3D User Interface Evaluation III

Lecture #16: Example Evaluations
Spring 2008
Joseph J. LaViola Jr.

Usability Evaluation in 3DUIs
Example Evaluations

- Non-isomorphic rotation (3DUI 07)
- Interaction Offset (3DUI 07)
Talk Outline

- Motivation and Goals
- Non-Isomorphic Rotation
- Related Work
- Experiment
- Results
- Discussion
- Conclusion

Motivation and Goals

- Rotating objects in 3D space is a fundamental task
- Want to understand how 3D rotation techniques perform
- Isomorphic and non-isomorphic approaches
- Explore these approaches in SSVE
 - extend and augment existing knowledge
 - does existing knowledge transfer?
Non-Isomorphic 3D Rotation

- Human-Machine interaction
 - input device
 - display device
 - transfer function (control to display mapping)
- Non-isomorphic – scaled linear/non-linear mapping
 - manual control constrained by human anatomy
 - more effective use of limited tracking range (i.e., vision-based tracking)
 - additional tools for fine tuning interaction techniques
- Isomorphic – one-to-one mapping
 - more natural

Non-Isomorphic Rotation Technique

- Quaternion – four-dimensional vector \((\mathbf{v}, \omega)\) where \(\mathbf{v}\) is a 3D vector and \(\omega\) is a real number
- Let \(q_c\) be the orientation of the input device \(q_d\) be the displayed orientation, and \(q_o\) be the reference orientation then
 \[q_q = q_c^k, \quad q_d = (q_c^{-1} q_o)^k q_o, \quad k = CD \text{ gain coefficient} \]
- Using relative mapping
 \[q_{d_i} = (q_{c_i}^{-1} q_{c_{i-1}})^k q_{d_{i-1}} \]
Related Work

- User performance with different 3D rotation techniques (Chen 1988, Hinckley 1997)
- Rotating real and virtual objects (Ware 1999)
- Framework, design guidelines, non-isomorphic effectiveness (Poupyrev 2000)
- GlobeFish and Globe Mouse (Froehlich 2006)
- Hybrid haptic rotations (Dominjon 2006)

Experimental Study

- Further explore non-isomorphic rotation of virtual objects
- Systematic evaluation of different rotation amplifications
- Understand benefits of non-isomorphic in SSVE
 - head tracking
 - stereoscopic vision
Experimental Design

- 16 subjects (13 male, 3 female)
- Conducted in Brown “Cave”
- Based on Poupyrev 2000 → Hinckley 1997 → Chen 1988
- 4 x 2 x 2 balanced, within-subjects design (16 conditions)
- Independent variables
 - amplification (1,2,3,4)
 - rotation amplitude (20-60, 70-180 degrees)
 - Error threshold (6, 18 degrees)
- Dependent variables
 - completion time
 - orientation error

Experimental Procedure

- Task – rotate house from random to target orientation
- Pre-questionnaire
- 16 practice trials
- 16 sets of 10 trials each
- Ordering was randomized
- Post-questionnaire
Results - ANOVA

Repeated measures, three way ANOVA

<table>
<thead>
<tr>
<th>Effect</th>
<th>Time</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>$F_{3,13}=3.26$, $p=0.056$</td>
<td>$F_{3,15}=4.8$, $p<0.05$</td>
</tr>
<tr>
<td>T</td>
<td>$F_{1,14}=13.66$, $p<0.05$</td>
<td>$F_{1,15}=22.95$, $p<0.05$</td>
</tr>
<tr>
<td>A</td>
<td>$F_{3,15}=55.46$, $p<0.05$</td>
<td>$F_{1,15}=0.001$, $p=0.98$</td>
</tr>
<tr>
<td>S x T</td>
<td>$F_{3,13}=0.29$, $p=0.83$</td>
<td>$F_{3,15}=1.575$, $p=0.243$</td>
</tr>
<tr>
<td>S x A</td>
<td>$F_{3,13}=0.87$, $p=0.523$</td>
<td>$F_{3,13}=0.562$, $p=0.649$</td>
</tr>
<tr>
<td>T x A</td>
<td>$F_{1,14}=5.03$, $p<0.05$</td>
<td>$F_{1,15}=0.573$, $p=0.46$</td>
</tr>
<tr>
<td>S x T x A</td>
<td>$F_{3,13}=0.73$, $p=0.55$</td>
<td>$F_{3,13}=0.97$, $p=0.436$</td>
</tr>
</tbody>
</table>

