
An Efficient Text Input Method for Pen-based Computers

Toshiyuki Masui

Sony Computer Science Laboratory Inc.
3-14-13 Higashi-Gotanda

Shinagawa, Tokyo 141-0022, Japan
+81-3-5448-4380

masui@csl.sony.co.jp

ABSTRACT
Pen-based computing has not yet taken off, partly because of
the lack of fast and easy text input methods. The situation
is even worse for people using East Asian languages, where
thousands of characters are used and handwriting recogni-
tion is extremely difficult. In this paper, we propose a new
fast text input method for pen-based computers, where text
is not composed by entering characters one by one, but by
selecting words from a menu of candidates created by filter-
ing the dictionary and predicting from context. Using our
approach, users can enter Japanese text more than twice as
fast as recognition-based and other existing text input meth-
ods. User studies and detailed analysis of the method are also
given.

KEYWORDS: Input devices, Pen-based input, Predictive
interface, Hand-held devices, International interfaces, POBox

INTRODUCTION
Although a variety of pen-based computers are available these
days, they are not as widely used as keyboard-based comput-
ers, partly because entering text is much harder on pen-based
machines. Traditionally, handwriting recognition techniques
and the soft keyboard (virtual keyboard displayed on the
tablet of a pen computer) used to be the main techniques for
entering characters on pen-based computers, although other
techniques have also been proposed[4][6]. However, using
any of these techniques takes much longer to enter text than
with a standard keyboard.

The situation is worse for East Asian languages such as Chi-
nese, Japanese, etc. These, unlike European languages, have
thousands of character faces. Even with a keyboard, it is
not easy to enter a character. A variety of techniques for en-
tering text into computer have been investigated. The most
widely-used Japanese input technique is “Roman-Kanji con-
version” (RKC), in which a user specifies the pronunciation
of a word with an ASCII keyboard, and the system shows the
user a word with the specified pronunciation1. If the word

1Japanese characters consist of two character sets. Kanji characters,

Published in:
Proceedings of the ACM Conference on Human
Factors in Computing Systems (CHI’98) (April
1998), ACM press, pp. 328–335.

was not the one that the user intended to use, the user types
a “next candidate key” until the correct word appears as the
candidate.

On almost all the pen-based computers available in Japan,
either RKC or handwriting recognition is supported. Text
input is slow and tiring using either of the techniques, for
the following reasons. Specifying the pronunciation of every
input word using a soft keyboard takes a lot of time, and
the user must convert the pronunciation to the desired Kanji
strings with extra keystrokes. Handwriting recognition has
more problems. First, the recognizer has to distinguish be-
tween thousands of characters, often making errors. Many of
the characters in the character sets have similar shapes, so it
is inherently difficult to make recognition reliable. Second,
in many cases, users do not remember the shape or the stroke
order of Kanji characters, even when they have no problem
reading them. Finally, writing many characters with many
strokes on a tablet is very tiring. With these difficulties, it is
believed to be difficult to enter Japanese text faster than 30
characters a minute on pen-based computers, which is several
times slower than using keyboards.

We have developed a new pen-based text input method called
POBox (Pen-Operation Based On eXample), where users can
efficiently enter text in any language, using menus, word
prediction and approximate pattern matching. The remainder
of this paper demonstrates the details of POBox.

STRATEGIES FOR RAPID TEXT ENTRY
There is a big difference between the speed of typing on
keyboards and pointing to characters on soft keyboards of
pen-based computers. Computer users can easily type more
than five characters per second, while it is very difficult to
touch three character keys per second, accurately on the soft
keyboard of a pen-based computer. In contrast, the speed of
selecting an item from a list is faster with a pointing device,
and many keyboard-oriented text editors (e.g. Emacs) now
have mouse interfaces. For this reason, forcing the user
to enter many characters should be avoided on pen-based
computers, while a better approach should allow the user to
select a word from a list of candidates, in a minimum number
of penstrokes. We took the following approach.

imported from China, contain both meaning and pronunciation, while Kana
characters only represent pronunciation.

Figure 1: Initial display.

