What Is Verilog?

= Hardware Description Language (HDL)
- Not a programming language! (more on this later)

= Describes digital systems
- Behavioral
- Structural

= How Is this useful?

- Can’t draw gate-level schematics of complex systems — big
mess

- Gate-level simulation unnecessarily slow

- HDLs faster to simulate, and still provide:
— Synthesizable low-level implementation
— Hardware concurrency
r — Ease of use

,
)
gj‘ CDA 4150 - Verilog

Synthesizable?

o 7

|‘ S|mulator‘ DHard\./va.re | | Synthesis | Technology
escription | Tool Library
I. S 1 _______ |
Gate-level A
Hardware [«
Description ‘ Netlist ‘
Architecture

VLS

Custom

Layout ‘ Floorplanning ‘

1
§)' < I Timing |—>O

CDA 4150 - Verilog

Verilog vs. VHDL

= VHDL (VHSIC HDL)
- ADA-like syntax (ADA anyone?)
- Older, less expressive
= Verilog
- C-like syntax (C anyone?)
- Larger user community
« Not VHDL

,
)
g/‘ CDA 4150 - Verilog

HOL vs. Programming Language

= Repeat on every keystroke: “I'm... designing... hardware...”

= No variables (outlawed) — signals!
- Regs (containers)
- Wires (connections)

= HDLS concurrent

- Which happens first?
assign a = ~b;
assign ¢ = d;
= Operators do not come for free — actual hardware!

-, ‘<<’ sparingly; never use ¥, /’

(°
r.l*
’ CDA 4150 - Verilog

NAND Gate, Behavioral

S :::::)3——out
nodul e NAND(a, b, out) ;
| nput a;
| nput b; 1T
out put out;

1a —O |o—/b

assign out = ~(a&b); | out

endnodul e a

,
)
gj‘ CDA 4150 - Verilog

AND Gate, Behavioral

nodul e AND(x, y, out) ;
| nput X;

| nput y;

out put out;

assi gn out = x&y,;
endnodul e

~,
|

Ja ——C

CDA 4150 - Verilog

D

b— /b

'

AND Gate, Structural

4 —
t
nodul e AND(x, y, out): b _} ot

| nput X;
| nput vy,

out put out;

wre z;
Ja—C

NAND MyNAND(. a(x), . b(y),.out(2)):

assign out = ~z; a—
endnodul e

L
)
gj‘ CDA 4150 - Verilog

|o—/b

'

Combinational Logic

= Done using assign statements
» LHS must be declared wire
- Cannot feed into reg — it's combinational!
= Typical operators
« ‘&I, NV, ~’, Instantiate corresponding gates
. '=="'I=" Instantiate comparators, return one bit

- Physical data types: ‘0, ‘1’, ‘X’ (“don’t care”), ‘z’ (*high
Impedance”)

assign s = a“b”ci;
assign co = a&b| a&ci | b&ci ;

” (What does this do?)
gj‘r CDA 4150 - Verilog

Buses

= Can actually operate on multiple bits in parallel
- Correspondingly more hardware, of course
« Default bit width is 1

nodul e AND(X, Yy, out); nodul e ANDB(x, y, out);

| nput X; | nput [7:0] x;

| nput y; | nput [7:0] v;

out put out; out put [7:0] out;
assi gn out = x&y,; assi gn out = x&y,

endnodul e endnodul e

,
)
g/‘ CDA 4150 - Verilog

Concatenation, Repetition

= Syntax: R{E1,E2,...,En}
- R repetitions (default 1) of the concatenation of E1, E2, ..., En

reg[15: 0] a;
reg[31: 0] b;
w re[31: 0] out;

assign out = {16{a[15]}, a} +b;

” (What does this do?)
g}f CDA 4150 - Verilog

Sequential Logic

= Finite State Machines (CDA 3103 anyone?)

o L L L L L L]

= Need event-driven simulation capability
-(Need to trigger on edge — not value

.-,- (What is this?)
g}f CDA 4150 - Verilog

Sequential Logic

nodul e DFF(d, q, cl k) ;
| nput cl k;

| nput d;

out put q;

reg q,

al ways @ posedge cl k) begin
g <= TICK d;
end
endnodul e

= Can be negedge as well (and clk any other name)

= define TICK #2 (two Verilog time units) — clk period should
be >> 2

g!CK q <= d; — Legal! Wrong!

