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CDA 4150 Project 3

Adding Caches to the Processor Model

Due Thurssday, November 4th, 1:30pm

Computer Systems Laboratory, University of Central Florida Orlando, FL 32816.

1. Objective

The purpose of this lab is to add both a data cache (D$) and instruction cache (I$) to your pipelined
processor model. You will be given two Verilog models—a working pipelined model and a pipelined model
with support for caching. The latter model is not complete and it is your assignment to complete it. The
former model can be used at your discretion as a “gold standard”. It may be useful to instrument the
working version and use it to compare your cache version against when debugging. Neither version has a
multiply/divide unit. You may add those in as a part of the extra credit.

After adding the caches, there are 3 extra-credit sections in the lab. These are completely optional, and
are discussed at the end of this handout.

2. Lab Setup

• Go to your home directory (type cd)
• mkdir cda4150/lab3

• cd !$

• cp ~heinrich/cda4150/lab3.tgz .

• Uncompress the file with tar -xzf lab3.tgz

• You should now have a pipe/ and a pipe+cache/ directory
The pipe/ directory is the working MIPS pipelined model. It is a solution to lab2 (w/o a multiply/divide

unit). Please be sure you check out the solution and understand the material from lab2. The pipe+cache/

directory is the working directory for lab3 that contains the incomplete cache model.

3. Adding the Caches

The goal of this lab is to add an 8KB direct-mapped, 32B line, I$ and an 8KB direct-mapped, 32B line,
writeback D$ to the processor model in the pipe+cache/ directory. The caches have already been created
via a special PLI routine in an initial block in mips.v. A later section describes all the new PLI routines in
detail.

To implement a correct solution for this lab, you should need only to change the mem.v file. However,
do not be misled. The additions to this file can be difficult and numerous. In addition, although you do not
need to modify the other files in the processor, mips.v and cpu.v have changed significantly with respect to
the pipe/ model. These changes are intended to simplify the lab, and allow you to focus on implementing
the cache control in mem.v.

3.1. The Memory System
mips.v is heavily changed from the previous labs. The main difference is that the processor/memory

interface changes considerably when the processor has on-chip instruction and data caches. In particular,
there is no need to have separate address and data busses for instructions and data. Instead, there is just
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one Bus for data and one Addr bus for the miss address. The data bus is bi-directional (keyword inout in
Verilog). The control signals Read and Write are the same as in previous models. There is one additional
interface signal, Valid, that is set by the memory system when it is returning valid data on the Bus. If you
examine the mips.v file and read the comments, you will see that these changes to the model have already
been made! From the comments, it should also be clear what the processor model needs to do to interact
properly with this memory system:

• on an I$ miss, assert Read for one cycle, and drive Addr with the PC. The signals should appear on the
bus one cycle after the I$ lookup determines there is a miss. Some amount of time later, the memory
system will assert the Valid line and drive the Bus with the data for the entire I$ line (one word per
cycle). The processor should inspect the Valid line on the posedge of the CLK.

• on a D$ miss (load or store) where the line being replaced is not dirty, the control is identical to the I$
miss above except that the Addr bus is driven from the MAR not the PC.

• on a D$ miss where the line being replaced is dirty, perform spill-before-fill. First assert Write for each
cycle that you must writeback a word from the replaced line. Again, the bus transactions should begin
one cycle after the D$ lookup determines there is a miss. At the time you assert Write you must drive
Addr with the replacement word address, and Bus with the replacement data word. After the last write
cycle, the D$ miss can proceed as in the 2nd bullet item above.

3.2. The Processor Flow Control
If you look at cpu.v, you will find that all of the flops have been grouped into a single always block.

This makes it easier to stall the machine. There are two cases when the machine must stall. The first is on
a decodeStall from lab2, and the second is on an I$ or a D$ stall. The pipeline in cpu.v handles this latter
case by stalling whenever the signal pipeInhibit is asserted. This signal is an output of mem.v, but is not
yet implemented. You must set this signal appropriately in mem.v for your design to work properly.

There is another place in cpu.v where some gating is needed. The PC-logic in the working pipelined
model flops the PC on the negedge of the clock unless decodeStall is asserted. When we add caches, we
must add a condition to that statement as well. This condition is already added in cpu.v, and the PC is not
flopped if decodeStall or a new signal called pcInhibit is asserted. This signal is an output of mem.v, but
is not yet implemented. You must set this signal appropriately in mem.v for your design to work properly.

