
CDA 4150 – Pipelining

Single-Cycle implementation has poor performance
• Cycle time longer than necessary for all but slowest instruction

Solution: break the instruction into smaller steps
• Execute each step in one clock cycle
• Cycle time: time it takes to execute the longest step 
• Design all the steps to have similar length

Advantages of the multiple cycle processor
• Cycle time is much shorter
• Functional units can be used > once/instruction (less HW)

Disadvantages of the multiple cycle processor
• More timing paths to analyze and tune
• Additional registers to store intermediate data values



CDA 4150 – Pipelining

pc

I$

D$

regs

e
x
t
e
n
d

alu

+
4

IR

16 32

=?

smd

lmd

Instruction Fetch
(IF)

Decode
(RD)

Execute
(EX)

Memory
(MEM)

Writeback
(WB)



CDA 4150 – Pipelining

Time taken for 1 instruction
• Add up the execution times of each phase
• Each phase may take different amounts of time
• One instruction executes at a time

Example
• Pick some execution times out of the air
• tfetch=60ns, tdecode=30ns, texec=50ns, tmem=80ns,

twb=20ns
• Total execution time per instruction = 240ns



CDA 4150 – Pipelining

We can execute multiple instructions at the same time!

Each instruction will be in a different phase of execution

Throughput will increase by the number of pipeline stages

Overlap different steps for consecutive instructions
• Steps are called pipeline stages
• Need latches after each stage to hold control/data for later stages

A new instruction enters the pipeline at IF on each clock
• Takes 5 clocks to complete execution and leave the pipeline
• Potential throughput of 1 CPI



CDA 4150 – Pipelining

Instruction Clock Cycle =>

I IFI RDI EXI MEMI WBI

I+1 IFI+1    RDI+1    EXI+1    MEMI+1   WBI+1

I+2 IFI+2 RDI+2    EXI+2    MEMI+2 WBI+2

I+3 IFI+3    RDI+3    EXI+3    MEMI+3 WBI+3

I+4 IFI+4    RDI+4    EXI+4    MEMI+4

Like assembly lines in manufacturing



CDA 4150 – Pipelining

Pipeline stages execute in parallel
• Must wait for slowest one to finish

Pipeline overhead
• Introducing pipelining registers adds latency
• Let’s assume the overhead is 5ns

Our example
• tfetch=60ns, tdecode=30ns, texec=50ns, tmem=80ns, twb=20ns
• Longest state is 80ns + 5ns = 85ns
• Instruction executes in 5*85= 425ns
• But, we execute different parts of 5 instructions at same time!

At peak throughput, 1 instruction every 85ns



CDA 4150 – Pipelining

pc

I$

D$

regs

e
x
t
e
n
d

alu

+
4

IR

16 32

=?

smd

lmd

Instruction Fetch
(IF)

Decode
(RD)

Execute
(EX)

Memory
(MEM)

Writeback
(WB)



CDA 4150 – Pipelining

The major hurdle of pipelining
• Situations where next instruction cannot execute
• Reduce the performance of pipelining

Speedup = Pipeline depth/(1 + pipeline stalls/inst)

Want incredibly long pipelines, with no pipeline 
stalls

Good luck!

Long pipes increase likelihood of hazards
• Let’s look at pipeline resources used by instruction 

class



CDA 4150 – Pipelining

Pipe stage ALU Memory Branch
IF Fetch-PC Fetch-PC Fetch-PC

Inst Cache Inst Cache Inst Cache

RD Register Read Register Read Register Read

EX ALU ALU (address) ALU (dest addr)
Compare logic
Fetch-PC (taken)

MEM N/A Cache Tags N/A
Cache Data 

WB PC PC PC
Register Write Register Write (Load)



CDA 4150 – Pipelining

Three classes of hazards
• Data hazards

– One instruction has a source operand that is the result of a 
previous instruction in the pipeline (Read-After Write: RAW)

– There are other types of data hazards (later)
• Control hazards

– The execution of an instruction depends on the resolution of a 
previous branch instruction in the pipeline

– Becomes a big problem with deep pipelines
• Structural hazards

– Two or more Instructions in the pipeline require the same 
hardware resource to progress

– Most common instance is non-pipelined FU (multiplier)



CDA 4150 – Pipelining

In MIPS R3000 pipeline, a data dependency occurs 
when an instruction’s source register is the 
destination register for either of the 2 prior 
instructions
• The simplest way to handle this is to stall the 

dependent instruction at RD until the required register 
has been written back

• This would cause a 2-clock delay when the 
instructions are consecutive

Instruction Clock Cycle =>

add $r3,$r1,$r2 IF   RD   EX   MEM  WB

sub $r5,$r3,$r4 IF   RD   RD RD   EX   MEM  WB



CDA 4150 – Pipelining

pc

I$

D$

regs

e
x
t
e
n
d

alu

+
4

IR

16 32

=?

smd

lmd

Instruction Fetch
(IF)

Decode
(RD)

Execute
(EX)

Memory
(MEM)

add r1,r2,r3

Writeback
(WB)



CDA 4150 – Pipelining

pc

I$

D$

regs

e
x
t
e
n
d

alu

+
4

IR

16 32

=?

smd

lmd

Instruction Fetch
(IF)

Decode
(RD)

Execute
(EX)

Memory
(MEM)

Writeback
(WB)

add r1,r2,r3

add r4,r1,r5



CDA 4150 – Pipelining

pc

I$

D$

regs

e
x
t
e
n
d

alu

+
4

IR

16 32

=?

smd

lmd

Instruction Fetch
(IF)

Decode
(RD)

Execute
(EX)

Memory
(MEM)