Figure 2: Selecting the “F” key.

Figure 3: Selecting “first” by dragging.

Using dynamic menus to show candidates and select
words: The desired word can be picked up directly from a
pulldown or popup menu.

Dynamic query for dictionary search: As soon as the user
specifies a portion of the pronunciation or the spelling of a
word using the soft keyboard on the tablet, POBox shows a
menu of candidate words that match the input.

Using term frequency and example phrases: The words
which are most likely to appear at the insertion point in the text
are shown at the top of the menu. The likelihood is calculated
from the term frequency and context. For example, since the
word “interface” tends to come after “user,” it appears at the
top of the menu after the user has selected “i” as the first
character following “user.”

Dynamic approximate string matching for selecting can-
didate words: If the pattern specified by the user does not
exactly match any of the words in the dictionary, POBox
automatically performs approximate string search based on
the following two strategies. One is spatial approximation,
where adjacent characters on the soft keyboard are treated
equally in the search. This strategy is effective especially
when the soft keyboard is small and precise selection is diffi-
cult. For example, if the user failed to tap the right position of
a soft keyboard and selected “dtns” to enter “dynamic,”
no word in the dictionary matches “dtns” and POBox auto-
matically searches the dictionary using the less strict pattern
“[ersdfxc][rtyfg][hjbnm][weasdzx],” based on
the arrangement of ASCII keyboard. (“d” key is surrounded

Figure 4: Selecting “first” after releasing the pen from the
tablet.

Figure 5: Selecting “we” after selecting “first”.

Figure 6: After selecting “we”.

by “e,” “r,” “s,” “f,” “x” and “c” keys.) This pattern
matches words like “synergy” and “dynasty,” but since
“dynamic” has higher term frequency than these words, it is
shown in the candidate word list for the selection. The other
is pattern matching allowing errors. This strategy is effective
when the user does not remember the correct spelling or the
pronunciation of a word. In this case, POBox automatically
looks for words whose spelling or pronunciation is closest to
the pattern and shows them as candidates. Users can even
specify only a portion of a word to get the desired word in
the candidate list.

Simple dictionary adaptation: Newly selected words are
put at the top of the dictionary, and are likely to be shown
at the top of the menu so that the dictionary reflects the
characteristics of the current text.

EXAMPLES
Entering English Text
First, for explanatory purpose, we show how to use POBox
for entering English text, although POBox is more effective
for entering Japanese and other East Asian languages. We
used the ACM CHI’95 Electronic Proceedings CD-ROM to
create an English dictionary with term and phrase frequen-
cies. We extracted plain text files from all the HTML files
in the CD-ROM, counted the occurrences of words and word
combinations, and created the dictionaries by sorting the en-
tries by frequency order. The remainder of this section uses
the sentence (“First, we show our technique for entering En-
glish text.”) as the sample input text for our example.

Figure 7: Selecting “show” from the menu.

Figure 8: Selecting the “E” key.

Figure 9: Moving to the “N” key and selecting “entering”.

Figure 1 shows the startup display of POBox. When the user
touches the “F” key, the display changes to Figure 2, showing
the frequently used words that start with “F” in a pulldown
menu. Since the word “first” is a frequently used word and is
found in the menu, the user can drag the pen and highlight the
word “first” as shown in Figure 3, and then take the pen off
the tablet to complete the selection. Alternatively, if the user
does not make a selection from the pulldown menu of Figure
3, he can choose the desired word from the popup menu as
shown in Figure 4.

After selecting “first”, the display changes to Figure 5. In the
menu at the bottom, the words that often come after “first”
are listed in order of frequency. The word combination “first
the” appears 27 times in the CHI’95 CD-ROM, “first and”
and “first time” appear 20 times, etc. Since the next word,
“we,” happens to be in the list because “first we” appears 13
times in the CD-ROM, the user can directly select “we” by
touching it in the menu. After selecting “we”, the display
changes to Figure 6. In this case, “show” is not found in
the menu, but it can be selected from the pulldown menu by
touching the “S” key as shown in Figure 7.

