
CDA 3103 Lab # 4

CC OO MM PP UU TT EE RR OO RR GG AA NN II ZZ AA TT II OO NN ((CC DD AA –– 33 11 00 33))

SS PP RR II NN GG 22 00 00 55

LL aa bb ## 44 :: BB aa ss ii cc oo ff II nn tt ee ll AA ss ss ee mm bb ll yy PP rr oo gg rr aa mm mm ii nn gg

1 COMPUTER ORGANIZATION... 1
2 INSTRUCTION SET ARCHITECTURE ... 1
3 A SAMPLE C TO ASSEMBLY CONVERSION.. 1
4 TRACING BEHAVIOR OF AN ASSEMBLY PROGRAM...2

In this lab, we will discuss the basic of Intel Assembly Programming. For reference see following online material
book on course website:

[1] PC Assembly Language, Paul A. Carter, October 10, 2004
[2] Subset of Intel Assembly Language

11 CC OO MM PP UU TT EE RR OO RR GG AA NN II ZZ AA TT II OO NN

[Kindly read the section 1.2 of the reference book given above.

The most important thing while writing an assembly program is to know:

1) The architecture of the target machine. This includes the general purpose and special purpose registers

used for storing information in processor. It also includes the memory system that is attached with the
processor and the interface between them.

2) The instruction set of the processor which is used by the assembly programmer for manipulating
information with the processor and external system.

22 II NN SS TT RR UU CC TT II OO NN SS EE TT AA RR CC HH II TT EE CC TT UU RR EE

To know the instructions and their behavior, the best thing to start with is the instruction set manual which
contains the assembly notation of all instructions, their source operator(s), destination operation(s) and their
operations. It also indicates the impact of these instructions on other registers for showing some special
behavior (overflow, underflow, divide-by-zero, etc …)

33 AA SS AA MM PP LL EE CC TT OO AA SS SS EE MM BB LL YY CC OO NN VV EE RR SS II OO NN

Let’s say we have following program.

void main()
{
 int var1 , var2;
 int sum;

 var1 = 5;
 var2 = 10;
 sum = var1 + var2;
}

 Page 1 out of 2

CDA 3103 Lab # 4

Now we have to convert each C instruction into corresponding assembly instruction. For this example I am
using a hypothetical assembly language which is similar to Intel x86 assembly language.

Suppose we have following General Purpose Registers available to us.
AX, BX, CX and DX

void main()
{
 int var1 =0;

 Page 2 out of 2

int var2 =0;
 int sum = 0;

 var1 = 5;
 var2 = 10;

 sum = var1 + var2;
}

MOV AX , OxO
MOV BX , OxO
MOV CX , OxO

MOV AX , Ox5
MOV BX , Ox5

ADD CX, AX, BX

44 TT RR AA CC II NN GG BB EE HH AA VV II OO RR OO FF AA NN AA SS SS EE MM BB LL YY PP RR OO GG RR AA MM

Suppose we have following program.

MOV AX, 0x0 => A = 0
MOV BX, 0x1 => B = 0
MOV CX, VALUE => B = some value

LABEL:

 MUL AX, AX, BX => A = A * B
 ADD BX, BX, 0x1 => B = B + 1

 CMP.LE CX, 0x5 , LABEL => if BX <= 5, then goto LABEL

Suppose we set VALUE = 5. Then this program is computing 5!.

