
A Practical Approach for Writer-Dependent
Symbol Recognition Using a

Writer-Independent Symbol Recognizer
Joseph J. LaViola, Jr., Member, IEEE, and Robert C. Zeleznik

Abstract—We present a practical technique for using a writer-independent recognition engine to improve the accuracy and speed

while reducing the training requirements of a writer-dependent symbol recognizer. Our writer-dependent recognizer uses a set of

binary classifiers based on the AdaBoost learning algorithm, one for each possible pairwise symbol comparison. Each classifier

consists of a set of weak learners, one of which is based on a writer-independent handwriting recognizer. During online recognition, we

also use the n-best list of the writer-independent recognizer to prune the set of possible symbols and, thus, reduce the number of

required binary classifications. In this paper, we describe the geometric and statistical features used in our recognizer and our all-pairs

classification algorithm. We also present the results of experiments that quantify the effect incorporating a writer-independent

recognition engine into a writer-dependent recognizer has on accuracy, speed, and user training time.

Index Terms—Handwriting recognition, AdaBoost, writer dependence, writer independence, pairwise classification, real-time systems.

Ç

1 INTRODUCTION

WITH the increasing popularity of pen-based computers,
accurate and robust handwriting recognition is becom-

ing a critical part of many pen-based applications. The choice
of recognition engine—writer-independent or writer-depen-
dent—has a significant impact beyond just recognition
quality. Writer-independent systems provide the benefit that
end users can simply step up to the application and start
writing without any awareness of or special interaction with
the underlying recognizer. Alternatively, writer-dependent
systems maximize recognition accuracy by requiring that end
users first provide some form of structured input in order to
tailor the recognition engine to the user. The choice of
recognition engine also has a significant impact on applica-
tion design, since writer-independent systems are typically
harder to customize to a specialized symbol set (for example,
mathematical symbols or users who have alternate techni-
ques for entering the same symbol). For example, the
Microsoft Handwriting Recognizer [18] is designed to allow
an application designer to choose a specific symbol set from a
predefined list; however, the designer cannot make any
modifications to a chosen set (for example, restricting the
letter “Z” to Z or Z�), nor can additional symbols such as

R
andP

be added to the set.
Given the functional advantages of writer-dependent

recognition, we were interested in the hypothesis that the
primary deficiency of writer-dependent recognition, exten-
sive training time on the part of the user, could largely be

addressed by bootstrapping the training process with a
writer-independent recognizer. In essence, we want to
leverage the extensive a priori training typically done during
the development of a writer-independent recognizer. Thus,
our objective in this work is to quantify the effect incorporat-
ing a writer-independent recognizer would have on writer-
dependent recognition accuracy as a function of the number
of training samples used per symbol.

Consequently, we developed a representative symbol
recognizer that, for simplicity of implementation, uses a set of
binary classifiers, based on AdaBoost [34], as part of an all-
pairs recognition algorithm. We use the Microsoft hand-
writing recognizer as weak learners in each of the pairwise
classifiers. This naive all-pairs strategy was chosen specifi-
cally for its simplicity and accuracy. Runtime efficiency was
not a primary focus of our work, although we did exploit an
important speedup opportunity arising from the observation
that the Microsoft handwriting recognizer has the correct
symbol in its n-best list over 99 percent of the time, despite its
overall accuracy of just over 91 percent (see Section 4). By
using the n-best list during a preprocessing step to reduce the
number of possible symbol candidates, we were able to prune
the number of classifiers needed for each input symbol.
Interestingly, this pruning step not only improves runtime
speed but also improves recognition accuracy.

In the next section, we discuss related work on symbol
recognition. Section 3 describes our recognition algorithm,
including the features used in our weak learners and how
we incorporate the Microsoft handwriting recognizer into
our writer-dependent recognition engine. Section 4 presents
the results of our recognition experiments and discusses
their implications. Finally, Section 5 presents conclusions.

