3D User Interfaces for Games and Virtual Reality

Lecture #1: Introduction
Spring 2008
Joseph J. LaViola Jr.

Instructor
Professor - Joseph J. LaViola Jr.
Email - jjl@cs.ucf.edu
Office Hours - Tues. 4:30pm - 6:30pm
Wed. 5:45pm - 6:45pm
Office is Harris 321

Website will have all required info
www.eecs.ucf.edu/courses/cap6938/spr2008/section02
Class Goals

- Provide in-depth introduction to spatial 3D user interfaces
- Focus on 3D games
- Speaking and presentation skills
- Start of master’s projects and PhD dissertations
- Possible publications
 - Virtual Reality 2009
 - 3D User Interfaces 2009
 - User Interface Software and Technology 2008
 - SIGGRAPH 2009

Required Books

[Image of 3D User Interfaces: Theory and Practice]
[Image of XNA Game Studio Creator’s Guide]
Grading

Assignment 1 (group) 15%
Assignment 2 (group) 15%
Survey Paper (individual) 15%
Paper presentation (individual) 5%
Final Project (group) 50%

Final Projects

- 2 person teams
- Must have research component
 - related to games
 - innovative 3D UI
- Everyone must write and get approved a project proposal
- Final Project write up required
- DEMO DAY!!!! – April, 28, 2008
Class Structure (see syllabus for details)

- Lectures
 - Fundamentals of 3D user interfaces
 - hardware
 - common interaction tasks
 - user evaluation
- Student paper presentation
 - 20 minute presentation
- Final project update sessions
- Work done in ISUE Lab – Harris 208
 - key access required

Course Topics

- XNA Development
- 3D Hardware
 - perception
 - input and output devices
- Common 3D Interaction Tasks
 - travel (e.g., navigation and wayfinding)
 - selection and manipulation
 - system control
- 3D UI Design
- 3D UI Evaluation
- 3D UI and Augmented/Mixed Reality
Collaboration and Late Policy

- Collaboration encouraged
 - do your own work on assignments
 - cheating = BAD!!!
- All assignments must be handed in on time
 - Assignments - by 11:59pm on due date

Tools - Hardware

- Wii Sensor Bar
- Samsung 50” 3D DLP HDTV
- TriDef Stereo Emitter
- PC with Intel Quad Core processor
- 3GB RAM
- NVIDIA GT8500 GFX Card
- 5.1 Speaker System
- Wii controllers
- TriDef Shutter Glasses
Tools - More Hardware

- Natural Point
- Track IR
- Novint Falcon

Tools - Software

- Visual Studio 2005, C#
- Microsoft XNA 2.0
 - basis of development environment
 - audio support, vector/matrix tools
 - physics engine (external component)
 - Bullet (3D)
 - our version: modified to handle 3D DLP stereo
- Custom built XNA components
 - Scenegraph
 - Wii controller API
 - head tracking (TrackIR from Natural Point)
What are 3D UIs?

- 3D interaction: Human-computer interaction in which the user's tasks are carried out in a 3D spatial context
 - 3D input devices
 - 2D input devices with direct mappings to 3D

- 3D user interface (3D UI): A UI that involves 3D interaction

- 3D interaction technique: A method (hardware and software) allowing a user to accomplish a task in a 3D UI

Why 3D Interfaces?

- 3D applications should be useful
 - immersion
 - natural skills
 - immediacy of visualization

- But, applications in common use have low complexity of interaction

- More complex applications have serious usability problems

- Technology alone is not the solution!
What makes 3D interaction difficult?

- Spatial input
- Lack of constraints
- Lack of standards
- Lack of tools
- Lack of precision
- Fatigue
- Layout more complex
- Perception

Interaction Goals

- Performance
 - efficiency
 - accuracy
 - productivity
- Usability
 - ease of use
 - ease of learning
 - user comfort
- Usefulness
 - interaction helps meet system goals
 - interface relatively transparent so users can focus on tasks
Universal 3D Interaction Tasks

- Navigation
 - travel: motor component
 - wayfinding: cognitive component
- Selection/Picking
- Manipulation
 - specification of object position & orientation
 - specification of scale, shape, other attributes
- System Control
 - changing the system state or interaction mode
 - may be composed of other tasks
- Symbolic Input

3D UI Design Philosophies

- Artistic approach: Base design decisions on
 - intuition about users, tasks, and environments
 - heuristics, metaphors, common Sense
 - aesthetics
 - adaptation/inversion of existing interfaces
- Scientific approach: Base design decisions on
 - formal characterization of users, tasks, and environments
 - quantitative evaluation results
 - performance requirements
 - examples: taxonomies, formal experimentation
Applications

- Architecture / CAD
- Education
- Manufacturing
- Medicine
- Simulation / Training
- Entertainment - Games!!!
- Design / Prototyping
- Information / Scientific Visualization
- Collaboration / Communication

3D UI RoadMap

Areas influencing 3D UIs
- Theoretical and social background
- Technological background
 - Human spatial perception, cognition, and action
 - 3D and UI Design
 - Popular media

3D UIs
- Interaction techniques and interface components
 - 3D interaction techniques for games / virtual reality
 - Interaction techniques for complex or composite tasks
 - 3D interaction techniques using 3D devices
 - 3D UI widgets

3D UI evaluation
- Evaluation of devices
- Evaluation of interaction techniques
- Evaluation of complete 3D UIs or applications
- Standardized evaluation approaches

3D UI software tools
- Development tools for 3D applications
- Specialized development tools for 3D interfaces
- 3D modeling tools

Application areas
- Simulation and training
- Education
- Entertainment
- Art
- Visualization
- Architecture and construction
- Medicine and psychiatry
- Collaboration

Reciprocal impacts
- On graphics
- On HCI
- On psychology
Next Class

- Games and 3DUIs
- Readings
 - Bowman - Chapters 1 and 2