S = scaling factor T = error threshold A = angle
Results – Subject Preferences

Subjects performed 11.5% faster with S2 and 15.0% faster with S3 with no statistically significant loss in accuracy. Appears to be correlation between subject preferences and mean completion time. Scaling factor of 3 is preferable amplification coefficient.

Results - Summary

- Subjects performed 11.5% faster with S2 and 15.0% faster with S3 with no statistically significant loss in accuracy.
- Appears to be correlation between subject preferences and mean completion time.
 - Scaling factor of 3 is preferable amplification coefficient.
Discussion - Error

- Interesting differences with previous studies
- Poupyrev – 6.8 degrees
- Hinckley – 6.7 degrees
- Ware (physical objects) – 4.4 degrees
- Our study – 3.9 degrees
 - threshold of 6 – 3.41, threshold of 18 – 4.4

Discussion – Completion Time

- Poupyrev
 - 5.15 seconds for isomorphic
 - \(\approx 4.75\) seconds for non-isomorphic
- Hinckley
 - 17.8 seconds for isomorphic (no training, accuracy focus)
- Our study
 - 2.2 seconds for isomorphic
 - 1.96 seconds for non-isomorphic
Discussion – Implications

- Differences attributed to
 - different hardware configurations
 - previous studies on desktop
 - our study in SSVE
 - Poupyrev’s amplification factor (1.8)
 - Hinckley – “… accuracy of rotation less affected by interface than by difficulties in perception of error…”
 - head tracking
 - stereoscopic vision
 - Others – display size, refresh rate, video game proficiency, tracking lag

Conclusion

- Presented experiment exploring non-isomorphic rotation in SSVE
- Rotation task completed 15% faster with amplification factor of 3 than with isomorphic rotation
 - no statistically significant loss in accuracy
 - subjects preferred this amplification factor
- Faster and more accurate performance in SSVE in general
 - perception of objects closely matched with physical reality
 - many other factors could contribute
- Further work needed
An Exploration of Interaction-Display Offset in Surround Screen Virtual Environments

Dmitri Lemmerman
Joseph J. LaViola Jr.*

Brown University
March 10, 2007

* Now at the University of Central Florida

Talk Outline

- Motivation and Goals
- Display-Interaction Offset
- Related Work
- Experiment
- Results
- Discussion
- Conclusion
Motivation and Goals

- Want to build effective interfaces in VE applications
- Many different interaction technique choices
 - set parameters to optimize performance
 - guidelines needed
- Techniques centered around user’s body are common in VEs
- Where should virtual object be placed with respect to user?

Display-Interaction Offset

- What is display-interaction offset?
 - two frames of reference
 - display
 - interaction
- Display frame of reference
 - perceived location of rendered graphical feedback
- Interaction frame of reference
 - location of physical interaction
Display-Interaction Offset (HMD)

Projection surface occludes physical hand

Courtesy of www.5dt.com

Display-Interaction Offset (SSVE)

Physical hand occludes projection screen

Interaction in a SSVE
Related Work

- Virtual object manipulation for docking task
- With HMD – Mine(1997)
 - found users performed faster with collocation over positional offset
 - found collocation or minimal offset minimized time to completion

Experimental Study

- Hypothesis – Translational offset between interaction and display frames of reference would improve user performance for 3D widget-based task
- Chose color matching with HSV widget
Experimental Design

- 24 subjects (12 male, 12 female)
- Conducted in Brown “Cave”
- 3 conditions of display-interaction offset
 - collocated
 - 3 inches
 - 2 feet
- 15 trials per condition
- Within-subjects design
- Target color used as second factor to control for color difficulty