Writeback
(WB)

add r1,r2,r3

add r4,r1,r5

add r6,r4,r1



CDA 4150 – Pipelining

pc

I$

D$

regs

e
x
t
e
n
d

alu

+
4

IR

16 32

=?

smd

lmd

Instruction Fetch
(IF)

Decode
(RD)

Execute
(EX)

Memory
(MEM)

Writeback
(WB)

add r1,r2,r3

add r4,r1,r5

add r6,r4,r1

…



CDA 4150 – Pipelining

pc

I$

D$

regs

e
x
t
e
n
d

alu

+
4

IR

16 32

=?

smd

lmd

Instruction Fetch
(IF)

Decode
(RD)

Execute
(EX)

Memory
(MEM)

Writeback
(WB)

add r1,r2,r3

add r4,r1,r5

add r6,r4,r1

…



CDA 4150 – Pipelining

Performance can be improved by forwarding (bypassing) a 
result from a later stage to an earlier stage
• The result of an ALU instruction is known at the end of EX
• The result of a Load instruction is known at the end of MEM

There is no delay when an ALU instruction executes
There is 1 clock delay when a Load instruction is directly 

followed by a dependent instruction
• The Load instruction is said to have a latency of 2 clocks

Instruction Clock Cycle =>

add $t3,$t1,$t2 IF   RD   EX   MEM  WB

sub $t5,$t3,$t4 IF   RD   EX   MEM  WB

lw $s1,0($t3) IF   RD   EX   MEM  WB

addi $s2,$s1,1 IF   RD RD   EX   MEM  WB 



CDA 4150 – Pipelining

pc

I$

D$

regs

e
x
t
e
n
d

alu

+
4

IR

16 32

=?

smd

lmd

Instruction Fetch
(IF)

Decode
(RD)

Execute
(EX)

Memory
(MEM)

Writeback
(WB)

add r1,r2,r3

add r4,r1,r5

add r6,r4,r1

…

ALU bypass



CDA 4150 – Pipelining

pc

I$

D$

regs

e
x
t
e
n
d

alu

+
4

IR

16 32

=?

smd

lmd

Instruction Fetch
(IF)

Decode
(RD)

Execute
(EX)

Memory
(MEM)

Writeback
(WB)

add r1,r2,r3

add r4,r1,r5

add r6,r4,r1

…

ALU bypass

Mem to ALU bypass



CDA 4150 – Pipelining

When a branch instruction is executed, execution of 
subsequent instructions depends on whether the branch 
is taken and the location of the destination

A simple, but effective approach is to assume the branch is 
not taken and follow the sequential path

The branch is resolved at the end of EX
• If taken, cancel instructions in the sequential path and start 

fetching from the destination on the next clock

– this results in a 2-clock delay for taken branches
• If not taken, continue sequentially

Instruction Clock Cycle =>
I1 IF   RD   EX   MEM  WB
beq $t0,$t1,L1 IF   RD   EX   MEM  WB
I3 IF   RD   -- --
I4 IF   -- --

L1: I5 IF   RD



CDA 4150 – Pipelining

Load Delay
• Explicit 1-instruction delay in MIPS ISA

– If no instruction can be scheduled following the load, nop
required

• MIPS == “Microprocessor without Interlocked Pipeline Stages

– But other implementations may have different load delays!

Branch Delay
• Explicit 1-instruction delay in MIPS, HP-PA, SPARC

– For MIPS, if no instruction can be scheduled, NOP required
• Scheduled instruction must be safe to execute whether or not 

branch is taken (assembler schedules)
– For HP-PA/ SPARC the instruction following the branch is 

conditionally executed or squashed



CDA 4150 – Pipelining

pc

I$

D$

regs

e
x
t
e
n
d

alu

+
4

IR

16 32

=?

smd

lmd

Instruction Fetch
(IF)

Decode
(RD)

Execute
(EX)

Memory
(MEM)

Writeback
(WB)



CDA 4150 – Pipelining

pc

I$

D$

regs

e
x
t
e
n
d

+
4

IR

16 32

=?

smd

lmd

Instruction Fetch
(IF)

Decode
(RD)

Execute
(EX)

Memory
(MEM)

Writeback
(WB)

alu

+



CDA 4150 – Pipelining

pc

I$

D$

regs

e
x
t
e
n
d

+
4

IR

16 32

=?

smd

lmd

Instruction Fetch
(IF)

Decode
(RD)

Execute
(EX)

Memory
(MEM)

Writeback
(WB)

alu

+

bgez r1,offset



CDA 4150 – Pipelining

pc

I$

D$

regs

e
x
t
e
n
d

+
4

IR

16 32

=?

smd

lmd

Instruction Fetch
(IF)

Decode
(RD)

Execute
(EX)

Memory
(MEM)

Writeback
(WB)

alu

+

bgez r1,offset

nop



CDA 4150 – Pipelining

pc

I$

D$

regs

e
x
t
e
n
d

+
4

IR

16 32

=?

smd

lmd

Instruction Fetch
(IF)

Decode
(RD)

Execute
(EX)

Memory
(MEM)

Writeback
(WB)

alu

+

bgez r1,offset

nop

…



CDA 4150 – Pipelining

Non-pipelined, multi-cycle functional units
• Integer multiply, divide

Can also have structural hazards on data cache
• Loads access tags/data in MEM
• Stores access tags in MEM, data in WB
• What if a load follows a store?

Structural hazards are detected in decode and stalled there

Only way to remove them is to add functional units
• Or pipeline them
• Or dual port them (caches)



CDA 4150 – Pipelining

More complicated (deeper) pipelines

Data hazards revisited

Code scheduling for pipelines

What makes pipelining hard
• Interrupts
• Precise exceptions
• Branches and long pipes