2 RELATED WORK

There has been a significant amount of work in developing
both writer-dependent and writer-independent symbol

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 11, NOVEMBER 2007 1917

. J.J. LaViola Jr. is with the School of Electrical Engineering and Computer
Science, University of Central Florida, Engineering 3—Harris Center,
Orlando, FL 32816-2362. E-mail: jjl@cs.ucf.edu.

. R.C. Zeleznik is with the Department of Computer Science, Brown
University, Box 1910, Providence, RI 02912. E-mail: bcz@cs.brown.edu.

Manuscript received 21 Oct. 2005; revised 7 June 2006; accepted 4 Jan. 2007;
published online 8 Feb. 2007.
Recommended for acceptance by D. Lopresti.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0562-1005.
Digital Object Identifier no. 10.1109/TPAMI.2007.1109.

0162-8828/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

recognition systems, and there has been a variety of different
algorithmic approaches for doing so [6], [29], [39]. For
example, one of the first approaches to symbol recognition
was to break symbols up into zones based on the symbol’s
bounding box. The sequence of zones traversed by the stylus
was used to identify the symbol [9], [12]. Similarly, pen
motion based on direction sequences has been used with
lookup tables to recognize symbols [15], [30]. Smithies et al.
[37] and Rubine [32] both use a variety of statistical and
geometric features (angle and quadrant histograms, aspect
ratio, stroke length, and others) as input to a K-Means
classifier and a simple linear classifier, respectively. Classi-
fication algorithms include template matching [8], [27], [28],
decision trees [3], [19], neural networks [11], [24], hidden
Markov models (HMMs) [20], [21], [41], support vector
machines [2], Gaussian classifiers [26], and principal compo-
nent analysis [10]. In addition to these approaches, AdaBoost
has been utilized for symbol recognition in conjunction with
neural networks [35] and Viola-Jones filters [36].

Although there has been a significant amount of work
done in symbol recognition, to the best of our knowledge, no
one has attempted to incorporate a robust writer-indepen-
dent recognition engine such as the Microsoft handwriting
recognizer into a writer-dependent scheme for reducing the
training set and improving accuracy and speed. However,
there has been work on adapting writer-independent symbol
recognizers to a particular user’s writing style. Subrahmonia
et al. [38] use an HMM-based writer-dependent system that
adapts a particular set of writer-independent character
models to a writer. Connell and Jain [7] take a slightly
different approach by using writer-independent writing style
models (lexemes) to identify styles present in a particular
writer’s training data. These models are updated using the
writer’s data and writer-independent models replace lex-
emes with inadequate training samples. Other writer adapta-
tion approaches are discussed in [5].

There has also been work on managing the variability in
writing style between different writers and within the same
writer at different times through allograph modeling. Biem
[4] uses the Minimum Classification Error criterion to
reduce error rates using multiple allographs per character.
Other approaches for dealing with different writing and
printed character styles can be found in [25], [31], [33]. The
limitation with these approaches is that the symbol
recognition engine designer may not have these indepen-
dent writing style models, the writer-independent training
data, or access to the inner workings of an independent
recognizer. With our approach, the output of the writer-
independent recognition engine (the n-best list) is the only
information required. Thus, the writer-independent recog-
nizer can be treated as a black box, making it simpler to use
and integrate into a writer-dependent recognition engine.

3 PAIRWISE ADABOOST RECOGNITION AND THE

MICROSOFT HANDWRITING RECOGNIZER

Of the many possible learning algorithms and classifiers used
in symbol recognition, we chose to use AdaBoost in
conjunction with simple weak learners based on different
statistical and geometric features (see Section 3.1). AdaBoost,

developed by Freund and Schapire [13] helps to improve
recognition accuracy by combining simple learning algo-
rithms, is relatively simple to implement, and is easily
extensible. Another important design decision we made
was whether to use a multiclass extension of AdaBoost or to
use a set of pairwise classifiers (for example, multiple binary
classifiers) and then combine their results to generate a
decision. Based on the work of Hastie and Tibshirani [17] and
Friedman [14], we chose a pairwise classification approach
where each pair is compared to each other and use a “max-
wins” rule to make a classification.

