenTaken

Taken

Taken
Not Taken

Not Taken

Two-bit predictor based upon history of branches

Actual result of branch

T = taken
N = not taken
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Based upon the history of the branch predictions, that is, the

prediction is only changed after two mispredictions, as described

below.

Alternative two-bit prediction

History of predictions
Prediction

Prediction correct Prediction correct Keep prediction

Prediction not correct Prediction correct Keep prediction

Prediction correct Prediction not correct Keep prediction

Prediction not correct Prediction not correct Change prediction

Last timeTime before
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Predict: Take Predict: Take
Predict:
Not take

Taken Not Taken

Not Taken

Taken

Taken

TakenNot Taken

Not Taken

Two-bit predictor based upon history of 
predictions

Actual result of branch

T = taken
N = not taken

Predict:
Not take
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Two-bit predictor using saturating counter

Every not taken branch causes a move to a state to the right,

saturating in the rightmost state, while every taken branch causes a

move to the left, saturating in the leftmost state.

The two left states cause a prediction to take the branch while the

two right states cause a prediction not to take the branch. (This

counter could be extended to more bits.)
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Predict: Take Predict: Take
Predict:
Not take

Taken

Not TakenNot Taken

Taken

Taken Taken

Not Taken

Not Taken

Two-bit saturation counter predictor

Actual result of branch

T = taken
N = not taken

Predict:
Not take
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Correlation Predictors (two-level predictors)

The actions of branch instructions will often depend upon the

actions of previous branch instructions, not necessarily the same

branch instructions.

In correlation predictors, the history of branch instructions recorded

as they are encountered.

For example, if the last two branch instruction executed (not

necessarily the same instructions at the same addresses) all were

taken branches, the history would be “taken, taken.” 
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Branch history register

Branch pattern table

0 1

1

1

0

1

shift

Last
branch
result
(0 = not taken
1 = taken)

2-bit predictor shown

Prediction based upon entry
and predictor algorithm

Two-level (adaptive) predictor

Used in Pentium
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Question

What happens to the prediction in a pipeline that fetches another

branch instruction before the previous one has completed (or the

same one)?
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4. Static Prediction

Static prediction makes the prediction before execution.
(Note, target address cannot be computed beforehand if reg. indirect)

A very simple hardware prediction – always chooses one way
(either always taken, or always not taken).

“Predict never taken” done in Motorola 68020 - essentially no
prediction.

Other possibilities include “predict by branch op-code”, and “predict
taken if backward branch (e.g. in loops) - predict not taken if forward
branch” as done in PowerPC.
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Compiler Prediction

Passed to processor by selection of branch instruction

Have a conditional branch instruction which has additional fields to

indicate the likely outcome of the branch. Single bit could be

provided in the instruction which is a 1 for the fetch unit to select the

target address (as soon as it can), and a 0 for the fetch unit to select

the next instruction. 
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31 26 25 2120 1615

Rs1Rd

Destination Source 1

Opcode

Source 2Operation

Branch instruction format with a prediction bit

16-bit Offset

0

Prediction bit
1 to select target
0 to select program counter
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Lecture 8

Data dependencies

Describes the normal situation that the data that instructions use

depend upon the data created by other instructions.

Three types of data dependency between instructions, 

• true data dependency

• antidependency

• output dependency.
Sometimes called
name dependencies

Lecture 8
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True data dependency

Occurs when value produced by an instruction is required by a

subsequent instruction. Also known as flow dependencies because

dependency is due to flow of data in program and also called read-

after-write hazards because reading a value after writing to it.

Example

1. ADD R3,R2,R1 ;R3 = R2 + R1
2. SUB R4,R3,1 ;R4 = R3 - 1

“data” dependency between instruction 1 and 2 (R3). 

In general, they are the most troublesome to resolve in hardware.
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True data dependency in a four-stage pipeline

Fetch
unit

Execute
unit

(a) Stages

(b) True data dependency

Operand
fetch

Instructions

Operand
store

Instructions

IF OF OS

IF OF EX OS

IF OF EX OS

Read

ADD R3,R2,R1

SUB R4,R3,1

WriteRead

EX

R1, R2 R3 R3
Read-after-write hazard
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Antidependency

Occurs when an instruction writes to a location which has been

read by a previous instruction.

Also called an antidependency (and a write-after-read hazard).

Example

1. ADD R3,R2,R1 ;R3 = R2 + R1
2. SUB R2,R5,1 ;R2 = R5 - 1

Instruction 2 must not produce its result in R2 before instruction 1

reads R2, otherwise instruction 1 would use the value produced by

instruction 2 rather than the previous value of R2.

