3D User Interface Techniques for Selection and Manipulation

Lecture #7: Selection and Manipulation
Spring 2008
Joseph J. LaViola Jr.

Interaction Workflow
Universal 3D Interaction Tasks

- Navigation
 - Travel – motor component
 - Wayfinding – cognitive component
- Selection
- Manipulation
- System control
- Symbolic input

Why Selection and Manipulation?

- Major method of interaction with physical environments
- Major method of interaction with virtual environments
- Affects the quality of entire 3D interface
- Design of 3D manipulation techniques is difficult
Lecture Outline

- What is 3D selection and manipulation?
- Relationship between IT and input device
- Manipulation technique classification
- Techniques
 - selection
 - manipulation
 - hybrid
- Isomorphism vs. Non-isomorphism

Selection & Manipulation

- Selection: specifying one or more objects from a set
- Manipulation: modifying object properties (position, orientation, scale, shape, color, texture, behavior, etc.)
Goals of Selection

- Indicate action on object
- Query object
- Make object active
- Travel to object location
- Set up manipulation

Selection Performance

- Variables affecting user performance
 - object distance from user
 - object size
 - density of objects in area
 - occluders
Canonical Parameters

- **Selection**
 - distance and direction to target
 - target size
 - density of objects around the target
 - number of targets to be selected
 - target occlusion.

- **Positioning**
 - distance/direction to initial position
 - distance/direction to target position
 - translation distance
 - required precision of positioning

- **Rotation**
 - distance to target
 - initial orientation
 - final orientation
 - amount of rotation

3D Interaction Techniques and the Input Device

- **Number of control dimensions**
- **Control Integration**
- **Force vs. Position control**
- **Device placement**
- **Form Factor**

- Attached to Hand
- Rolled with fingers
Technique Classification by Metaphor

Exocentric metaphor
- World-In-Miniature
- Scaled-world grab

Egocentric metaphor
- Virtual Hand metaphor
 - "Classical" virtual hand
 - Go-Go
 - Indirect, stretch Go-Go
- Virtual Pointer metaphor
 - Ray-casting
 - Aperture
 - Flashlight
 - Image plane

Technique Classification by Components

Object Attachment
- attach to hand
- attach to gaze
- hand moves to object
- object moves to hand
- user/object scaling
- no control
- 1-to-N hand to object motion
- maintain body-hand relation
- other hand mappings
- no control
- 1-to-N hand to object rotation
- other hand mappings
- indirect control
- no control
- graphical
- force/tactile
- audio
3D Selection and Manipulation Techniques

- **Pointing**
 - ray-casting
 - two-handed pointing
 - flashlight & aperture
 - image plane

- **Direct manipulation**
 - simple virtual hand
 - Go-Go
 - WIM

- **Hybrids**
 - Homer
 - Scaled-World Grab
 - Voodoo Dolls

Pointing – Ray-Casting

- User points at objects with virtual ray
- Ray defines and visualizes pointing direction

\[
p(\alpha) = h + \alpha \cdot \hat{p}
\]

where \(0 < \alpha < \infty\)

\(h\) = 3D position of virtual hand
\(\hat{p}\) = ray attached to \(h\)
Pointing – Two-Handed Pointing

- Ray casting with 2 hands
- More control
 - distance between hands controls length
 - twisting curves pointer

\[p(\alpha) = h_1 + \alpha \cdot (h_r - h_l) \]
where \(0 < \alpha < \infty \)
\(h_1 = \) 3D position of left hand
\(h_r = \) 3D position of right hand

Pointing – Flashlight and Aperture

- Flashlight – soft selection technique
 - does not need precision
 - conic volume constant
- Aperture – extension to Flashlight
 - adjustable volume

\[p(\alpha) = e + \alpha \cdot (h - e) \]
where \(0 < \alpha < \infty \)
\(h = \) 3D position of hand
\(e = \) 3D coordinates of viewport
Pointing – Image Plane Family

- Requires only 2 DOF
 - selection based on 2D projections
 - virtual image plane in front of user

