

Travel Characteristics

- Travel distance
- Amount of curvature/number of turns in path
- Target visibility
- DOF required
- Accuracy required
- Other tasks during travel
- Active vs. passive
- Physical vs. virtual

Spring 2009

Alternate Technique Classification – User Control Level

Physical Locomotion Techniques

- Walking techniques
 - large-scale tracking
 - Walking in place (GAITER)

Treadmills

- single-direction with steering
- omni-directional

Bicycles

- Other physical motion techniques
 - VMC / Magic carpet
 - Disney's river raft ride

Physical Locomotion Devices (I)

Omni-Directional Treadmill

GaitMaster II

Large Scale Tracking

Steering – Gaze-Directed

- Move viewpoint in direction of "gaze"
- Gaze direction determined from head tracker
- Cognitively simple
- Doesn't allow user to look to the side while traveling

CAP6938 - 3D User Interfaces for Games and Virtual Reality

Pointing Technique

- Also a steering technique
- Use hand tracker instead of head tracker
- Slightly more complex, cognitively
- Allows travel and gaze in different
 - directions good for relative motion

CAP6938 - 3D User Interfaces for Games and Virtual Reality

Target-Based Techniques

discrete specification of goal

- point at object
- choose from list
- enter coordinates
- Map/WIM-based target specification

Map-Based Travel Technique

- User represented by icon on 2D map
- Drag icon with stylus to new location on map
- When released, viewpoint animated smoothly to new location

Map-based Travel Implementation

Must know

- map scale relative to world: s
- location of world origin in map CS: $o = (x_{o'}, y_{o'}, z_o)$

On button press:

- if stylus intersects user icon, then each frame:
 - get stylus position in map CS: (x, y, z)
 - move icon to (x, 0, z) in map CS

CAP6938 - 3D User Interfaces for Games and Virtual Reality

On button release:

- Get stylus position in map CS: (x, y, z)
- Move icon to (x, 0, z) in map CS
- Desired viewpoint: $\rho_v = (x_v, y_v, z_v)$ where
 - $X_{v} = (X X_{o})/S$
 - $Z_v = (Z Z_o)/S$
 - $y_v = desired height at (x_v, y_v)$
- Move vector: $m = (x_v x_{curr}, y_v y_{curr}, z_v z_{curr}) * (velocity/distance)$

CAP6938 - 3D User Interfaces for Games and Virtual Reality

Each frame for (distance/velocity) frames: translate viewpoint by m

Manual Manipulation – Grabbing the Air Technique

- Use hand gestures to move yourself through the world
- Metaphor of pulling a rope
- Often a 2-handed technique
- May be implemented using Pinch Gloves[™]

CAP6938 - 3D User Interfaces for Games and Virtual Reality

Grabbing The Air Implementation (one-handed)

- Obtain initial hand position in world CS: $(x_{h'}, y_{h'}, z_h)$
- Each frame until release:
 - Obtain current hand position in world CS: $(x'_{h'}, y'_{h'}, z'_{h'})$
 - Hand motion vector: $m = ((x'_{h'}, y'_{h'}, z'_{h'}) (x_{h'}, y_{h'}, z_{h'}))$
 - Translate world by *m* (or viewpoint by –*m*)
 - $(X_{h'}, Y_{h'}, Z_{h'}) = (X'_{h'}, Y'_{h'}, Z'_{h'})$
- Cannot simply attach objects to hand do not want to match hand rotations

CAP6938 - 3D User Interfaces for Games and Virtual Reality

Viewpoint Orientation Techniques

- Head tracking
- Orbital viewing
- Non-isomorphic rotation
- Virtual sphere

