
CDA 4150 – ISA

���������	�
���
�����������

Instruction Set Architecture is the HW/SW interface
• Agreement between programmer and hardware
• Defines the visible state of the system
• Defines how each instruction changes that state

Programmers use ISA to model HW
• Simulators
• Performance estimation

Designers use ISA as definition of correctness

ISA defines instructions and encodings but also...

CDA 4150 – ISA

��
� � ��� ���

Instruction format
Instruction types
Address mode
Operands

Machine State, PC
Memory Organization
Register Organization

Op RbMode Ra

Mem
Regs

Before State

Mem
Regs

After State

CDA 4150 – ISA

�����������
� ��
�� � � �� ���� ��	�

Architecture defines the “what”
• What is the programmer visible state
• What happens on each instruction

Implementation defines the “how”
• The sequence of steps
• The time it takes

Why separate architecture and implementation?
• Compatibility (VAX, ARM)
• Longevity (x86 -- 11 generations!)
• Amortize research investment
• Retain software investment (SW is more important??)

CDA 4150 – ISA

�����������
� � � �� ���

Many architectures “grow” with time

Companies make families of chips that run the same
programs
• Binary compatibility

8088, 8086, 80286, 80386, 80486, Pentium, Pentium MMX,
Pentium II, Pentium III, Pentium 4

68000, 68008, 68010, 68020, 68030, 68040, 68060

R2000, R3000, R6000, R4000, R8000, R5000, R10000,
R12000, R14000, R18000

Chips in same family do have different ISAs
• But cores are the same
• Need to recompile to see new ISA benefits

CDA 4150 – ISA

�����������
	�
�� � � �� ���� ��	�

Number of GP registers

Width of the data bus

Binary representation of the instruction

Number of cycles a floating point add takes

Number of cycles processor must wait after a load before it
can use the data

Floating point format supported

Size of the instruction cache

Number of instructions that issue each cycle

Number of addressing modes

CDA 4150 – ISA

� � � ���� � ���
���

Type of internal storage is basic differentiation
• Stack, accumulator, or registers

Number of operands (in parentheses) is tied closely
• Stack (0 or 1) push A; push B; add; pop C

– Stack is the implicit operand
• Accumulator (1) l oad A; add B; st or e C

– Accumulator is implicit operand
• General purpose registers

– Register-memory l oad r 1, A; add r 1, B,
st or e r 1, C

– Register-register l oad r 1, A; l oad r 2, B,
add r 3, r 2, r 1; st or e r 3, C

• Memory-memory add C, A, B (ancient history)

CDA 4150 – ISA

� 	� � � ��	��
������������

Virtually every machine designed since 1980
• Only loads/stores access memory

Why?
• Registers are faster than memory
• Registers are easier for compilers

Ex: stack architectures must process left to right

Registers can
• Process in any order
• Hold variables
• Improve code density

Disadvantage?
• Encoding! (Code size)

CDA 4150 – ISA

� 	� � �� ��
� � � ����

Compiler wants many general purpose registers
• Less register pressure
• Interchangeability (few special-purpose regs)

Compiler wants orthogonality (regularity)
• Law of least surprise
• No strange side effects
• Consistent addressing modes

3 more items on the compiler wish list
• Provide primitives, not solutions
• Simplify trade-offs of alternatives
• Make compile-time constants fast

CDA 4150 – ISA

��� � ����
 � �

Assembler

Assembly language program

Compiler

C program

Linker

Executable: Machine language program

Loader

Memory

Object: Machine language module Object: Library routine (machine language)

1990s

simple

simple

complex

CDA 4150 – ISA

! �� 	��
� � �������

Byte addressing
• Since 1980 every machine can address 8-bit bytes
• MIPS memory is linear array of 232 bytes (32-bit addresses)

But natural load size is not a byte
• Typically a word (4 bytes)
• Or a double word (8 bytes)
• Most also support half words (2 bytes)

Questions:
• How do byte addresses map into words?

– Byte order
• How can words be positioned in memory?

– Alignment

CDA 4150 – ISA

" � ��
� �� �����

Two Conventions
• Big Endian, specify address of most significant byte
• Little Endian, specify address of least significant byte

No technical significance to distinction (just religious!)
• Big Endian: Amiga, 68K Macs, IBM RS6K, SGI, Sun
• Little Endian: Alpha, DEC, Vax, x86
• Recently many processors are “bimodal”

– MIPS, PowerPC (both mostly Big Endian)

Names based on Gulliver’s Travels
(http://lamicounter.epfl.ch/users/erik/litt/endianne.html)

Most-Significant Byte

3 2 1 0
Little-Endian Byte 0

0 1 2 3
Big-Endian Byte 0

Least-Significant Byte

CDA 4150 – ISA

! �� 	��
� �� �� ���

Alignment
• Object located at address that is a multiple of its size

Important performance effect
• Also logical simplification

– Removes complexity of sequencing memory references
– Especially difficult when crossing cache lines or virtual pages

Historically
• Early machines (IBM 360 in 1964) require alignment
• Restriction removed in 70s: too hard for programmers!
• RISC: reintroduced for performance and simplicity

– Memory is cheaper

CDA 4150 – ISA

32-bit word
• 2 accesses?