After this, “our”, “technique” and “for” can be selected in
a similar manner. Touching the “E” key does not make the
system display the next intended word (“entering”) as shown
in Figure 8, but touching the “N” key next narrows the search
space of the dictionary and “entering” then appears in the
menu for the selection (Figure 9).

From start to finish, the user only had to tap the tablet 15

Figure 10: Specifying “mdtrn” to get “Mediterranean”.

Figure 11: After specifying “comple”.

Figure 12: After specifying “cplm”.

times to enter the phrase “First, we show our technique for
entering.” Notice that the user made no spelling errors with
this method, since all the input words were taken from the
dictionary.

Using Approximate String Matching

With the approximate string matching feature, even when the
user does not specify the correct spelling of a word, there is
a good chance of finding the desired word among the can-
didates. Also, the user can specify only part of the spelling
to find the desired word. For example, if the user does not
remember the spelling of “Mediterranean,” he can specify
“mdtrn” to see the list of words which are close to the pattern
and then can find the right word in the list (Figure 10.)

The same technique can be used to enter a word that has a
common prefix. If the user tries to enter “complementary”
and specifies “comple,” he still cannot find the word in the
candidates in Figure 11, since there are many commonly
used words that begin with “comple.” Instead, the user can
specify the characters that better represent the word. As
shown in Figure 12, the user can obtain “complementary” by
specifying “cplm,” although other patterns such as “cpmt”
will also work.

Entering Japanese Text

With POBox, users can enter Japanese text much more easily
than RKC and handwriting recognition systems. We show
the example by using “

Word Spelling/Pronunciation

 the

 of

 to

 and

 THE

 OF

 TO

 AND

 AS

Word Spelling/Pronunciation

 the

 the

 the

 ...

 THE

 THE

 THE

 ...

Context

 of

 in

 to

 ...

 as well

 the THE into

 as

S
a b c

*

a

Figure 13: Initial display in Japanese input mode.

Figure 14: Selecting “ ”.

Figure 15: Before selecting “ ”.

”2 as a sample Japanese input text. Figure 13 shows the
initial display of POBox in Japanese input mode. A Hira-
gana character table is displayed for entering pronunciations,
instead of the Roman alphabet in English mode.

The pronunciation of the first word “ ” is “ ”(i-
ka-ni), and the user can select the word by choosing “ ”(i)
and “ ”(ka) from the Hiragana keyboard, just like in the
English example. Figure 14 shows how the user can select
the word “ ” with the pulldown menu. The user can
select the next word “ ” (pronounced “hon-shuhou”)
after selecting its pronunciation “ ”(ho) and “ ”(n).

In this way, the user can enter Japanese text by specifying
the pronunciation of the first portion of the word and then
selecting the desired word from the menu, just like specifying
the spelling for English words. The user can input the phrase
“ ” in 7 penstrokes, whereas the ordinary RKC
method requires at least 20 penstrokes.

DETAILS OF THE ALGORITHM
Dictionaries and Word Prediction
The word dictionary is a set of 2-tuples fword, spelling/
pronunciationg sorted by the term frequency of the word.
The top portion of the English word dictionary is shown in
Figure 16. Since “the” appears more often than any other
word in the corpus, it resides at the top of the dictionary, with
its spelling “THE.” The phrase dictionary is a set of 3-tuples
fcontext, word, spelling/pronunciationg sorted by the phrase

2“Here, we show an example of entering text using this method”

Figure 16: Word dictionary.

Figure 17: Phrase dictionary.

frequency. Here, “context” means the word(s) that precede
the input word. The top portion of the initial phrase dictionary
is shown in Figure 17. Of all the phrases (lists of more than
one words), “of the” occurs most often and hence appears at
the top of the phrase dictionary.

Whenever possible, POBox checks the context and the char-
acters specified by the user, and generates the list of candidate
words for the next user input. First, it checks the phrase dic-
tionary and looks for the dictionary entries whose context
match the current context and whose spelling match the user
input. If such entries are found, POBox puts them into the
candidate list. Then it checks the word dictionary and looks
for entries whose spelling match the user input. If no entry
is found in both of the dictionaries, POBox tries to find more
candidate words by performing approximate string matching
described in the next section. After the user selects a word
from the menu, the newly selected word and phrase are put
at the top of the dictionaries.