Direct Manipulation – Virtual Hand

- Select and manipulate directly with hands
- Hand represented as 3D cursor
- Intersection between cursor and object indicates selection

\[
p_r = \alpha \cdot p_v, \quad R_r = R_v
\]

\[
p_v, R_v = \text{position and orientation of real hand}
\]

\[
p_r, R_r = \text{position and orientation of hand in VE}
\]

\[
\alpha = \text{a scaling factor}
\]
Direction Manipulation – Go-Go

- Arm-extension technique
- Like simple v. hand, touch objects to select them
- Non-linear mapping between physical and virtual hand position
- Local and distant regions

\[r_t = \begin{cases}
 r_v & \text{if } r_t \leq D \\
 r_v + \alpha(r_v - D) & \text{otherwise}
\end{cases} \]

where \(r_v \) = length of \(\mathbf{R}_v \)
\(r_t \) = length of \(\mathbf{R}_t \)
\(D, \alpha \) are constants

Direct Manipulation – WIM

- “Dollhouse” world held in user’s hand
- Miniature objects can be manipulated directly
- Moving miniature objects affects full-scale objects
- Can also be used for navigation
Hybrids – HOMER

Hand-Centered
Object
Manipulation
Extending
Ray-Casting
- Select: ray-casting
- Manipulate: hand

HOMER Implementation

- Requires torso position \(t \)
- Upon selection, detach virtual hand from tracker, move v. hand to object position in world CS, and attach object to v. hand (w/out moving object)
- Get physical hand position \(h \) and distance
 \[d_h = \text{dist}(h, t) \]
- Get object position \(o \) and distance
 \[d_o = \text{dist}(o, t) \]
HOMER Implementation (cont.)

- Each frame:
 - Copy hand tracker matrix to v. hand matrix (to set orientation)
 - Get physical hand position h_{curr} and distance:
 \[d_{h_{curr}} = \text{dist}(h_{curr}, t) \]
 - V. hand distance
 \[d_v = d_{h_{curr}} \times \left(\frac{d_t}{d_h} \right) \]
 - Normalize torso-hand vector
 \[t_{h_{curr}} = \frac{h_{curr} - t}{\|h_{curr} - t\|} \]
 - V. hand position
 \[v_h = t + d_v \times (t_{h_{curr}}) \]

Hybrids – Scaled-World Grab Technique

- Often used with occlusion
- At selection, scale user up (or world down) so that v. hand is actually touching selected object
- User doesn't notice a change in the image until he moves
Scaled-World Grab Implementation

- **At selection:**
 - Get world CS distance from eye to hand d_{eh}
 - Get world CS distance from eye to object d_{eo}
 - Scale user (entire user subtree) uniformly by d_{eo} / d_{eh}
 - Ensure that eye remains in same position
 - Attach selected object to v. hand (w/out moving object)

- **At release:**
 - Re-attach object to world (w/out moving object)
 - Scale user uniformly by d_{eh} / d_{eo}
 - Ensure that eye remains in same position

Hybrids – Voodoo Dolls

- Two handed technique
- Builds upon image plane and WIM techniques
- Creates copies of objects (dolls) for manipulation
- Non-dominant hand – stationary frame of reference
- Dominant hand – defines position and orientation
Isomorphic vs. Non-Isomorphic Philosophies

- Human-Machine interaction
 - input device
 - display device
 - transfer function (control to display mapping)
- Isomorphic – one-to-one mapping
- Non-isomorphic – scaled linear/non-linear mapping

Non-Isomorphic 3D Spatial Rotation

- Important advantages
 - manual control constrained by human anatomy
 - more effective use of limited tracking range (i.e. vision-based tracking)
 - additional tools for fine tuning interaction techniques
- Questions
 - faster?
 - more accurate?
Rotational Space

- Rotations in 3D space are a little tricky
 - do not follow laws of Euclidian geometry
- Space of rotations is not a vector space
- Represented as a closed and curved surface
 - 4D sphere or manifold
- Quaternions provide a tool for describing this surface

Quaternions

- Four-dimensional vector \((\mathbf{v}, w)\) where \(\mathbf{v}\) is a 3D vector and \(w\) is a real number
- A quaternion of unit length can be used to represent a single rotation about a unit axis \(\hat{u}\) and angle \(\theta\) as

\[
q = (\sin(\frac{\theta}{2})\hat{u}, \cos(\frac{\theta}{2})) = e^{\frac{\theta}{2}\hat{u}}
\]
Linear 0th Order 3D Rotation

