3D User Interfaces for the Real World

Lecture #16: Augmented/Mixed Reality
Spring 2009
Joseph J. LaViola Jr.

Special thanks to Ivan Poupyrev

Definitions

- **Augmented reality**: Refers to a system in which the user views and acts within an enhanced version of the real world. The enhancements are virtual (computer-generated), and can include objects or information.

- **Mixed reality**: Refers to a system that combines real and virtual objects and information.
Mixed Reality Continuum

Mixed Reality (MR)

Reality Augmented Reality (AR) Augmented Virtuality (AV) Virtuality

Milgram (1994)

AR/MR Application Areas

- Maintenance
- Training
- Tourism / Cultural heritage
- Design / construction
- Battlefield information display
- Entertainment
AR/MR Technology - Displays

- See-through HMDs:
 - Video see-through
 - Optical see-through
- Handheld displays
- Projection

AR/MR Technology - Tracking

- Optical / vision-based tracking
 - AR toolkit
 - ensures portability
 - large number of tracked objects
- Registration and low latency are crucial for AR systems
AR/MR technology - Tracking

- Sourceless inertial orientation tracking
- GPS position tracking
 - enables mobile outdoor AR
- Markerless tracking

Mobile outdoor AR

- “Backpack systems”
- User wears/carries:
 - Computer
 - HMD
 - Inertial tracker
 - GPS unit/antenna
 - Input device(s)
Mixed Reality Interfaces

- Azuma (1997)
 - combine real and virtual objects
 - interactive in real time
 - virtual objects are registered in 3D physical world

KARMA, Feiner, et al. 1993

Challenges in AR Interfaces

- Conflict between real world and virtual
 - not neatly separated anymore
- Limitations of displays
 - precise, fast registration & tracking
 - spatially seamless display
- Limitations of controllers
 - precise, fast registration & tracking
 - spatially seamless interactivity

Image Copyright Sony CSL
AR Interfaces as 3D Information Browsers (I)

- 3D virtual objects are registered in 3D
 - see-through HMDs, 6DOF optical, magnetic trackers
 - “VR in Real World”

- Interaction
 - 3D virtual viewpoint control

- Applications
 - visualization, guidance, training

State, et al. 1996

AR Interfaces as Context-Based Information Browsers (II)

- Information is registered to real-world context
 - Hand held AR displays
 - Video see-through (Rekimoto, 1997) or non-see through (Fitzmaurice, et al. 1993)
 - magnetic trackers or computer vision based

- Interaction
 - manipulation of a window into information space

- Applications
 - context-aware information displays

AR Info Browsers (III): Pros and Cons

- Important class of AR interfaces
 - wearable computers
 - AR simulation, training
- Limited interactivity
 - modification and authoring virtual content is difficult

3D AR Interfaces (I)

- Virtual objects are displayed in 3D space and can be also manipulated in 3D
 - see-through HMDs and 6DOF head-tracking for AR display
 - 6DOF magnetic, ultrasonic, or other hand trackers for input
- Interaction
 - viewpoint control
 - 3D user interface interaction: manipulation, selection, etc.

Kiyokawa, et al. 2000
3D AR Interfaces (II): Information Displays

- How to move information in AR
 - context dependent information browsers?
- InfoPoint (1999)
 - hand-held device
 - computer-vision 3D tracking
 - moves augmented data between marked locations
 - HMD is not generally needed, but desired since there are little display capabilities

Khotake, et al. 1999

3D AR Interfaces (III): Pros and Cons

- Important class of AR interfaces
 - entertainment, design, training
- Advantages
 - seamless spatial interaction: User can interact with 3D virtual object everywhere in physical space
 - natural, familiar interfaces
- Disadvantages
 - usually no tactile feedback and HMDs are often required
 - interaction gap: user has to use different devices for virtual and physical objects
Tangible interfaces and augmented surfaces (I)

- Basic principles
 - virtual objects are projected on a surface
 - back projection
 - overhead projection
 - physical objects are used as controls for virtual objects
 - tracked on the surface
 - virtual objects are registered to the physical objects
 - physical embodiment of the user interface elements
 - collaborative

Digital Desk. 1993

Tangible Interfaces and Augmented Surfaces (II)

- Graspable interfaces, Bricks system (Fitzmaurice, et al. 1995) and Tangible interfaces, e.g. MetaDesk (Ullmer 97):
 - back-projection, infrared-illumination computer vision tracking
 - physical semantics, tangible handles for virtual interface elements

metaDesk. 1997
Tangible Interfaces and Augmented Surfaces (III)

- Rekimoto, et al. 1998
 - front projection
 - marker-based tracking
 - multiple projection surfaces
 - tangible, physical interfaces + AR interaction with computing devices

Augmented surfaces, 1998

Tangible Interfaces and Augmented Surfaces (IV)

- Advantages
 - seamless interaction flow – user hands are used for interacting with both virtual and physical objects.
 - no need for special purpose input devices

- Disadvantages
 - interaction is limited only to 2D surface
 - spatial gap in interaction - full 3D interaction and manipulation is difficult
Orthogonal Nature of AR Interfaces (Poupyrev, 2001)

<table>
<thead>
<tr>
<th></th>
<th>3D AR</th>
<th>Augmented surfaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spatial gap</td>
<td>No interaction is everywhere</td>
<td>Yes interaction is only on 2D surfaces</td>
</tr>
<tr>
<td>Interaction gap</td>
<td>Yes separate devices for physical and virtual objects</td>
<td>No same devices for physical and virtual objects</td>
</tr>
</tbody>
</table>

Tangible AR interfaces (I)

- Virtual objects are registered to marked physical “containers”
 - HMD
 - Video-see-through tracking and registration using computer vision tracking
- Virtual interaction by using 3D physical container
 - Tangible, physical interaction
 - 3D spatial interaction
- Collaborative

![Shared Space, 1999]
Tangible AR (II): Generic Interface Semantics

- Tiles semantics
 - data tiles
 - operation tiles
 - menu
 - clipboard
 - trashcan
 - help
- Operation on tiles
 - proximity
 - spatial arrangements
 - space-multiplexed

Tiles, 2001

Tangible AR (III): Space-Multiplexed

Data authoring in Tiles (Poupyrev, et al. 2001). Left, outside view of the system; right, view of the left participant.
Tangible AR (IV): Time-Multiplexed Interaction

Data authoring in WOMAR interfaces (Kato et al. 2000). The user can pick, manipulate and arrange virtual furniture using a physical paddle.

Tangible AR (V): AR - VR Transitory Interfaces

- Magic Book (Billinghurst, et al. 2001)
 - 3D pop-up book: a transitory interfaces
 - augmented Reality interface
 - portal to Virtual Reality
 - immersive virtual reality experience
 - collaborative
Tangible AR (VI): Conclusions

- Advantages
 - seamless interaction with both virtual and physical tools
 - no need for special purpose input devices
 - seamless spatial interaction with virtual objects
 - 3D presentation of and manipulation with virtual objects anywhere in physical space
- Disadvantages
 - required HMD
 - markers should be visible for reliable tracking

Interfaces for Mobile Outdoor AR

- Devices must be handheld
- No tracking or limited tracking for devices
- Interaction at-a-distance
- Tinmith project
Challenges in AR/MR

- Occlusion and depth perception
- Text display and legibility
- Visual differences between real and virtual objects
- Registration and tracking
- Bulky HMDs and other equipment

Next Class

- Paper presentations begins
- Final project proposals due Friday (3-21-08)!!!