CDA 4150 - Verilog

Sequential Logic

= Always use nonblocking assignment ‘<=’ in sequential always
blocks

= Always use ‘TICK before RHS in sequential always blocks
= Clock only signal in sensitivity list
= LHS must be declared reg

- cannot use wire — it's sequential logic!

= Hoist combinational logic outside of always blocks as much
..as possible w re[31:0] d;
al ways @ posedge cl k) begin assign d = a&(32{b==c});
g <= TICK a&(32{b==c});

end al ways @ posedge cl k) begin
g <= TICK d;
end
7 Legal Preferred

,
)
gj‘ CDA 4150 - Verilog

Control Flow

= Can be used in always blocks
= Instantiates actual mux — not programming!

modul e DFF(d, r, g, cl k);

| nput clk; input d; input r;
out put (;

reg q,

al ways @ posedge cl k) begin
1 f(r == 1"bl) begin
g <= TICK 1’ bO0;
end
el se begin
g <= TICK d;
end
end
endnodul e
CDA 4150 - Verilog

(What does this do?)

combinational always Blocks

= Useful for complex combinational logic
= All RHS signals must appear on sensitivity list

= LHS must be assigned in every possible case
- otherwise implied sequential logic!

al ways @sel or a) begin

| f(sel == 2" b0) begin
z = 1" bO;
end
el se if(sel == 2'bl) begin
Z = a;
end
end

CDA 4150 - Verilog

§) (What does this do? Is it correct?)

Extra Haraware?

= Watch out for “programming” too much hardware

- Fortunately synthesis tool (somewhat) smart — but don’t count
on it
al ways @ posedge cl k) begin
1 f(i) begin
X <= Tl CK a+b;
end
else if()) begin
y <= Tl CK a+b;
end
el se begin
z <= TICK atb;
end

g) (What is the generated hardware?)

CDA 4150 - Verilog

Extra Haraware?

= Watch out for “programming” too much hardware

- Fortunately synthesis tool (somewhat) smart — but don’t count
on it
al ways @ posedge cl k) begin
1 f(i) begin
X <= Tl CK a+b;
end
else if()) begin
y <= Tl CK a+b;
end
el se begin
z <= TICK atb;

end

r clk

,
)
gj‘ CDA 4150 - Verilog

Verilog Is Not C!

= Verilog is concurrent, C is not

Initial begin
a = 1’ b0;
b = 1’ bO;
end
al ways @ posedge cl k) begin
a <= TICK 1’ bl;
b <= TICK a;
end

(Value of a and b after clock tick?)

CDA 4150 - Verilog

Other Useful Hardware Structures

= Register files/memories

7 [T
reg[31:0] regfile[0:7]; |]I|]]]I|]]]]]]]]]]]]]]]]]]]]]I|]
- [T
retzba %% [
Wre r2b4;

[T
assign reg2 = regfile[2]; |]I|]]]I|]]]]]]]]]]]I|]I|]I|]I|]
assign r2b4 = reg2[4]; qu]]Iu]]]]]]]]]]]]]]]]]]]]m

O [T TTTTIITN

31 0

r

"~
)
S\/' CDA 4150 - Verilog

Other Useful Hardware Structures

= Tri-state devices

reg[31: 0] nen{0:7];
wire[31: 0] a;

wire[31: 0] d; A:x x x:

wre rd;

assign d = rd?menfa]: 32’ bz; rerera

What is this?

~,
|
gj, CDA 4150 - Verilog

Last Remarks

= It often helps to draw hardware diagrams first
= If stuck, think about what hardware does
= Use make cl obber to clean up, or force a re-compile

= Use vcheck! (vcheck *.v)

,
)
g/‘ CDA 4150 - Verilog

