

Designing for Humans – Feedback in Multiple Dimensions

Sensory dimensions

- visual, auditory, tactile, olfactory
- proprioceptive, kinesthetic
- Want to try to give multi-dimensional feedback
 - can be difficult due to technology (e.g., haptics)
 - sensory feedback substitution
 - System-based feedback
 - Reactive combines sensory dimensions with UI
 - Instrumental generated by controls and tools
 - Operational results from user actions

Designing for Humans – Compliance

CAP6938 - 3D User Interfaces for Games and Virtual Reality

- Main principle in design feedback
- Want different feedback dimensions in sync
 - maintain spatial and temporal correspondence between multiple feedback dimensions

CAP6938 - 3D User Interfaces for Games and Virtual Reality

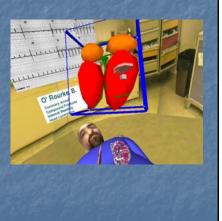
Feedback displacement – BAD!!!

Designing for Humans – Spatial Compliance

- Directional compliance virtual object should move in the same direction as manipulated by input device
 - allows anticipatory preparation
- Nulling compliance when user returns device to initial pose, virtual object returns to corresponding initial pose
 - helps with muscle memory
- Instrumental and operational feedback also require spatial compliance

Designing for Humans – Temporal Compliance

CAP6938 - 3D User Interfaces for Games and Virtual Reality


- Latency typical problem
 - temporal delay between user input and sensory feedback
 - incompliance with internal feedback
- Variable latency can be even more problematic

CAP6938 - 3D User Interfaces for Games and Virtual Reality

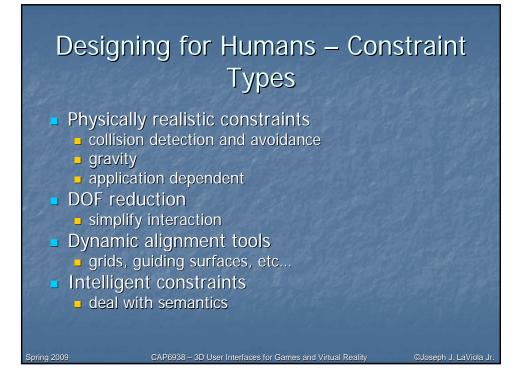
- Solutions?
 - reduce scene complexity
 - faster hardware
 - predictive tracking

Designing for Humans – Feedback Substitution

- Cannot always support all sensory feedback dimensions
- Typical approach is to substitute

©Joseph J. LaViola Jr.

Designing for Humans – Passive Haptics


- Match shape and appearance of virtual object with physical prop
 - users both sees and feels
- Advantages
 - inexpensive haptic/tactile feedback
 - establish perceptual frame of reference
- Disadvantages
 - scalability
 - questionable performance improvements

Designing for Humans – Constraints

- Relation between variables that must be satisfied
- Geometrical coherence
 - application more important than implementation
- Want to make interaction simpler and improve accuracy

CAP6938 - 3D User Interfaces for Games and Virtual Reality

Designing for Humans – Two Handed Control

- Also known as bimanual input
- Transfer everyday manipulation experiences to 3DUI
- Can increase user performance on certain tasks
- Active topic of research

Designing for Humans – Guiard's Framework

CAP6938 - 3D User Interfaces for Games and Virtual Reality

Tasks are

- unimanual
- bimanual symmetric
 - synchronous
 - asynchronous
- bimanual asymmetric (cooperative)
- Asymmetric labor (hand roles)
 - Nondominant hand dynamically adjusts spatial frame of reference for dominant hand
 - Dominant hand produces precision movements/nondominant hand performs gross manipulation
 - Manipulation is initiated by nondominant hand

Designing for Humans – Different User Groups

Age

- Prior 3DUI experience
- Physical characteristics
- Perceptual, cognitive, motor capabilities

Designing for Humans – User Comfort

CAP6938 - 3D User Interfaces for Games and Virtual Reality

CAP6938 - 3D User Interfaces for Games and Virtual Reality

- Weight of equipment
- Keep users in proper physical space
- Public systems sanitary
- Design for short sessions

