3D User Interface Travel Techniques

Lecture #9: Navigation I – Travel
Spring 2009
Joseph J. LaViola Jr.

Universal 3D Interaction Tasks

- Navigation
 - Travel – motor component
 - Wayfinding – cognitive component
- Selection
- Manipulation
- System control
- Symbolic input
Travel

- The motor component of navigation
- Movement between 2 locations, setting the position (and orientation) of the user's viewpoint
- The most basic and common VE interaction technique, used in almost any large-scale VE

Travel Tasks

- Exploration
 - travel which has no specific target
 - build knowledge of environment
- Search
 - naive: travel to find a target whose position is not known
 - primed: travel to a target whose position is known
 - build layout knowledge; move to task location
- Maneuvering
 - travel to position viewpoint for task
 - short, precise movements
Travel Characteristics

- Travel distance
- Amount of curvature/number of turns in path
- Target visibility
- DOF required
- Accuracy required
- Other tasks during travel
- Active vs. passive
- Physical vs. virtual

A Technique Classification – Component Decomposition

- Travel
 - Direction/Target Selection
 - Velocity/Acceleration Selection
 - Conditions of Input

- Conditions of Input:
 - gaze-directed
 - pointing
 - choose target from list
- gesture
 - slow in, slow out
 - physical props
- start/stop buttons
 - automatic start/stop
 - constant movement
Alternate Technique Classification
- User Control Level

Travel Techniques
- Physical locomotion ("natural" metaphors)
- Steering techniques
- Route planning
- Target-based techniques
- Manual manipulation
- Viewpoint orientation techniques
Physical Locomotion Techniques

- **Walking techniques**
 - large-scale tracking
 - Walking in place (GAITER)
- **Treadmills**
 - single-direction with steering
 - omni-directional
- **Bicycles**
- **Other physical motion techniques**
 - VMC / Magic carpet
 - Disney’s river raft ride

Physical Locomotion Devices (I)

- Omni-Directional Treadmill
- GaitMaster II
- Large Scale Tracking
Physical Locomotion Devices (II)

String Walker

Steering Techniques

- continuous specification of direction of motion
 - gaze-directed
 - pointing
 - torso-directed
 - camera-in-hand
 - semi-automated
 - physical device (steering wheel, flight stick)
Steering – Gaze-Directed

- Move viewpoint in direction of “gaze”
- Gaze direction determined from head tracker
- Cognitively simple
- Doesn’t allow user to look to the side while traveling

Steering – Gaze-Directed Implementation

- Each frame while moving:
 - Get head tracker information
 - Transform vector \([0, 0, -1]\) in head CS to \(v = (x, y, z)\) in world CS
 - Normalize \(v\): \(\hat{v} = \frac{v}{\|v\|}\)
 - Translate viewpoint by \((\hat{v}_x, \hat{v}_y, \hat{v}_z) \times \text{current_velocity}\)
Pointing Technique

- Also a steering technique
- Use hand tracker instead of head tracker
- Slightly more complex, cognitively
- Allows travel and gaze in different directions – good for relative motion

Pointing Implementation

- Each frame while moving:
 - Get hand tracker information
 - Transform vector \([0,0,-1]\) in hand CS to \(v=[x,y,z]\) in world CS
 - Normalize \(v\): \(\hat{v} = \frac{v}{\|v\|}\)
 - Translate viewpoint by \((\hat{v}_x, \hat{v}_y, \hat{v}_z) \times \text{current_velocity}\)
Semi-Automated Travel

- Example - Galyean’s river analogy (1995)

![Diagram of river analogy with anchor/boat, spring/tether, force attaching to anchor, viewer's eye/camera, and path/river.]

- at any point on the path the following can be changed:
 - new desired anchor speed
 - rate to reach new speed
 - view thrust amount
 - spring constant
 - damping constant

Route-Planning

- one-time specification of path
 - draw path
 - points along path
 - manipulating user representation

![Route-Planning interface with path and user interface elements.]

Spring 2009 CAP6938 - 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.
Target-Based Techniques

- discrete specification of goal
 - point at object
 - choose from list
 - enter coordinates
- Map/WIM-based target specification

Map-Based Travel Technique

- User represented by icon on 2D map
- Drag icon with stylus to new location on map
- When released, viewpoint animated smoothly to new location
Map-based Travel Implementation

- Must know
 - map scale relative to world: s
 - location of world origin in map CS: $o=(x_o, y_o, z_o)$

- On button press:
 - if stylus intersects user icon, then each frame:
 - get stylus position in map CS: (x, y, z)
 - move icon to $(x, 0, z)$ in map CS

Map-Based Travel Implementation (cont.)

- On button release:
 - Get stylus position in map CS: (x, y, z)
 - Move icon to $(x, 0, z)$ in map CS
 - Desired viewpoint: $p_v = (x_v, y_v, z_v)$ where
 - $x_v = (x - x_o)/s$
 - $z_v = (z - z_o)/s$
 - $y_v = \text{desired height at } (x_v, y_v)$
 - Move vector: $m = (x_v-x_{curr}, y_v-y_{curr}, z_v-z_{curr}) \times (\text{velocity/distance})$
 - Each frame for $(\text{distance/velocity})$ frames: translate viewpoint by m
Manual Manipulation – Grabbing the Air Technique

- Use hand gestures to move yourself through the world
- Metaphor of pulling a rope
- Often a 2-handed technique
- May be implemented using Pinch Gloves™

Grabbing The Air Implementation (one-handed)

- On pinch:
 - Obtain initial hand position in world CS: \((x_p, y_p, z_p)\)
- Each frame until release:
 - Obtain current hand position in world CS: \((x'_h, y'_h, z'_h)\)
 - Hand motion vector: \(m = ((x'_h, y'_h, z'_h) - (x_p, y_p, z_p))\)
 - Translate world by \(m\) (or viewpoint by \(-m\))
 - \((x_h, y_h, z_h) = (x'_h, y'_h, z'_h)\)
- Cannot simply attach objects to hand – do not want to match hand rotations
Viewpoint Orientation Techniques

- Head tracking
- Orbital viewing
- Non-isomorphic rotation
- Virtual sphere

Next Class

- Navigation – Wayfinding
- Readings
 - 3DUI Book – Chapter 6