3.1 Statistical and Geometric Features

The main input to our symbol recognizer is not a symbol’s
digital ink strokes but rather features calculated from them. A
stroke is defined as a sequence of points s ¼ p1p2 . . . pn in the
xy-plane, where pi ¼ ðxi; yiÞ, 1 � i � n, p1 is the pen-down
point, pn is the pen-up point, and n is the number of points in
the stroke. The features we use describe symbols numerically
and are designed to create boundaries between them, so one
symbol can be discriminated from another in feature space.
Of the 14 different types of features we use in our recognizer,
the first nine are taken from various papers [23], [32], [37],
with the last five developed from our own observations.

3.1.1 Symbol Strokes

Each symbol contains a number of strokes. If we assume
that users write consistently (that is, they always write a
given symbol with the same number of strokes), then this is
one of the few features we can count on to disambiguate
certain symbols from others. Therefore, we can break up the
number of possible symbols into groups before doing any
training. For example, if a user writes an “x” with two
strokes, we can initially disregard any symbols that have
only one stroke. This approach lets us break up our symbol
recognizer into a set of recognizers on the basis of how
many strokes the symbol contains.

3.1.2 Cusp Features

Cusps are defined as points at which two branches of a
curve meet such that the tangents of each branch are equal
[40]. In other words, cusps represent locations of high
curvature or discontinuity in a stroke. Cusps are good
discriminators between smooth and jagged symbols: For
example, the letter “m” can have two cusps (depending on
how it is written), whereas the letter “0” has none. In
addition to the number of cusps, we also compute the
minimum and maximum distances between cusps and the
stroke endpoints. These two features are used to help
discriminate between strokes with cusps in close proximity
to each other and ones with cusps far apart.

3.1.3 Aspect Ratio

A symbol’s aspect ratio is defined as the ratio of the width
to the height of its bounding box. Aspect ratios are good
discriminators between tall and wide symbols. For example,
in general, the letter “b” is much taller than the letter “w.”

3.1.4 Intersection Features

Stroke intersection points are locations at which a stroke
intersects itself. These self-intersections occur in symbols
with loops such as a “2” or “8” (depending on how they are

1918 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 11, NOVEMBER 2007

written) and, thus, they make good discriminators between
symbols with and without loops. Self-intersections can also
occur when users write over their ink when making a
symbol such as a “b” or “d.” As with cusps, we calculate the
minimum and maximum distances between self-intersec-
tions and the stroke endpoints.

3.1.5 Two-Dimensional Point Histogram

A 2D point histogram gives us a distribution of point
locations within a symbol’s bounding box. We break up the
bounding box into an nrow by mcol grid (we use a 3� 3 grid)
and count the number of points in each subbox. The
number of points in each subbox is then divided by the total
number of points in the symbol. Since certain symbols have
their points concentrated at certain locations within their
bounding boxes, this histogram can be a good discrimina-
tor. In addition, it can also be a good discriminator when
one symbol has a concentration of points in a subbox and
another symbol has no points in that subbox. An example
would be the letter “c” and the number “7.”

3.1.6 Angle Histogram

The angle histogram is similar to the 2D point histogram
except we use the angles between the symbol’s stroke
segments and the x-axis. For each stroke in the symbol, we
define a vector ~vj ¼ pi � pi�1 for 2 � i � n and 1 � j � n� 1.
Given a vector ~x ¼ ð1; 0Þ, we compute the angle as follows:

�j ¼ arccos ~x � ~vjk~vjk

� �
: ð1Þ

Each �j is stored in a bin depending on its value; we use a
total of eight bins, breaking up the angles into 45-degree
segments. Finally, each bin is divided by the number of
angles. The angle histogram is a good symbol discriminator
because many symbols have different angular construc-
tions. For example, a “{” and a “3” are usually written in
opposing directions, making their angle histograms differ-
ent. As with the 2D point histogram, in some cases, one
symbol may have a concentration of angles in one direction
(between 0 and 45 degrees), and another symbol may have
none at all, making for a good discrimination metric.