Experimental Procedure

- Pre-questionnaire & color vision screening
- 6 practice trials
- For each trial
 - centering task
 - color matching
- Post-questionnaire
- 15 more trials with subject chosen offset
Performance Metrics

- Measurements
 - Time to center hand
 - Time to chose matching color
 - Chosen color

- Derived
 - Distance between target and chosen
 - Accuracy per time

Results – Time to Match Color

![Box plot showing time to match color at different offsets](image)
Results – Centering Time

Results – Distance Between Target and Chosen Color
Results – Accuracy per Time

Results – ANOVA

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Factor</th>
<th>D_f</th>
<th>F-value</th>
<th>$Pr(>F)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>Offset</td>
<td>2</td>
<td>1.297</td>
<td>0.283</td>
</tr>
<tr>
<td></td>
<td>Color</td>
<td>14</td>
<td>7.867</td>
<td>2.27×10^{-14}</td>
</tr>
<tr>
<td>Distance</td>
<td>Offset</td>
<td>2</td>
<td>4.13</td>
<td>0.0224</td>
</tr>
<tr>
<td></td>
<td>Color</td>
<td>14</td>
<td>20.7</td>
<td>$< 2.0 \times 10^{-16}$</td>
</tr>
<tr>
<td>Accuracy Per Time</td>
<td>Offset</td>
<td>2</td>
<td>1.655</td>
<td>0.202</td>
</tr>
<tr>
<td></td>
<td>Color</td>
<td>14</td>
<td>7.108</td>
<td>7.98×10^{-13}</td>
</tr>
<tr>
<td>Centering Time</td>
<td>Offset</td>
<td>2</td>
<td>8.2594</td>
<td>0.0008614</td>
</tr>
<tr>
<td></td>
<td>Color</td>
<td>14</td>
<td>0.7685</td>
<td>0.7033</td>
</tr>
</tbody>
</table>
Results – Paired Sample T-Tests

- Bonferroni correction

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short vs. Long offset</td>
<td>Time</td>
<td>2.2635</td>
</tr>
<tr>
<td></td>
<td>Distance</td>
<td>2.5266</td>
</tr>
<tr>
<td></td>
<td>Accuracy Per Time</td>
<td>2.1699</td>
</tr>
<tr>
<td></td>
<td>Centering Time</td>
<td>1.689 x 10^{-7}</td>
</tr>
<tr>
<td>Collocated vs. Long offset</td>
<td>Time</td>
<td>0.19872</td>
</tr>
<tr>
<td></td>
<td>Distance</td>
<td>0.0026733</td>
</tr>
<tr>
<td></td>
<td>Accuracy Per Time</td>
<td>0.1221</td>
</tr>
<tr>
<td></td>
<td>Centering Time</td>
<td>1.944 x 10^{-5}</td>
</tr>
<tr>
<td>Collocated vs. Short Offset</td>
<td>Time</td>
<td>0.3624</td>
</tr>
<tr>
<td></td>
<td>Distance</td>
<td>0.0027369</td>
</tr>
<tr>
<td></td>
<td>Accuracy Per Time</td>
<td>0.2526</td>
</tr>
<tr>
<td></td>
<td>Centering Time</td>
<td>1.2495</td>
</tr>
</tbody>
</table>

Results – Second Phase

- Chosen offset
 - mean – 1.34 feet
 - SD – 1.026
Post – Questionnaire Results

Discussion

- Both offset conditions were significantly better than collocation
 - distance
 - user preference

- No significant difference between offset conditions

- For centering task
 - most similar to Mine and Paljic
 - collocation and minimal offset significantly faster

- Results agree and disagree with previous work
Conclusion

- Compared effect of positional offsets on user performance in SSVE
 - color matching
 - centering
- Centering task performance in line with previous work
- Color matching performance shows technique does not fit within established guidelines
- Further studies needed

Next Class

- 3DUI and the Real World
- Readings
 - 3DUI Book – Chapter 12