- Let \(q_c \) be the orientation of the input device and \(q_d \) be the displayed orientation then

\[
(1) \quad q_c = \left(\sin\left(\frac{\theta}{2}\right) \hat{u}_c, \cos\left(\frac{\theta}{2}\right) \right) = e^{\frac{\theta}{2} \hat{u}_c}
\]

\[
(2) \quad q_o = \left(\sin\left(\frac{k\theta}{2}\right) \hat{u}_o, \cos\left(\frac{k\theta}{2}\right) \right) = e^{\frac{k\theta}{2} \hat{u}_o} = q_o^k
\]

- Final equations w.r.t. identity or reference orientation \(q_o \) are

\[
(3) \quad q_q = q_c^k \quad (4) \quad q_d = (q_c q_o^{-1})^k q_o, \quad k = \text{CD gain coefficient}
\]

Non-Linear 0th Order 3D Rotation

- Consider

\[
(3) \quad q_d = q_c^k \quad (4) \quad q_d = (q_c q_o^{-1})^k q_o
\]

- Let \(k \) be a non-linear function as in

\[
\omega = 2\arccos(q_c \cdot q_o) \quad \text{or} \quad \omega = 2\arccos(w)
\]

\[
k = F(\omega) = \begin{cases}
1 & \text{if } \omega < \omega_o \\
\frac{f(\omega)}{1 + c(\omega - \omega_o)^2} & \text{otherwise}
\end{cases}
\]

where \(c \) is a coefficient and \(\omega_o \) is the threshold angle
Design Considerations

- **Absolute mapping** – taken on the \(i\)-th cycle of the simulation loop
 \[q_{d_i} = q_{c_i}^k \]

- **Relative mapping** – taken between the \(i\)-th and \(i-1\)th cycle of the simulation loop
 \[q_{d_i} = (q_{c_i} q_{c_{i-1}}^{-1})^k q_{d_{i-1}} \]

Absolute Non-Isomorphim Mapping

- Generally do not preserve directional compliance
- Strictly preserves nulling compliance
Relative Non-Isomorphic Mapping

- Always maintain directional compliance
- Do not generally preserve nulling compliance

Amplified Non-Linear Rotation for VE Navigation (1)

- Users expect the virtual world to exist in any direction
 - 3-walled Cave does not allow this
 - adapt expected UI to work in restricted environment
- Amplified rotation allows users to see a full 360 degrees in a 3-walled display
- A number of approaches were tested
 - important to take cybersickness into account
Amplified Non-Linear Rotation for VE Navigation (2)

- Apply a non-linear mapping function to the user’s waist orientation \(\theta \) and his or her distance \(d \) from the back of the Cave.
- Calculate the rotation factor using a scaled 2D Gaussian function:

\[
\phi = f(\theta, d) = \frac{1}{\sqrt{2\pi \sigma_1}} e^{-\frac{(|\theta|-\pi(1-d/L))^2}{2\sigma_2^2}}
\]

- The new viewing angle is \(\theta_{\text{new}} = \theta (1 - \phi) \)

Amplified Non-Linear Rotation for VE Navigation (3)

\(\sigma_1 = 0.57 \), \(\sigma_2 = 0.85 \), \(L = 30 \), \(\mu = \pi \)
Non-Linear Translation for VE Navigation (1)

- Users lean about the waist to move small to medium distances
 - users can lean and look in different directions
- Users can also lean to translate a floor-based interactive world in miniature (WIM)
 - Step WIM must be active
 - user’s gaze must be 25 degrees below horizontal

Non-Linear Translation for VE Navigation (2)

- Leaning vector \vec{L}_R is the projection of the vector between the waist and the head onto the floor
 - gives direction and raw magnitude components
- Navigation speed is dependent on the user’s physical location
 - Leaning sensitivity increases close to a boundary
- Linear function - $L_T = a \cdot D_{\min} + b$
- Mapped velocity - $v = \|\vec{L}_R\| - L_T$
Non-Linear Translation for VE Navigation (3)

- Navigation speed is also dependent on the user's head orientation with respect to the vertical axis
 - especially useful when translating the floor-based WIM
- Mapping is done with a scaled exponential function
 \[F = \alpha \cdot e^{-\beta |H \cdot \tilde{V}_{up}|} \]
- Final leaning velocity is
 \[v_{final} = F \cdot v \]

Next Class

- Navigation - Travel
- Readings
 - 3DUI Book - Chapter 5