A middle-sized natural language dictionary usually has 20,000
to 50,000 word entries, which occupies less than 500KB of
memory without compression. With appropriate compres-
sion and indexing techniques, a word dictionary plus a phrase
dictionary can easily be packed into 1MB of memory.

Approximate String Matching
Our approximate string matching algorithm is based on Baeza-
Yates’ “shifter algorithm”[1], with our extensions for allow-
ing errors and handling simple wildcard characters. The
shifter algorithm is also used in an approximate string match-
ing program agrep[7] (an extension to grep on UNIX),
where wildcard characters are treated differently from ours.
In our algorithm, we limit the wildcard to the basic “.*”
pattern in order to achieve simple and fast processing.

Figure 18: A state transition machine which accepts
“ab.*ca”.

S

*

q

w

a

s
z

x

g

h

b

v
n

q

w

a

s
z

x

d

f

c
x

v

q w

a s

z x

e

c

r

f

v

t

g

b

d

y

h

n

S a b c

a b c

a b c

*

*

*

* *

* *

*

*

*

*

*

ε ε

εε
*

**

ε
*

ε
*

A0

A1

A2

*

*

a

a

a

ε
*

ε
*

a b c

a b c

a

a b c

b

a b c

r

a

a

a

a

Figure 19: A state transition machine with spatial ap-
proximation

Figure 20: State transition machine which allows er-
rors.

Figure 18 shows a nondeterministic state transition machine
which accepts a regular expression “ab.*ca”. In the shifter
algorithm, a bit string is used to represent the status of this
state machine. For example, the initial state is represented as
“10000”, and it becomes “11000” after accepting an “a”.

The state machine can be extended to perform spatial ap-
proximate search by adding transitions by adjacent characters
(Figure 19.) The state machine can also be extended to allow
errors by adding extra rows of states as shown in Figure 20.
A0 is the accept state with no errors, and A1 and A2 are the
accept states with one and two errors, respectively. Like most
spelling correctors, POBox treats character insertion, deletion
and substitution as errors. Figure 21 shows the state transition
by “abracadabra”. After reading “ab”, state A2 becomes
active, showing that “ab” matches “ab.*ca” with two er-

Figure 21: State transition by “abracadabra”.

rors. After reading “abra”, state A1 also becomes active,
showing that “abra” matches “ab.*ca” with one error.

This state transition can be calculated with simple logic and
shift operations. For a short pattern with small ambigu-
ity, POBox first creates a deterministic state transition table
from the nondeterministic state transition diagram like the
one shown in Figure 20, and uses the transition table instead,
for faster processing. For example, the state machine in Fig-
ure 20 can be converted to a deterministic state transition
table with 32 states.

EVALUATION
POBox currently runs on UNIX(X11), Windows95, Newton,
Java VM, and Pilot. POBox for Pilot is the latest version, dis-
tributed to the public on the Web3 since July 1997, and down-
loaded by more than 10,000 people in two months. Since it
is the most widely-used version of POBox, we used it for
the evaluation, although it lacks the pulldown menu feature
because of its limited processing power.

A set of inquiries asking the user’s background and impres-
sions of POBox was also presented on the Web page for
downloading POBox, and 1,057 people answered the ques-
tions. Among the 967 people with experience in both POBox
and Japanese handwriting recognition systems, 126 people
(13.0%) said they feel that POBox is as efficient as handwrit-
ing recognition systems, and 796 people (82.4%) said POBox
is more efficient. Among the 899 people with experience in
both POBox and RKC systems, 118 people (13.2%) said they
feel that POBox is as efficient as conversion-based systems,
and 718 people (80.1%) said POBox is more efficient. Sev-
eral people sent back comments saying that they feel POBox
is the most effective pen-based Japanese input method they
have ever used.