Slide 218  

Antidependencies in a single pipeline

In most pipelines, reading occurs in a stage before writing and an

antidependency would not be a problem. Becomes a problem if the

pipeline structure is such that writing can occur before reading in

the pipeline, or the instructions are not processed in program order -

see later.
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Output dependency

Occurs when a location is written to by two instructions. Also called

write-after-write hazard.

Example

1. ADD R3,R2,R1 ;R3 = R2 + R1
2. SUB R2,R3,1 ;R2 = R3 - 1
3. ADD R3,R2,R5 ;R3 = R2 + R5

Instruction 1 must produce its result in R3 before instruction 3

produces its result in R3 otherwise instruction 2 might use the

wrong value of R3.
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Output dependencies in a single pipelne

Again the dependency would not be significant if all instructions

write at the same time in the pipeline and instructions are

processed in program order. Output dependencies are a form of

resource conflict, because the register in question, R3, is accessed

by two instructions. The register is being reused. Consequently, the

use of another register in the instruction would eliminate the

potential problem.



 Barry Wilkinson  2002.  All rights reserved. Page 111
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at 
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 221  

Detecting hazards

Can be detected by considering read and write operations on
specific locations accessible by the instructions:

• A read-after-write hazard exists if read operation occurs 
before previous write operation has been completed, and 
hence read operation would obtain incorrect value (a value 
not yet updated).

• A write-after-read hazard exists when write operation occurs 
before previous read operation has had time to complete, 
and again the read operation would obtain an incorrect value 
(a prematurely updated value).

• A write-after-write hazard exists if there are two write 
operations upon a location such that the second write 
operation in the pipeline completes before the first.

Read-after-read hazards, in which read operations occur out of
order, do not normally cause incorrect results.
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Read/write hazards

1st instruction

2nd instruction

Write

1st instruction

2nd instruction

1st instruction

2nd instruction

Write

Write

Write

Read

Read

(c) Write-after-write

(a) Read-after-write

(b) Write-after-read

Pipeline
stages
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Mathematical Conditions for Hazard

(Berstein’s Conditions)

O(i) indicates set of (output) locations altered by instruction i; I(i)

indicatesset of (input) locations read by instruction i, and φ

indicates an empty set. 

A potential hazard exists between instruction i and subsequent

instruction j when at least one of the following conditions fails:

For read-after-write O(i) ∩ I(j) = φ

For write-after-read I(i) ∩ O(j) = φ

For write-after-write O(i) ∩ O(j) = φ

Null set
i.e. left are disjoint sets
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Ij

Ii

Oi

Oj

Write after read hazard



 Barry Wilkinson  2002.  All rights reserved. Page 113
This material is the property of Professor Barry Wilkinson and for sole and exclusive use of students enrolled the computer architecture course ITCS 4141/5141 at 
the University of North Carolina at Charlotte in Summer 2002. It is not to be sold, reproduced, or generally distributed.

Slide 225  

Example

Suppose we have code sequence:

1. ADD R3,R2,R1 ;R3 = R2 + R1
2. SUB R5,R1,1 ;R5 = R1 - 1

entering the pipeline. Using these conditions, we get:

O(1) = (R3), O(2) = (R5)
I(1) = (R1,R2)
I(2) = (R1).

The conditions: (R3) ∩ (R1) = φ, (R2,R1) ∩ (R5) = φ, (R3) ∩ (R5) = φ,

are satisfied and there are no hazards
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Berstein’s Conditions can be extended to cover more than two

instructions.

Number of hazard conditions to be checked becomes quite large for

a long pipeline having many partially completed instructions.

Satisfying conditions are sufficient but not necessary in

mathematical sense. May be that in a particular pipeline a hazard

does not cause a problem.
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Direct hardware method of checking Berstein’s 
conditions

Do logical comparisons between the source and destination IDs of

instructions that have been fetched and held an instruction buffer

prior to execution, or held in the pipeline latches during execution.
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Checking hazards between two instructions in 
pipeline

Destination

Source 1

Source 2

Rd

Rs1

Rs2

Op
code

Rd

Rs1

Rs2

Op
code

Compare

Compare

No hazard

if no matches
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Although previous method can be extended to any number of
instructions, it is complex and a much simpler method that is usually
sufficient is as follows:

Pipeline interlock using register valid bits

Associate a 1-bit flag (valid bit) with each operand register. Flag
indicates whether a valid result exists in register, say 0 for not valid
and 1 for valid.

