

Example Evaluations

- Non-isomorphic rotation (3DUI 07)
- Interaction Offset (3DUI 07)

Spring 200

CAP6938 - 3D User Interfaces for Games and Virtual Real

©Joseph J. LaViola J

IEEE Symposium on 3D User Interfaces 2007

An Exploration of Non-Isomorphic 3D Rotation in Surround Screen Virtual Environments

Joseph J. LaViola Jr.*
Michael Katzourin

Brown University March 10, 2007

* Now at the University of Central Florida

Spring 2009

CAP6938 – 3D User Interfaces for Games and Virtual Reality

Talk Outline

- Motivation and Goals
- Non-Isomorphic Rotation
- Related Work
- Experiment
- Results
- Discussion
- Conclusion

Spring 2009

CAP6938 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Ji

Motivation and Goals

- Rotating objects in 3D space is a fundamental task
- Want to understand how 3D rotation techniques perform
- Isomorphic and non-isomorphic approaches
- Explore these approaches in SSVE
 - extend and augment existing knowledge
 - does existing knowledge transfer?

Spring 2009

CAP6938 – 3D User Interfaces for Games and Virtual Reality

Non-Isomorphic 3D Rotation

- Human-Machine interaction
 - input device
 - display device
 - transfer function (control to display mapping)
- Non-isomorphic scaled linear/non-linear mapping
 - manual control constrained by human anatomy
 - more effective use of limited tracking range (i.e vision-based tracking)
 - additional tools for fine tuning interaction techniques
- Isomorphic one-to-one mapping
 - more natural

Spring 2009

CAP6938 - 3D User Interfaces for Games and Virtual Realit

©Joseph J. LaViola Ji

Non-Isomorphic Rotation Technique

- Quaternion four-dimensional vector (v, w) where
 v is a 3D vector and w is a real number
- Let q_c be the orientation of the input device q_d be the displayed orientation, and q_o be the reference orientation then

$$q_q = q_c^k$$
, $q_d = (q_c q_o^{-1})^k q_o$, $k = \text{CD gain coefficient}$

Using relative mapping

$$q_{d_i} = (q_{c_i} q_{c_{i-1}}^{-1})^k q_{d_{i-1}}$$

Spring 2009

CAP6938 - 3D User Interfaces for Games and Virtual Reality

Related Work

- User performance with different 3D rotation techniques (Chen 1988, Hinckley 1997)
- Rotating real and virtual objects (Ware 1999)
- Framework, design guidelines, non-isomorphic effectiveness (Poupyrev 2000)
- Non-isomorphic head rotations (LaViola 2001, Jay 2003)
- GlobeFish and Globe Mouse (Froehlich 2006)
- Hybrid haptic rotations (Dominjon 2006)

Spring 2009

CAP6938 - 3D User Interfaces for Games and Virtual Reality

@ losenh .L LaViola .L

Experimental Study

- Further explore non-isomorphic rotation of virtual objects
- Systematic evaluation of different rotation amplifications
- Understand benefits of non-isomorphic in SSVE
 - head tracking
 - stereoscopic vision

Spring 2009

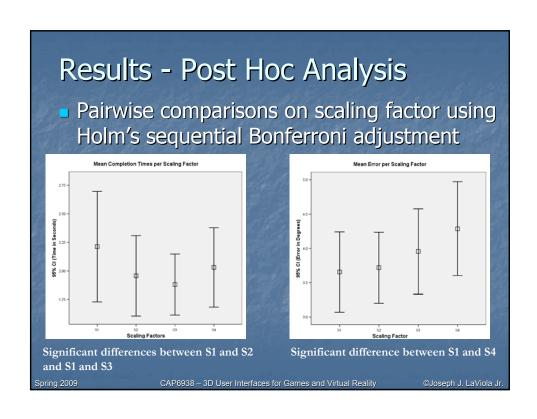
CAP6938 – 3D User Interfaces for Games and Virtual Reality

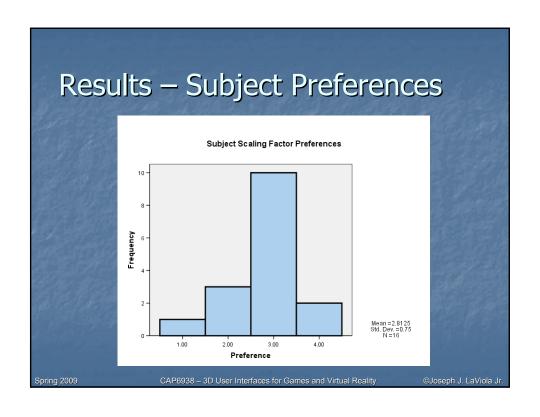
Experimental Design

- 16 subjects (13 male, 3 female)
- Conducted in Brown "Cave"
- Based on Poupyrev 2000 → Hinckley 1997 → Chen 1988
- 4 x 2 x 2 balanced, within-subjects design (16 conditions)
- Independent variables
 - amplification (1,2,3,4)
 - rotation amplitude (20-60, 70-180 degrees)
 - Error threshold (6, 18 degrees)
- Dependent variables
 - completion time
 - orientation error