Word alignment
• xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx|00
• xxxxxxxxxxxxxxxxxxxxxxxxxxxxx|000
• (important trick later on for instruction encoding)

� �� �� ���#
� $ � � � � �

0 1 2 3

Aligned

Not
Aligned

2 Least-Significant
Address Bits

Increasing Memory
Addresses

Memory

CDA 4150 – ISA

� � �������
! 	� ��

Register add r 1, r 2

Immediate add r 1, 0x4

Displacement add r 1, 100(r 2)

Register Indirect add r 1, (r 2)

Indexed add r 1, (r 2+r 3)

Direct add r 1, (0x3428)

Memory Indirect add r 1, @(r 2)

Auto Increment add r 1, (r 2) +

Auto Decrement add r 1, - (r 2)

CDA 4150 – ISA

% 	�
! � ��
� ��
& ��� �� '

VAX had them all!

99% of all addressing modes

0% 10% 20% 30% 40% 50% 60%

24%

11%

39%

32%

40%

3%

43%
17%

55%

0%

6%
16%Scaled

Register deferred

Immediate

Displacement

TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

TeX
spice
gcc

1%
6%Memory indirect

TeX
spice
gcc 1%

Frequency of the addressing mode

CDA 4150 – ISA

% 	�
! � ��
" ���'

How big are immediates?
• 50% to 60% fit within 8 bits
• 75% to 80% fit within 16 bits
• Assuming sign extension!

What about displacements?
• Another study from the MIPS architecture...

CDA 4150 – ISA

Average of 5 SPECfp and 5 SPECint programs
• 1% of addresses need > 16 bits
• 12-16 bits sufficient

(��� � � ��� ����

0%

10%

20%

30%

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15

Int. Avg. FP Avg.

Number of address bits needed

Fraction of
memory

references

CDA 4150 – ISA

���������	�
) � � ��

Arithmetic and logical
• Add, and, or, sub, xor, shift, …

Data movement
• Loads/stores
• Register to register

Control
• Conditional branches
• Jumps + syscall
• Compares
• Procedure call/return

Floating point

Misc. junk (MMX, graphics, string, BCD)

CDA 4150 – ISA

� 	���	�
���������	��

Conditional branches
• br anch <cond> <t ar get >

• Typical conditions are eq and ne
– bne r 1, r 2, t ar get

– beq r 3, r 7, t ar get

Unconditional jumps
• j ump <t ar get >

Targets are often PC-relative
• Fewer bits (target is typically close by)
• Position independence

CDA 4150 – ISA

* �� �
+ �� �����

How do you return from a procedure call?
• Return address is not known at compile time!

Use jump register:
• j r r 31

• Combine with jump-and-link: j al Pr ocedur eName

Jump register also used for
• Case or switch statements
• Virtual functions
• Dynamically linked libraries
• Anything where target is not known at compile time

CDA 4150 – ISA

� 	�� ���	�
� 	� ��, 	�
& 	�

Condition codes
• Bits set by ALU about the most recently computed

result
+ “Free” comparison
- Extra state, constrain possible inst ordering, hard to

pipeline

Compare and branch
• Compare is part of the branch (limited to a subset)
+ One instruction rather than two, no extra state
- Cycle time concerns (too much work)

• MIPS pipeline treats these compares specially

CDA 4150 – ISA

- �	��� ���
� � � � �

How to preserve registers across a procedure call?
• Save registers to the stack
• All of them?

Can establish a calling convention
• In software
• pact as to which registers need saving and by whom

Caller-saved registers
• registers saved by caller if live. callee may use at will

Callee-saved regisers
• registers saved by the callee if used

CDA 4150 – ISA

���������	�
� ��	� ���

How many gp registers?
• Need log2N bits per register, called register specifier

How many addressing modes?

How many opcodes and operands?

Trade-offs:
• Instruction size vs. ease of decoding
• Instruction cache effects
• Program size

Fixed length vs. variable length instructions

CDA 4150 – ISA

� �$ ��
� ��
. � ��� / � �
� ��� ��

Variable length instructions
• Give more efficient encodings
• No bits wasted for unused fields in instruction
• Can frequency code common operations
• Examples: VAX, Intel x86
• But, can make implementation difficult

– Sequential determination of each operand!

Compromise: a few good formats
• Can be either fixed length or a few (3) variable length
• Most RISC machines used fixed-length encoding
• Operand locations are easy to find
• Important for pipelining and quick comparisons