R0

R31

Valid
Register file

bit
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Resetting valid bit (invalid)

A fetched instruction which will write to the register examines the

valid bit. If the valid bit is 1, it is reset to 0 (if not already a 0) to show

that the value will be changed.

(We shall show later that the instruction must stall if its destination

register is already set invalid.)
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Setting bit (valid)

When the instruction has produced the value, it loads the register

and sets the valid bit to 1, letting other instructions have access to

the register. 
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Reading valid bit

Any subsequent instruction which wants to read register operands

has to wait until the registers valid bits have been set before reading

the operands.
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Register read/write hazard detection using valid bits (IF, instruction 
fetch; RD, read operand; EX, execute phase; WR write operand)

IF RD EX WR

IF RD EX WR

IF RD EX WR

1st instruction
(register write)

2nd instruction
(register read)

3rd instruction
(register read)

General purpose
register file Valid bits

Reset
valid

bit

Read valid bit and
operand if bit set
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Example

Suppose the instruction sequence is:

1. ADD R3,R4,4
2. SUB R5,R3,8
3. SUB R6,R3,12

Read-after-write hazard between instr. 1 and instr. 2 (R3).
Read-after-write hazard between instr. 1 and instr. 3 (again R3).

In this case, sufficient to reset valid bit of R3 register to be altered
during stage 2 of instr. 1 in preparation for setting it in stage 4.

Both instructions 2 and 3 must examine valid bit of their source
registers prior to reading contents of registers, and will hesitate if
they cannot proceed.
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Caution

The valid bit approach has the potential of detecting all hazards, but

write-after-write (output) hazards need special care.
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Example
Suppose the sequence is:

1. ADD R3,R4,R1
2. SUB R3,R4,R2
3. SUB R5,R3,R2

(very unlikely sequence, but poor compiler might create such
redundant code).

Write-after-write dependency between instr. 1 and 2. Instr. 1 will
reset valid bit of R3 in preparation to altering its value. Instr. 2
immediately behind it would also reset valid bit of R3 because it too
will alter its value, but will find valid bit already reset. If instr. 2 were
to be allowed to continue, instr. 3 immediately behind instr. 2 would
only wait for the valid bit to be set, which would first occur when
instr. 1 writes to R3. Instr. 3 would get value generated by instr. 1,
rather than value generated by instr. 2 as called for in program
sequence.
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Correct algorithm for resetting valid bit

WHILE destination register valid bit = 0 wait (pipeline stalls), else

reset destination register valid bit to 0 and proceed.
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Forwarding

Refers to passing result of one instruction directly to another

instruction to eliminate use of intermediate storage locations.

Can be applied at compiler level to eliminate unnecessary

references to memory locations by forwarding values through

registers rather than through memory locations. Would generally

increase speed, as accesses to processor registers faster than to

memory locations.

Forwarding can also be applied at hardware level to eliminate

pipeline cycles for reading registers updated in a previous pipeline

stage. Eliminates register accesses by using faster data paths.
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Internal forwarding

Internal forwarding is hardware forwarding implemented by
processor registers or data paths not visible to the programmer.

Example

ADD R3,R2,R0
SUB R4,R3,8

Subtract instruction requires contents of R3, which is generated by

the add instruction. The instruction will be stalled in the operand

fetch unit waiting for the value of R3 to be come valid.

Internal forwarding forwards the value being stored in R3 by the

operand store unit directly to the execute unit.

Slide 240  

Internal forwarding in a four stage pipeline

(a) Stages

(b) Forwarding 

Instructions

IF OF OS

IF OF EX OS

IF OF EX OS

ADD R3,R2,R0

SUB R4,R3,8

Write

EX

R3

Time

Forward
value for R3

To R3

IF Stall OF EX

Stall

Forward

OS

Normal path for
value for R3
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OSEXOF

R3 V3

Compare IDs

Rs1

Rs2

Rd

Op
code

Select

Register
file

R3

V3

Internal forwarding in a four stage pipeline
- more details

Register file

= =

Select

Select
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Forwarding using multiple functional units

Concept of forwarding can be taken further by recognizing that
instructions can execute as soon as the operands they require
become available, and not before.

Each instruction produces a result which needs to be forwarded to
all subsequent instructions that are waiting for this particular result.

ALU ALU Mult/Divide

R3
Operand values

We shall see later in higher performance processors.