To obtain more reliable data, we asked POBox users who
answered the inquiry to compare the text input time using
POBox and other handwriting recognition systems4. Of these
users, we selected approximately 300 people who seemed to
have reasonable experience with both POBox and handwrit-
ing recognition systems, independent of their performance
on the two systems, and 31 people agreed to perform the ex-
periment and sent back the test results. All of them are adult
male, and most of them are engineers in various Japanese
companies. About half are in their thirties, three are in their
forties, all of them having enough experience on both POBox
and handwriting recognition systems.

We asked the participants to measure the entry time of a
sample Japanese text consisting of 53 Kanji/Kana characters
and 2 punctuation characters, under the following conditions:

1. writing the text on paper.
2. entering the same text using POBox.
3. entering the text using conventional RKC.
4. entering the text using the participants’ favorite Kanji hand-

writing recognition systems on any architecture.

3http://www.csl.sony.co.jp/person/masui/POBox/pilot.html
4We offered calling cards (a value of approximately $5) to the participants

as a token incentive to perform the test seriously.

100 200

average = 67.1 (49.2 chars/min)

(a) Handwriting on paper

average = 81.5 (40.5 chars/min)

(b) POBox on Pilot

average = 148.9 (22.2 chars/min)

(c) RKC on Pilot

average = 164.4 (20.1 chars/min)

(d) Handwriting Kanji recognition
 on Zaurus

100 200

100 200

0

0

5

10

15

20

0

0

Text input time (sec)

Number of trials

100 200

5

10

15

20

5

10

15

20

5

10

15

20

i =0

i =1

i =2

i =3

i =5
i =4

10 20 50 100521

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

P(i,n) :Hit ratio
i : number of penstrokes
 before showing the menu

n : Number of candidates in the menu

Figure 22: Distribution histograms of text input time
using different methods.

The second and third tests were performed on the Pilot, which
does not have a Kanji handwriting recognition system. There-
fore, we asked the participants to use their favorite recognition
systems, instead.

Among the 31 participants, 10 people used the same handwrit-
ing recognition system available on a Zaurus PDA5 (made by
Sharp). Other people used various handwriting recognition
systems on PCs and other PDAs, but the recognition time was
longer than on the Zaurus. The summary of the test result
is shown in Figure 22. Since not all participants completed
all experiments for the same number of times, the area of the
histogram differ among the tests.

Input Speed Comparison
Most of the participants could write the sample text on pa-
per faster than with any of the electronic text input methods.
(The average was about 50 chars/min.) Writing speed does
not vary significantly between people. On the other hand,
the text input speed using Zaurus’ Kanji handwriting recog-
nition system does vary considerably from person to person,
the average being about 20 chars/min. This is much slower
than writing on paper, because of the recognition error and

5Zaurus was the most popular PDA in Japan at the time this experiment
was performed.

difficulty of writing on a tablet. No correlation was observed
between the speed of writing on paper and the speed of en-
tering text using handwriting recognition systems.

The average text input speed using POBox was about 40
chars/min, which is approximately twice as fast as con-
ventional RKC or Zaurus’ handwriting recognition system.
While the fastest handwriting recognition times observed
were shorter than the slowest POBox users, every individual
tested performed better with POBox than with the handwrit-
ing recognition system.

Approximate String Matching
We have not advertised the approximate string matching fea-
ture very much on the Web page, but 448 people (43.4%) of
the users noticed this feature. Of these 448 users, only 30 of
them (6.7%) answered that approximate string matching was
not useful for them.

DISCUSSIONS
Stochastic Analysis of the Dictionary
The total number of words in the CHI’95 CD-ROM is about
650,000, and the distribution of the frequency conforms well
to Zipf’s rank-frequency law. From the data, the probabil-
ity of finding the desired word in the candidate menu after
entering the top portion of the spelling can be calculated
by summing up all the frequencies of words that appear in
the menu after each penstroke. This is the case when us-
ing POBox without the prediction from context feature. The
result is shown in Figure 23.

