CoMPUTER ORGANIZATION (CDA — 3103)
SPRING 2005
Lab # 6: Introduction to SPIM

1 SIMULATOR AND DOCUMENT S L.ttt e e e e e e e e et e et e e e eaeaaaeeenns 1
2 NI 1 10 L I T T P 1
LG T o O] = 1Y 1
4 ARITHMETICAL & LOGICAL OPERATIONS ...ttt e e enes 2
5 EXAMPLE PROGRADMS ...ttt ettt et e e et et e e e e e e e e e e et e e e e e en e e e e e e en e eaneas 5

5.1 o] = = I PP PRPTPPPTPRRP 5

5.2 PROBLEM 2 ...ttt ettt e o ettt e a2 e+ s ottt et e e e e e s 4 a b e b e e e e e e e e e e e aa R b b e ee e e e e e e e e nbb b beeeeeeeeeaanbe e e annbebneaaaeeeann 5
[T = = ¥ A O I 0 N1 1] NN 11V N o 6

1 SIMULATOR AND DOCUMENTS

Kindly go on http://www.cs.wisc.edu/~larus/spim.html and download following files.

1. Section “Downloading SPIM”
a. Windows based SPIM simulator (http://www.cs.wisc.edu/~larus/SPI1M/pcspim.zip)
2. Section “Resource”:

a. Appendix A: Assemblers, Linkers, and the SPIM Simulator (http://www.cs.wisc.edu/~larus/HP_AppA.pdf). This is
appendix A of “Computer Organization & Design” (the text book of this course). This Appendix was available in 2™
edition; but has been removed in 3" edition and made available online. So if you don’t have 2™ edition, then
download it.

b. Getting Started with spim (http://www.cs.wisc.edu/~larus/spim.pdf)

Getting Starting with PCSpim (http://www.cs.wisc.edu/~larus/PCSpim.pdf)
d. SPIM Command-Line Options (http://www.cs.wisc.edu/~larus/SPIM_command-line.pdf)

14

2 INTRODUCTION

e SPIM is a software simulator that runs assembly language programs written for processors that implement the MIPS32
architecture.

e |t contains a debugger and provides a few operating system-like services.

e MIPS processors can operate with either big-endian or little-endian byte order. So SPIM supports both of them.

e It has multiple versions:

o Spim : Command line version of SPIM Simulator
o PCSpim : Windows base version of SPIM Simulator (preferred for these labs)
0 XSpim : Linux Based Version of SPIM Simulator

3 PCSPIM

File Simulator Window Help
=3 =] o 2%
5~
FIR = 00009800 FCSR = Qooooooo FCCR = Qooooooo FEXR = 00000000
FENE = 00000000
Double Floating Point Registers >~
FFO = 0.000000 FFE = 0.000000 FP1e = 0.000000 FP2Z4 = 0.000000
FFz = 0.000000 FF10 = 0.000000 FF18 = 0.000000 FFze = 0.000000 v
[0z00400000] 0z8fa40000 1w 54, 0{%529) : 174: 1w Sa0 0(%Ssp) ~
[0z00400004] 0x27a50004 addiu 55, 529, 4 : 175: addiu Sal Ssp 4
[0z00400008] 0x24a60004 addiu $6, $5, 4 : 176: addiu Sa2 Sal 4 \
[0z0040000c] 0x00041080 sll1 $2, $4., 2 : 177: sll1 $vO0 Sal 2
[0z00400010] 0z00223021 addu $6, 56, 52 : 178: addu Sa2 Saz $vO
[0z00400014] 0xz0c000000 jal 0xz00000000 [main] : 179: jal main o
8 3
[Ox7fffeblO] 0x69770000 O0x7269646e 0OxS5c3ad33d 0Ox444e4957 AN
[0z7fffehz0] 0z0053574f 0x31375356 Oxdedd4f43 Oxdcdf4f54
[0z7fffeh30] 0x3a433d53 0xef72505¢ Ox6del7267 Oxbchb94620
[0z7fffehd0] O0x4d5:7365 0xz6f726369 0x74666f73 0x73695620 >~
[0z7fffehs0] 0xz206c6175 0x64757453 0OxZ2eZ06f69 0x2054454e
[0z7fffebbl] 0233303032 O0Oxzbdbf435c 0Ox37bebfbd Ox6fbf545c .
211 Rights Reserved. M)
D03 and Windows ports by David A, Carley (dac@os.wisc.edu).
Copyright 1997 by Morgan Kaufmann Publishers, Inc.
See the file README for a full copyright notice. -
Loaded: C:“Program Files~PCSpimhexceptions.s
emory and registers cleared and the simulator reinitialized. o

For Help, press F1

3.1

SPIM provides a small set of operating-system-like services
through the system call (syscall) instruction. To request a service,
a program loads the system call code (see table given below) into
register $v0 and arguments into registers $a0-$a3 (or $f12 for

SYSTEM CALLS

floating-point values).

System calls that return values put their results in register $vO0 (or

$f0 for floating-point results).