Experimental Procedure

- Task rotate house from random to target orientation
- Pre-questionnaire
- 16 practice trials
- 16 sets of 10 trials each
- Ordering was randomized
- Post-questionnaire




CAP6938 - 3D User Interfaces for Games and Virtual Reality

Results - ANOVA Repeated measures, three way ANOVA Effect Time Er S F_{3,13}=3.26, p=0.056 F_{3,13}=4.8

Effect	Time	Error
S	F _{3,13} =3.26, p=0.056	F _{3,13} =4.8, p<0.05
T	F _{1,15} =13.66, p<0.05	F _{1,15} =22.96, p<0.05
А	F _{t,15} =55.46, p<0.05	F _{1,15} =0.001, p=0.98
SxT	F _{3,13} =0.29, p=0.83	F _{3,13} =1.575, p=0.243
SxA	F _{3,13} =0.87, p=0.523	F _{3,13} =0.562, p=0.649
ТхА	F _{t,15} =5.03,p<0.05	F _{1,15} =0.573, p=0.46
SxTxA	F _{3,13} =0.73, p=0.55	F _{3,13} =0.97, p=0.436

S = scaling factor T = error threshold A = angle CAP6938 - 3D User Interfaces for Games and Virtual Reality.

Results - Summary

- Subjects performed 11.5% faster with S2 and 15.0% faster with S3 with no statistically significant loss in accuracy
- Appears to be correlation between subject preferences and mean completion time
 - scaling factor of 3 is preferable amplification coefficent

Spring 2009

CAP6938 - 3D User Interfaces for Games and Virtual Reality

Discussion - Error

- Interesting differences with previous studies
- Poupyrev 6.8 degrees
- Hinckley 6.7 degrees
- Ware (physical objects) -- 4.4 degrees
- Our study 3.9 degrees
 - threshold of 6 3.41, threshold of 18 4.4

Spring 2009

CAP6938 - 3D User Interfaces for Games and Virtual Reality

@ Joseph J. LaViola J

Discussion - Completion Time

- Poupyrev
 - 5.15 seconds for isomorphic
 - ≈4.75 seconds for non-isomorphic
- Hinckley
 - 17.8 seconds for isomorphic (no training, accuracy focus)
- Our study
 - 2.2 seconds for isomorphic
 - 1.96 seconds for non-isomporhic

Spring 2009

CAP6938 - 3D User Interfaces for Games and Virtual Reality

Discussion – Implications

- Differences attributed to
 - different hardware configurations
 - previous studies on desktop
 - our study in SSVE
- Poupyrev's amplification factor (1.8)
- Hinckley "... accuracy of rotation less affected by interface then by difficulties in perception of error..."
 - head tracking
 - stereoscopic vision
- Others display size, refresh rate, video game proficiency, tracking lag

Spring 2009

CAP6938 - 3D User Interfaces for Games and Virtual Reality

@ Joseph J. LaViola J

Conclusion

- Presented experiment exploring non-isomorphic rotation in SSVE
- Rotation task completed 15% faster with amplification factor of 3 than with isomorphic rotation
 - no statistically significant loss in accuracy
 - subjects preferred this amplification factor
- Faster and more accurate performance in SSVE in general
 - perception of objects closely matched with physical reality
 - many other factors could contribute
- Further work needed

Spring 2009

CAP6938 – 3D User Interfaces for Games and Virtual Reality

IEEE Symposium on 3D User Interfaces 2007

An Exploration of Interaction-Display Offset in Surround Screen Virtual Environments

Dmitri Lemmerman Joseph J. LaViola Jr.*

> Brown University March 10, 2007

* Now at the University of Central Florida

Spring 2000

CAP6938 - 3D User Interfaces for Games and Virtual Reality

@ Joseph J. LaViola J

Talk Outline

- Motivation and Goals
- Display-Interaction Offset
- Related Work
- Experiment
- Results
- Discussion
- Conclusion