3.1.7 First and Last Distance

The first and last distance feature is simply the distance
between the first and last points in a stroke kpn � p1k. If a
symbol has more than one stroke, an average of the distances
is used. Symbols such as “b” and “o” often start and end in a
similar location meaning their first and last distance is small
compared with symbols such as

R
, “j,” and “y.”

3.1.8 Arc Length

Arc length is the length of a stroke and is defined as

l ¼
Xn
i¼2

kpi � pi�1k: ð2Þ

If a symbol has more than one stroke, then we sum all the arc
lengths from each. Many different symbols have varying arc
lengths, so this is a powerful symbol discrimination feature.

3.1.9 Fit Line Feature

The fit line feature determines whether strokes are straight
lines. This feature finds a least-squares approximation to a

line using principal components and then uses this approx-
imation to find the distance of the projection of the stroke
points onto the approximated line. The closer this distance is
to zero, the straighter the stroke. This feature works very well
for symbols with straight and curvy strokes and also handles
the subtlety of strokes like “(,” “1,” and “).”

3.1.10 Dominant Point Features

The dominant point features are a set of four angle-based
features calculated using dominant points instead of stroke
points. “Dominant points in strokes” are defined as the key
points in a stroke, including the local extrema of curvature,
the starting and ending points of a stroke, and the
midpoints between these points [23]. Thus, the dominant
points in a stroke are a subset of the points in that stroke.
We found that dominant points provide enough informa-
tion to extract these angle-based feature values while
avoiding the extra variation found when computing angles
using all of the stroke points.1

To calculate the dominant point features, we first compute
a sequence of angles �j between the x-axis and the vectors
spanned by consecutive dominant points in the stroke (see
Fig. 1). These angles are calculated using (1), except ~vj ¼
dpi � dpi�1 for 2 � i � mdp, where dp is a dominant point and
mdp is the total number of dominant points.

The first feature is the maximum angle:

amax ¼ max
j
�j: ð3Þ

The second feature, the average angle deviation adev, is
calculated by first computing the differences �k between
consecutive �js, where �k ¼ �j � �j�1 for 2 � j � mdp � 1.
Then,

adev ¼
1

mdp � 2

Xmdp�2

k¼1

�k: ð4Þ

The third feature is the straight line ratio, calculated by
counting the number of angle differences �k that are less
than j�j degrees (we use 3 degrees) and dividing by mdp � 2.
The last feature is the number of zero crossings, the number
of times consecutive �ks go from negative to positive or
positive to negative. The maximum angle, average angle

LAVIOLA, JR. AND ZELEZNIK: A PRACTICAL APPROACH FOR WRITER-DEPENDENT SYMBOL RECOGNITION USING A... 1919

1. We could have used dominant points for the angle histogram, but in
this case, we wanted as much information about a symbol’s angular
fluctuations as possible.

Fig. 1. Dominant point features all derive from the angles between the

vector (1, 0) and the vectors defined by consecutive dominant points in

the stroke.

deviation, and number of zero crossings were all designed
to discriminate between symbols with varying angular
patterns, whereas the straight line ratio was developed to
discern symbols that have straight lines from those that
have a higher curvature.

3.1.11 Stroke Area

The stroke area feature is designed to discriminate between
symbols that are roughly straight and those that are curved in
some way. This feature is especially important when dealing
with symbols such as “1,” “(,” and “).” A “1” written as a
vertical line has little or no stroke area, whereas “(” and “)”
have larger stroke areas. The stroke area is the area defined by
vector pairs created with the initial stroke point and each of
the remaining stroke points. This approach breaks up the
stroke into triangles where the stroke area is simply the sum
of the areas of each triangle (see Fig. 2).

