
CC OO MM PP UU TT EE RR OO RR GG AA NN II ZZ AA TT II OO NN ((CC DD AA –– 33 11 00 33))

SS PP RR II NN GG 22 00 00 55

LL aa bb ## 66 :: II nn tt rr oo dd uu cc tt ii oo nn tt oo SS PP II MM

1 SIMULATOR AND DOCUMENTS .. 1
2 INTRODUCTION .. 1
3 PC SPIM ... 1
4 ARITHMETICAL & LOGICAL OPERATIONS ...2
5 EXAMPLE PROGRAMS ..5

5.1 PROBLEM 1 .. 5
5.2 PROBLEM 2 .. 5

6 PRACTICE ASSIGNMENT.. 6

11 SS II MM UU LL AA TT OO RR AA NN DD DD OO CC UU MM EE NN TT SS

Kindly go on http://www.cs.wisc.edu/~larus/spim.html and download following files.

1. Section “Downloading SPIM”

a. Windows based SPIM simulator (http://www.cs.wisc.edu/~larus/SPIM/pcspim.zip)
2. Section “Resource”:

a. Appendix A: Assemblers, Linkers, and the SPIM Simulator (http://www.cs.wisc.edu/~larus/HP_AppA.pdf). This is
appendix A of “Computer Organization & Design” (the text book of this course). This Appendix was available in 2nd
edition; but has been removed in 3rd edition and made available online. So if you don’t have 2nd edition, then
download it.

b. Getting Started with spim (http://www.cs.wisc.edu/~larus/spim.pdf)
c. Getting Starting with PCSpim (http://www.cs.wisc.edu/~larus/PCSpim.pdf)
d. SPIM Command-Line Options (http://www.cs.wisc.edu/~larus/SPIM_command-line.pdf)

22 II NN TT RR OO DD UU CC TT II OO NN

• SPIM is a software simulator that runs assembly language programs written for processors that implement the MIPS32
architecture.

• It contains a debugger and provides a few operating system–like services.
• MIPS processors can operate with either big-endian or little-endian byte order. So SPIM supports both of them.
• It has multiple versions:

o Spim : Command line version of SPIM Simulator
o PCSpim : Windows base version of SPIM Simulator (preferred for these labs)
o XSpim : Linux Based Version of SPIM Simulator

33 PP CC SS PP II MM

Registers

Instruction

Data & Stack

SPIM Output

33..11 SSYYSSTTEEMM CCAALLLLSS

SPIM provides a small set of operating-system-like services
through the system call (syscall) instruction. To request a service,
a program loads the system call code (see table given below) into
register $v0 and arguments into registers $a0–$a3 (or $f12 for
floating-point values).

System calls that return values put their results in register $v0 (or
$f0 for floating-point results).

44 AA RR II TT HH MM EE TT II CC AA LL && LL OO GG II CC AA LL OO PP EE RR AA TT II OO NN SS

Assembly instructions/memory layout of some of the arithmetical and logical operations is given below. For complete detail, see the
document “Appendix A: Assemblers, Linkers, and the SPIM Simulator”.

Absolute Operation

• Absolute Instruction

Addition Operations

• Addition Instruction (with overflow)

• Addition Instruction (without overflow)

• Addition Immediate (with overflow)

• Addition Immediate (without overflow)

AND Operations

• AND Instruction

• AND Immediate Instruction

Divide Operations

• Divide Instruction (with overflow)

• Divide Instruction (without overflow)

• Divide Instruction (with overflow)

• Divide Instruction (without overflow)

Branch Operations

• Branch Label

• Branch on Equal

• Branch on greater than zero

• Branch on less than equal to zero

Jump Operations

• Jump Instruction

• Jump & Link

Load Instructions

• Load byte

• Load unsigned byte

• Load halfword

• Load word

• Load double word

Loads the 64-bit quantity at address into registers rdest and rdest + 1.

Store Instructions

• Store Byte

• Store Half-word

• Store Word

Data Movement Instructions

• Move

55 EE XX AA MM PP LL EE PP RR OO GG RR AA MM SS

55..11 PPRROOBBLLEEMM 11

Question: Problem 6 of Appendix A: Using SPIM, write and test an adding machine program that repeatedly reads in integers and adds
them into a running sum. The program should stop when it gets an input that is 0, printing out the sum at that point.

Solution:

1. Open Notepad.

2. Write following program

main:

li $a0, 0

loop:

li $v0, 5

syscall # read next number from console

add $a0, $a0, $v0

bne $v0, $zero, loop # loop back if current number was not ZERO

li $v0, 1

syscall # output the addition value

li $v0, 10

syscall # exit

3. Save as Addition.asm .

4. Open PCSpim

5. Load file Addition.asm.

6. Start simulation by pressing F5 or by clicking menu Simulator Go

7. It will prompt for “Run Parameters”. Keep default values and press OK.

8. Now it will open a console (e.g. shown below). Write any 5 numbers (6th should be zero). The program will output a number which is

the addition of first five numbers.

55..22 PPRROOBBLLEEMM 22

Question : Write a program in SPIM that takes a number as input. As a output it prints the string “You have entered number =” and then
prints the input number.

Solution:

Write the program given below in notepad and run using steps given in Question 1.

main:

 .data
str:
 .asciiz " You have entered number = "
 .text

 li $v0, 5
 syscall # read next number from console

 move $a1 , $v0 # here a1 is acting as temporary variable to store input value

 li $v0, 4 # system call code for print_str
 la $a0, str # address of string to print
 syscall # print the string

 li $v0, 1 # system call code for print_int
 move $a0 , $a1
 syscall # print it

 li $v0, 10
 syscall # exit

66 PP RR AA CC TT II CC EE AA SS SS II GG NN MM EE NN TT

(Problem 7 of Appendix A)

Its non-credit, optional assignment and doesn’t carry any marks.

Using SPIM, write and test a program that reads in three integers and prints out the sum of the largest two of the three. Use the
SPIM system calls described on pages A-43 and A-45. You can break ties arbitrarily.