When the system shows 10 candidates after each penstroke,
about 53% of the input words can be found in the menu after
specifying one character, and about 92% of words can be
found after three penstrokes. This means that 92% of the
words can be entered with four penstrokes, while about 50%
of the words in the CHI’95 CD-ROM consist of more than
four letters. This result shows that the menu-based text input
method of POBox is effective even without the prediction
mechanism.

The same analysis for the Japanese dictionary is shown in
Figure 24. Since about 50 Hiragana characters are used for

Figure 23: Probability of finding the desired word in
the menu (English text).

i =0

i =1

i =2

i =3

i=5

i =4

10 20 50 100521

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

i =0

i =1

i =2
i =3

i=5
i =4

10 20 50 100521

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

i =0

i =1

i =2
i =3

i=5
i =4

10 20 50 100521

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(b) With prediction (c) With prediction and dictionary adaptation(a) Without prediction

i =0

i =1

i =2

i =3
i=5

i =4

10 20 50 100521

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

n : Number of candidates in the menu

P(i,n) :Hit ratio
i : number of penstrokes
 before showing the menu

Figure 25: Probability of finding the desired word in the menu.

Figure 24: Probability of finding the desired word in
the menu (Japanese text).

Japanese text input, most of the desired words can be found
in the menu after two or three penstrokes, while more than
four penstrokes are required using ordinary Kanji-conversion
methods.

Dynamic Analysis
More accurate hit ratio of POBox menus can be calculated
by simulating the prediction and adaptation mechanisms of
POBox with real English text. Figure 25(a) shows the hit ratio
calculated by using all the texts in the CHI’95 CD-ROM. The
hit ratio with the prediction from context feature is shown in
Figure 25(b), and the hit ratio with prediction and dictionary
adaptation is shown in Figure 25(c). Prediction from context
is effective for increasing the hit ratio, especially when no
input is specified for selecting words (i = 0). In this case,
POBox displays the correct word among its 10 candidates
38% of the time, whereas this number drops to 26% when
prediction is not used.

Input Speed Estimation
Text input speed can also be estimated by dynamic analysis
if the character input speed using the soft keyboard and the
speed of menu selection is known.

From the dynamic analysis shown above, the hit ratio P (i; n)
of finding a word in the menus with n items after selecting

i characters is known. If it takes Tk for a user to input
one character and it takes Ts(n) to select an item from the
menu with n items, the average total time for entering a word
(T (i; n)) can be calculated by the following formula:

T (i; n) = Ts(n)
+ (Tk + Ts(n))(1 � P (0; n))
+ (Tk + Ts(n))(1 � P (1; n))
+ ...
= Ts(n) +

P
1

j=0(Tk + Ts(n))(1 � P (j; n))

If the user starts using the menu after entering at least i
characters, the average total time T (i) is calculated by the
following formula:

T (i; n) = i � Tk + Ts(n) +

1X

j=i

(Tk + Ts(n))(1 � P (j; n))

We assume thatTs(n) is proportional ton and Tk is a constant
value, since POBox shows a menu of candidates according
to the probability of the words, and the user cannot tell the
ordering of the words in the menu beforehand. We calcu-
lated T (i; n) using P (i; n) for the two cases of slow and fast
character input.

Slow Character Input: Figure 26 shows the calculated av-
erage time for entering a word where character input speed
is slow and Ts(n) can be estimated to be n=10 and Tk is the
constant 1. In this case, without prediction, the minimum text
input time is obtained when i = 1 and n = 3, which means
using a three-entry menu after one penstroke without a menu.
With prediction, the input time is minimized when i = 0 and
n = 3, which means using a three-entry menu from the start.
This is because frequently-used words are displayed at the top
of the menu even before the user specifies characters for fil-
tering the dictionary. The estimated average time for entering
words is smaller with prediction than without prediction.

Faster Character Input: Figure 27 shows the average time
for entering a word, where character input speed is faster than
the previous example and Ts(n) is estimated to be n=3. In
this case, minimum input time is obtained when i = 0 and
n = 1, which means predicting one word every time after
entering a character.

