

AR/MR Technology - Displays

See-through HMDs:
Video see-through
Optical see-through
Handheld displays
Projection

©Joseph J. LaViola Jr

AR/MR Technology - Tracking

 Optical / vision-based tracking

- AR toolkit
- ensures portability
- large number of tracked objects

 Registration and low latency are *crucial* for AR systems

AR/MR technology - Tracking

Sourceless inertial orientation tracking

- GPS position tracking
 - enables mobile outdoor AR
- Markerless tracking

Mobile outdoor AR

- "Backpack systems"
- User wears/carries:
 - Computer
 - HMD
 - Inertial tracker
 - GPS unit/antenna
 - Input device(s)

©Joseph J. LaViola Jr

Mixed Reality Interfaces

Azuma (1997)

- combine real and virtual objects
- interactive in real time
- virtual objects are registered in 3D physical world

KARMA, Feiner, et al. 1993

Challenges in AR Interfaces

- Conflict between real world and virtual
 - not neatly separated anymore
- Limitations of displays
 - precise, fast registration & tracking
 - spatially seamless display
- Limitations of controllers
 - precise, fast registration & tracking
 - spatially seamless interactivity

Image Copyright Sony CSL

©Joseph J. LaViola Jr.

AR Interfaces as 3D Information Browsers (I)

- 3D virtual objects are registered in 3D
 - see-through HMDs, 6DOF optical, magnetic trackers
 - "VR in Real World"
- Interaction
 - 3D virtual viewpoint control
- Applications
 - visualization, guidance, training

State, et al. 1996

AR Interfaces as Context-Based Information Browsers (II)

<section-header><section-header><list-item><list-item><list-item><list-item><list-item>

AR Info Browsers (III): Pros and Cons

 Important class of AR interfaces

- wearable computers
- AR simulation, training
- Limited interactivity
 - modification and authoring virtual content is difficult

3D AR Interfaces (I)

CAP6938 - 3D User Interfaces for Games and Virtual Reality

CAP6938 - 3D User Interfaces for Games and Virtual Reality

- Virtual objects are displayed in 3D space and can be also manipulated in 3D
 - see-through HMDs and 6DOF head-tracking for AR display
 - 6DOF magnetic, ultrasonic, or other hand trackers for input
- Interaction

Spring 2009

- viewpoint control
- 3D user interface interaction: manipulation, selection, etc.

Kiyokawa, et al. 2000

3D AR Interfaces (II): Information Displays

- How to move information in AR context dependent information browsers?
- InfoPoint (1999)
 - hand-held device
 - computer-vision 3D tracking
 - moves augmented data between marked locations
 - HMD is not generally needed, but desired since there are little display capabilities
 CAP6938 – 3D User Interfaces for Games and Virtual Reality

Khotake, et al. 1999

3D AR Interfaces (III): Pros and Cons

- Important class of AR interfaces
 - entertainment, design, training
- Advantages
 - seamless spatial interaction: User can interact with 3D virtual object everywhere in physical space
 - natural, familiar interfaces
- Disadvantages
 - usually no tactile feedback and HMDs are often required
 - interaction gap: user has to use different devices for virtual and physical objects

Tangible interfaces and augmented surfaces (I)

Basic principles

- virtual objects are projected on a surface
 back projection
 - overhead projection
- physical objects are used as controls for virtual objects
 - tracked on the surface
 - virtual objects are registered to the physical objects
 - physical embodiment of the user interface elements

collaborative

Spring 2009

Digital Desk. 1993

Tangible Interfaces and Augmented Surfaces (II)

- Graspable interfaces, Bricks system (Fitzmaurice, et al. 1995) and Tangible interfaces, e.g. MetaDesk (Ullmer'97):
 - back-projection, infrared-illumination computer vision tracking
 - physical semantics, tangible handles for virtual interface elements

Tangible Interfaces and Augmented Surfaces (III)

- Rekimoto, et al. 1998
 - front projection
 - marker-based tracking
 - multiple projection surfaces
 - tangible, physical interfaces + AR interaction with computing devices

Augmented surfaces, 1998

Tangible Interfaces and Augmented Surfaces (IV)

CAP6938 - 3D User Interfaces for Games and Virtual Reality

Advantages

- seamless interaction flow user hands are used for interacting with both virtual and physical objects.
- no need for special purpose input devices

Disadvantages

- interaction is limited only to 2D surface
- spatial gap in interaction full 3D interaction and manipulation is difficult

Orthogonal Nature of AR Interfaces (Poupyrev, 2001)			
	56 65	3D AR	Augmented surfaces
	Spatial gap	No interaction is everywhere	Yes interaction is only on 2D surfaces
	Interaction gap	Yes separate devices for physical and virtual objects	No same devices for physical and virtual objects
Spring 2009 CAP6938 – 3D User Interfaces for Games and Virtual Reality ©Joseph J. LaViola Jr.			

Tangible AR (II): Generic Interface Semantics

Tiles semantics
data tiles
operation tiles
trashcan
help
Operation on tiles
proximity
spatial arrangements
space-multiplexed

Tangible AR (IV): Time-Multiplexed Interaction

Data authoring in WOMAR interfaces (Kato et al. 2000). The user can pick, manipulate and arrange virtual furniture using a physical paddle.

©Joseph J. LaViola Jr.

Advantages

- seamless interaction with both virtual and physical tools
 - no need for special purpose input devices
- seamless spatial interaction with virtual objects
 - 3D presentation of and manipulation with virtual objects anywhere in physical space
- Disadvantages
 - required HMD
 - markers should be visible for reliable tracking

- Devices must be handheld
- No tracking or limited tracking for devices
- Interaction at-adistance
- Tinmith project

Challenges in AR/MR

- Occlusion and depth perception
- Text display and legibility
- Visual differences between real and virtual objects
- Registration and tracking

Spring 2009

Bulky HMDs and other equipment