PC=0x00000000 EPC=0x00000000 Cause=0x00000000

1

Registers

Instruction

Data & Stack

SPIM Output

print_int $a0 = integer

print_float 2 $£12 = float

print_double 3 $112 = double

print_string 4 $a0 = string

read_int 5 integer (in $v0)

read_float & float (in $F0)

read_double 7 double (in $£0)

read_string 8 $a0 = buffer, $al = length

shrk [} $a0 = amount address (in $v0)

exit 10

print_char 11 $a0 = char

read_char 12 char (in $a0)

open 13 $a0 =filename (string), $al = |file descriptor (in $a0)
flags, $a2 = mode

read 14 $a0 =file descriptor, $al = num chars read (in
buffer, $aZ2 = length $al)

write 15 $a0 =file descriptor, $al = num chars written (in
buffer, $aZ2 = length $al)

close 16 $a0 = file descriptor

exit2 17 $a0 = result

4 ARITHMETICAL & LoGIicAL OPERATIONS

Assembly instructions/memory layout of some of the arithmetical and logical operations is given below. For complete detail, see the
document “Appendix A: Assemblers, Linkers, and the SPIM Simulator”.

Absolute Operation

e Absolute Instruction

Addition Operations

e Addition Instruction (with overflow)

e Addition Instruction (without overflow)

abs rdest, rsrc
add rd, rs, rt | 2 | rs | r | rd 0 | 0x20 |
6 5 5 5 5
addu rd, rs, rt | 0 | s | rt | rl 0 | ox21 |
g 5 3 5 6

e Addition Immediate (with overflow)

e Addition Immediate (without overflow)

AND Operations

e AND Instruction

e AND Immediate Instruction

Divide Operations

e Divide Instruction (with overflow)

e Divide Instruction (without overflow)

e Divide Instruction (with overflow)

e Divide
Branch Operations

e Branch Label

e Branch on Equal

e Branch on greater than zero

e Branch on less than equal to zero

Jump Operations

e Jump Instruction

e Jump & Link

Load Instructions

e Load hyte

e Load unsigned byte

e Load halfword

e Load word

e Load double word

Instruction (without overflow)

addi rt, rs, imm ‘ e | rs ‘ i ‘ imm
[5 5 16
addiu rt, rs, imm | = | rs | L | Imm
5]]] 16
and rd, rs, rt |G |rs |r‘[|rd |O |0“24|
[k]] 5 5 6
andi rt, rs, 1mm‘ L | = | rt | imm ‘
5 5 16
div rs, rt | 0 | rs | rt | 0 | Oxla |
fi 5 5 10 6
divurs. pt LO s [t JoO | oxb |
f 5]] &
div rdest, rsrcl, srcl
divu rdest, rsrcl, srcé
b Tabel
beq rs, rt, label | & | = | r | Offset
fi] 5 16
bgtz rs, label | L | = | 0 | Offset
& 5 5 16
blez rs, label | e | rs | o | Offset
& 5 5 16
J target | 2 ‘ target |
%
Jal target | 3 | tanget |
13 26
1b rt, address | Ll | rs | rt | Offset
& 5 5 16
Thu rt, address | L | rs | rt | Offset
& 5 5 16
Th rt, address ‘ o | = | rt | Offset
3 5 5 16
Tw rt, address | Lot | rs | rt | Offset
& 5 5 16
1d rdest, address

Loads the 64-bit quantity at address into registers rdest and rdest + 1.

Store Instructions

* Store Byte sb rt, address (028 s [rt | offset
] 5 5 16

e Store Half-word sh rt, address

[ox29 [rs [rt | offset
6 5 5 16

e Store Word <w rt. addrass ‘ Ox2b ‘ rs | rt ‘ Offset
&

ki 5 16

Data Movement Instructions

e Move move rdest, rsrc

5 EXAMPLE PROGRAMS

5.1 PROBLEM1

Question: Problem 6 of Appendix A: Using SPIM, write and test an adding machine program that repeatedly reads in integers and adds
them into a running sum. The program should stop when it gets an input that is 0, printing out the sum at that point.

Solution:
1. Open Notepad.

2. Write following program

main:
li $a0, 0
loop:
li $v0, 5
syscall # read next number from console

add $a0, $a0, $v0

bne $v0, $zero, loop # loop back if current number was not ZERO

li $v0, 1

syscall # output the addition value
li $v0, 10

syscall # exit

3. Save as Addition.asm .

4. Open PCSpim

5. Load file Addition.asm.

6. Start simulation by pressing F5 or by clicking menu Simulator > Go
7. It will prompt for “Run Parameters”. Keep default values and press OK.

8. Now it will open a console (e.g. shown below). Write any 5 numbers (6™ should be zero). The program will output a number which is

the addition of first five numbers.
** Console g@g|
-~

5.2 PROBLEM 2

Question : Write a program in SPIM that takes a number as input. As a output it prints the string “You have entered number =" and then
prints the input number.

Solution:
Write the program given below in notepad and run using steps given in Question 1.

main:

.data

str:
.asciiz " You have entered number ="
text
li $v0, 5
syscall # read next number from console
move $al, $v0 # here al is acting as temporary variable to store input value
li $v0, 4 # system call code for print_str
la $a0, str # address of string to print
syscall # print the string
li $v0, 1 # system call code for print_int
move $a0 , $al
syscall # print it
li $v0, 10
syscall # exit

** Console = |
3I7CE ~
You have entered number = 3756

w
< >

6 PRACTICE ASSIGNMENT
(Problem 7 of Appendix A)

Its non-credit, optional assignment and doesn’t carry any marks.

Using SPIM, write and test a program that reads in three integers and prints out the sum of the largest two of the three. Use the
SPIM system calls described on pages A-43 and A-45. You can break ties arbitrarily.