3.3. The Cache PLI Routines
The actual cache state, tag, and data storage arrays have already been implemented in C for you.

Your task is to write the control logic in mem.v that handles the cache lookup, stalling the processor, and
interfacing to the memory system. The Verilog needs read and write access to the state, tag, and data arrays
of each of the caches. The following PLI routines are defined for your use:

• $icache tag read(index, set)

• $icache state read(index, set)

• $icache data read(index, set, word offset)

• $icache tag write(index, set, tag)

• $icache state write(index, set, state)

• $icache data write(index, set, word offset, data)

• $dcache tag read(index, set)

• $dcache state read(index, set)

• $dcache data read(index, set, word offset)

• $dcache tag write(index, set, tag)
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• $dcache state write(index, set, state)

• $dcache data write(index, set, word offset, data)

These PLI routines must be used in always blocks. They cannot be used in assign statements. The
set numbers start at 0, so for direct-mapped caches, that parameter will always be 0. Similarly, the word

offset starts at 0 and go to linesize (in words) - 1. The state consists of 2-bits for this lab. Bit 0 is the
Valid bit for the cache line, and bit 1 is the Dirty bit. Recall that only the D$ needs to track a Dirty bit.

3.4. The MEM Pipeline Stage
The mem.v file is where you need to implement the cache control described in the memory interface

section above using the PLI routines described in the previous section. You also need to drive the two
processor flow-control signals mentioned above. The given interface to mem.v is correct. You simply need to
implement the proper body. Here are some important notes:
• the logic for both the I$ and D$ accesses should go in this file
• the cache statistics are kept in mem.v. A template for the stats is given. Be sure to increment the given

stats at the proper time.
• assume that the cache can be read or written in half a clock cycle. This means you do not have to worry

about pipelining writes to the writeback cache. In fact, the cache write code is almost completely given
to you. Writes happen on the negedge of the clock just to be sure the address and hit determination
are stable before writing. This is the only logic in the file that should be negative edge triggered .

• cache.h contains useful defines for the given cache configuration. You should use these defines in many
many places.

• an I$ miss and a D$ miss can occur at the same time! Because of the way the PC is flopped on the
negedge, I$ misses will actually occur “sooner” than a coincident D$ miss. I found it convenient to
service the I$ miss first in that case (remember that since we only have one data and address bus to the
main memory system, we now have to implement these misses serially).

• remember that when doing a cache fill from the memory system and writing the cache tags and data
appropriately, you should not also be reading the cache tags and data in your lookup code. A cycle
after the last word of the line is filled from the memory system on a miss, you should allow the access
to be retried, and it should now be a hit.

You can test your cache code with the test/hello and test/host programs given. Feel free to write
your own test cases as well.

4. Extra Credit 1: Changing the Cache Configuration (5%)

Change the data cache size to a 16KB direct-mapped cache with a 64B line size, and instruction cache
to an 8KB direct-mapped cache with a 64B line size. You do not need to turn in the code for this model. In
your README file, just list the parts of your design that you had to change to change the configuration, and
list your cache stats for both the original and the new configuration when running the supplied test/host

program.

5. Extra Credit 2: Load/Store word Left/Right (10%)

Implement the lwl, lwr, swl, and swr instructions in your pipelined model (yes, they are real MIPS
instructions!). Your implementation should allow back-to-back lwl/lwr and swl/swr instructions without a
stall, which will involve adding a new bypass path. To test your implementation, come up with a C program
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that generates these instructions (or, an assembly language program). In your README file, indicate the name
of your test program and include your test program in your lab submission.

6. Extra Credit 3: Multiply/Divide (20%)

Since the multiply and divide instructions only write the hi and lo registers, you do not need to include
the multiplier or divider in any bypassing logic. Your pipelined processor should ship multiplies and divides
to the multiply/divide unit and keep operating the pipeline normally even though the multiply or divide may
still be in progress. The only thing you need to do is ensure that any mfhi and mflo instruction stalls in the
decode stage when the multiplier or divider is busy, and that you detect structural hazards on the multiplier
and divider. For full credit on each part you must implement both the signed and unsigned versions of the
operation (e.g. mult and multu, div and divu).

7. Submitting Your Lab

The submission procedure is the same as the previous labs. If your lab does not work entirely, please
be sure your README file explains what works and what does not. If you did any or all of the Extra Credit,
remember that your README file should include the discussions mentioned in the Extra Credit sections above.