Spring 2009

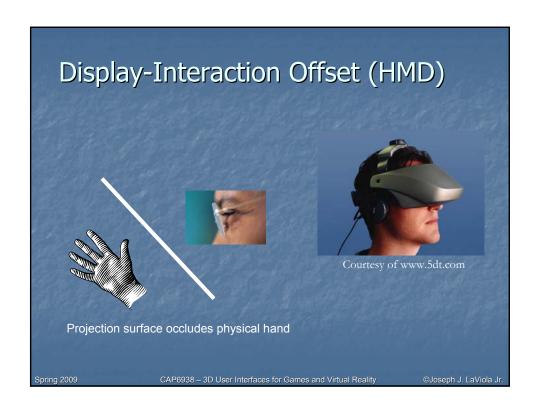
CAP6938 - 3D User Interfaces for Games and Virtual Reality

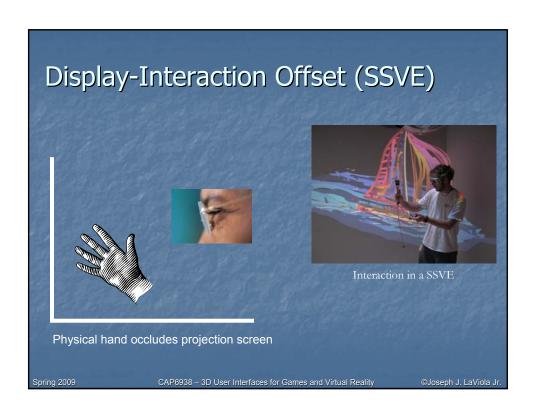
Motivation and Goals

- Want to build effective interfaces in VE applications
- Many different interaction technique choices
 - set parameters to optimize performance
 - guidelines needed
- Techniques centered around user's body are common in VEs
- Where should virtual object be placed with respect to user?

Spring 2009

CAP6938 - 3D User Interfaces for Games and Virtual Reality


@ Joseph J. LaViola J


Display-Interaction Offset

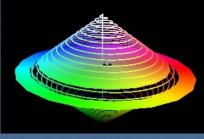
- What is display-interaction offset?
 - two frames of reference
 - display
 - interaction
- Display frame of reference
 - perceived location of rendered graphical feedback
- Interaction frame of reference
 - location of physical interaction

Spring 2009

CAP6938 – 3D User Interfaces for Games and Virtual Reality

Related Work

- Virtual object manipulation for docking task
- With HMD Mine(1997)
 - found users performed faster with collocation over positional offset
- With Responsive Workbench Paljic(2002)
 - found collocation or minimal offset minimized time to completion


Spring 2009

CAP6938 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola Ji

Experimental Study

- Hypothesis Translational offset between interaction and display frames of reference would improve user performance for 3D widget-based task
- Chose color matching with HSV widget

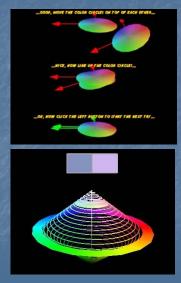
Spring 2009

CAP6938 - 3D User Interfaces for Games and Virtual Realit

alosenh I I aViola Ir

Experimental Design

- 24 subjects (12 male, 12 female)
- Conducted in Brown "Cave"
- 3 conditions of display-interaction offset
 - collocated
 - 3 inches
 - 2 feet
- 15 trials per condition
- Within-subjects design
- Target color used as second factor to control for color difficulty