3.0

4.0

5.0

6.0

5 10 5 10

i=0
i=1
i=2
i=3
i=4
i=5T(i,n)

n
Without prediction With prediction

4.0

5.0

6.0

7.0

3 6 3 6

i=0
i=1
i=2
i=3
i=4
i=5T(i,n)

n
Without prediction With prediction

Figure 26: Text input speed estimation with slow char-
acter input. (Tk = 1, Ts(n) = n=10)

Figure 27: Text input speed estimation with faster char-
acter input. (Tk = 1, Ts(n) = n=3)

In this manner, the fastest method for entering text depends
on the relation between Tk=Ts(n) and P (i; n). Roughly
speaking, when Tk=Ts(n) is very small (character input is
very fast) as with a keyboard, the fastest way of entering text
is entering characters without the use of menus. On the other
hand, if Tk=Ts(n) is very large (character input is very slow),
using menus with many entries is faster. The two cases shown
in Figure 26 and Figure 27 are between these extremes, and
POBox supports the entire spectrum.

Related Work
Darragh’s Reactive Keyboard[2] predicts the user’s next key-
strokes from the statistical information gathered by the user’s
previous actions and shows the predicted data for the selec-
tion. Unfortunately, the Reactive Keyboard is not usually
useful for experienced computer users, since they can type
much faster than selecting candidates from the menu. On
pen-based computers, however, people cannot enter charac-
ters as fast as with keyboards, thus predictive methods like
POBox and the Reactive Keyboard are useful. By integrating

existing common GUI tools with the prediction mechanism,
POBox can greatly reduce the time for text input on pen-based
computers, especially for Japanese and other languages where
direct text input is not possible.

Greenberg[5] argued that it is convenient to put frequently
used tools close at hand, and showed that this technique
is useful for issuing text commands in his WORKBENCH
system. POBox resembles the WORKBENCH system in that
both frequently used words and recently used words always
appear close at hand at the top of the candidate list for quick
selection.

Fukushima et al.[3] showed that input word prediction can
reduce the search space and the number of penstrokes for
handwriting recognition of Japanese texts. Although they
reported that their prediction system could reduce input pen-
strokes from 10 to 40 percent, problems with handwriting
recognition still remain and the text input speed does not
increase dramatically.

CONCLUSIONS
We developed a new fast text input method for pen-based
computers based on dynamic query of the dictionary and
word prediction from context. With our method, the speed of
text input on pen-based computers greatly increases and for
the first time, pen computing becomes a viable alternative to
keyboard-based input methods.

ACKNOWLEDGEMENTS
We would like to thank Jun Rekimoto and Jeremy Cooper-
stock for giving us many valuable suggestions. We also thank
many POBox users who actually used it, sent comments to
us, and performed the evaluation tests.

REFERENCES
1. Baeza-Yates, R. A., and Gonnet, G. H. A new approach to

text searching. Communications of the ACM 35, 10 (October
1992), 74–82.

2. Darragh, J. J., Witten, I. H., and James, M. L. The Reactive
Keyboard: A predictive typing aid. IEEE Computer 23, 11
(November 1990), 41–49.

3. Fukushima, T., and Yamada, H. A predictive pen-based
Japanese text input method and its evaluation. Transactions of
Information Processing Society of Japan 37, 1 (January 1996),
23–30. in Japanese.

4. Goldberg, D., and Richardson, C. Touch-typing with a
stylus. In Proceedings of ACM INTERCHI’93 Conference on
Human Factors in Computing Systems (CHI’93) (April 1993),
Addison-Wesley, pp. 80–87.

5. Greenberg, S. The Computer User as Toolsmith. Cambridge
Series on Human-Computer Interaction. Cambridge University
Press, March 1993.

6. Venolia, D., and Neiberg, F. T-Cube: A fast, self-disclosing
pen-based alphabet. In Proceedings of the ACM Conference on
Human Factors in Computing Systems (CHI’94) (April 1994),
Addison-Wesley, pp. 265–270.

7. Wu, S., and Manber, U. Agrep - a fast approximate pattern-
matching tool. In Proceedings of USENIX Technical Conference
(San Francisco, CA, January 1992), pp. 153–162.