Spring 2009

CAP6938 – 3D User Interfaces for Games and Virtual Reality

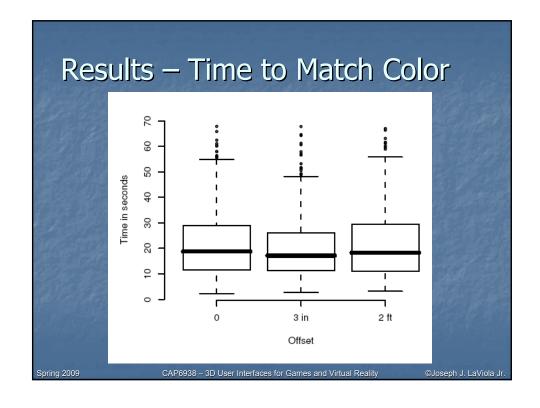
©Joseph J. LaViola Ji

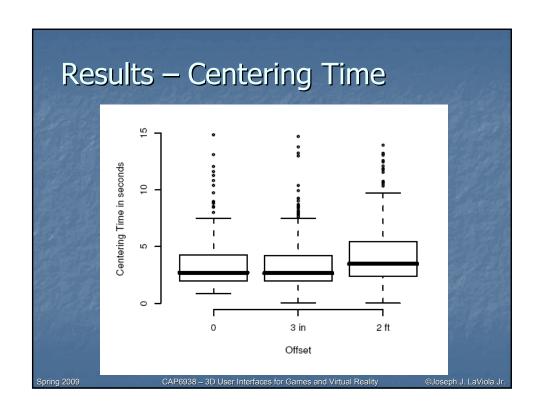
Experimental Procedure

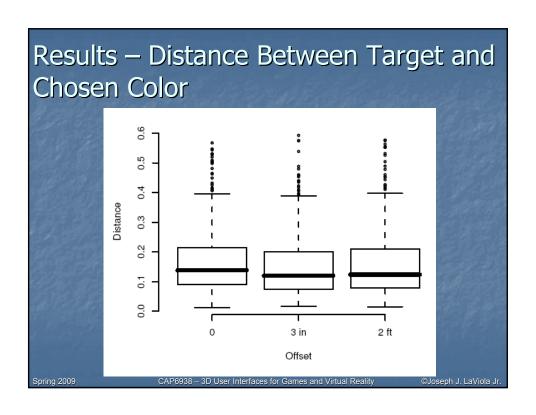
- Pre-questionnaire & color vision screening
- 6 practice trials
- For each trial
 - centering task
 - color matching
- Post-questionnaire
- 15 more trials with subject chosen offset

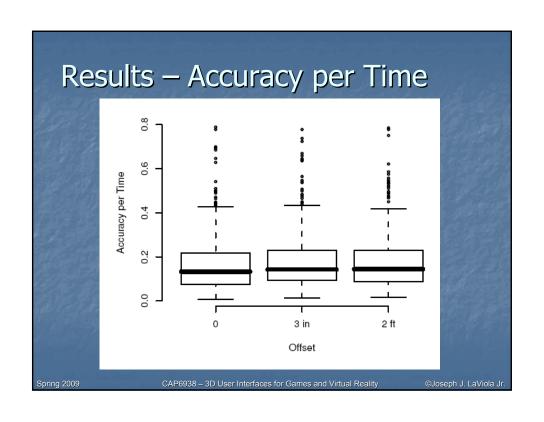
Spring 2009

CAP6938 - 3D User Interfaces for Games and Virtual Reality

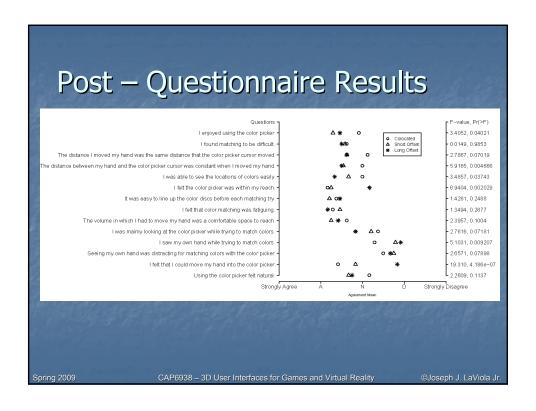

losenh I I aViola Ir


Performance Metrics


- Measurements
 - Time to center hand
 - Time to chose matching color
 - Chosen color
- Derived
 - Distance between target and chosen
 - Accuracy per time


Spring 2000

CAP6938 - 3D User Interfaces for Games and Virtual Realit



	Results - Al		_7		
ſ	Statistic	Factor	Df	F-value	Pr(>F)
	Time	Offset	2	1.297	0.283
		Color	14	7.867	2.27×10^{-14}
	Distance	Offset	2	4.13	0.0224
		Color	14	20.7	$< 2.0 \times 10^{-16}$
	Accuracy Per Time	Offset	2	1.655	0.202
F		Color	14	7.108	7.98×10^{-13}
Ce	Centering Time	Offset	2	8.2594	0.0008614
	Centering Time	Color	14	0.7685	0.7033

Results – Paired Sample T-Tests Bonferroni correction Conditions Statistic p-value Time 2.2635 Short vs. Long offset Distance 2.5266 Accuracy Per Time 2.1699 Centering Time 1.689×10^{-7} Time 0.19872 Collocated vs. Long Distance 0.0026733 offset Accuracy Per Time 0.1221 1.944×10^{-5} Centering Time 0.3624 Time Collocated vs. Short Distance 0.0027369 Offset Accuracy Per Time 0.2526 Centering Time 1.2495

©Joseph J. LaViola Jr.

Discussion

- Both offset conditions were significantly better than collocation
 - distance
 - user preference
- No significant difference between offset conditions
- For centering task
 - most similar to Mine and Paljic
 - collocation and minimal offset significantly faster
- Results agree and disagree with previous work

pring 2009 CAP6938 – 3D User Interfa

losenh I laViola Ir

Conclusion

- Compared effect of positional offsets on user performance in SSVE
 - color matching
 - centering
- Centering task performance in line with previous work
- Color matching performance shows technique does not fit within established guidelines
- Further studies needed

Spring 2009

CAP6938 - 3D User Interfaces for Games and Virtual Reality

©Joseph J. LaViola J

Next Class

Student Presentations Begin

Spring 2009

CAP6938 - 3D User Interfaces for Games and Virtual Reality