To compute the stroke area, we define vectors ~ui ¼
piþ1 � p1 and ~vi ¼ piþ2 � p1 for 1 � i � n� 2. Then, the
stroke area is given as follows:

sarea ¼
Xn�2

i¼1

1

2
ð~ui � ~viÞ � sgnð~ui � ~viÞ; ð5Þ

where ~ui � ~vi is a scalar and � represents the 2D cross
product.2 For symbols with more than one stroke, we take
the average of the stroke areas.

3.1.12 Side Ratios

The side ratio features are based on the observation that the
first and last points in a stroke have variable locations with
respect to a symbol’s bounding box. For example, a “c” has
starting and ending points far from the left side of its
bounding box, whereas > s starting and ending points are
close to the left side of its bounding box. Therefore, the
starting and ending locations of a symbol can act as a good
symbol discriminator. These features are calculated by
taking the x-coordinates of the first and last points of a
stroke, subtracting them from the left side of the symbol’s
bounding box (that is, the bounding box’s leftmost x value)
and dividing them by the bounding box width. With
multistroke symbols, the averages of these ratios are taken.

3.1.13 Top and Bottom Ratios

The top and bottom ratio features are similar to the side ratio
features. In this case, the y-coordinate of the first and last
points of a stroke is subtracted from the top of the symbol’s
bounding box (that is, the bounding box’s topmost y value),
and then, these values are divided by the bounding box
height. With multistroke symbols, the averages of these ratios
are taken.

3.1.14 Min and Max Features

The min and max features are designed to extract information
from the x and y components of a stroke separately. We
calculate 10 of these features; x and y versions of the number
of local minima, the number of local maxima, the starting
direction, the ending direction, and the length between the
last direction change and the last stroke point.

As an example, Fig. 3 shows the x values of a hand-
written letter “a.” A distinguishing characteristic for many
symbols is the direction of the strokes points as they are
written along the x-axis. Thus, we can extract the number of
direction changes that are made for a given symbol along
the x-axis by calculating the differences d1 ¼ xi � xi�1 and
d2 ¼ xi � xl for 2 � i � n, where xl is the last x value where
a direction change occurred.3 The x values are iterated from
2 to n, and the number of local minima is then the number
of times d1 is negative and d2 is positive, and the number of
local maxima is the number of times d1 is positive and d2 is
negative. In Fig. 3, there is one local minimum and two local
maxima. Two features that are good discriminators for a
variety of symbols are the starting and ending directions for
a stroke along the x-axis. If the stroke’s starting x values
move along the þx direction, a þ1 is assigned to the starting
direction, and if they move along the �x direction, a �1 is
assigned to the starting direction. The same process is used
for the ending direction. In Fig. 3, the starting direction is
�1 and the ending direction is þ1. Finally, the length
between the last x value and the last direction change is
found. This feature is useful for discriminating symbols
with different lengths between the last part of their strokes

1920 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 11, NOVEMBER 2007

Fig. 2. One triangle in the stroke area calculation. The vectors ~u2 and ~v2

are used to compute the area of the triangle defined by points p1, p3,

and p4.

Fig. 3. The x values for the handwritten symbol “a.” In this case, the two

maximums are the first and last x values.

2. If ~ui and ~vi are the first and second rows of a 2� 2 matrix, the 2D cross
product is simply the determinant of the matrix. 3. xl is initially set to the first x value in the stroke.

and tends to have more use for when dealing with a stroke’s
y values. Note that the y versions of these features are found
similarly. These features are similar to the dominant point
features described above, but they take a different approach
because they do not use angle information.

3.2 The Pairwise AdaBoost Classifier

AdaBoost [34] takes a series of weak or base classifiers and
calls them repeatedly in a series of rounds on the training data
to generate a sequence of weak hypotheses. Each weak
hypothesis has a weight associated with it that is updated
after each round, based on its performance on the training set.
A separate set of weights are used to bias the training set so
that the importance of incorrectly classified examples are
increased. Thus, the weak learners can focus on them in
successive rounds. A linear combination of the weak
hypotheses and their weights are used to make a strong
hypothesis for classification.

More formally, for each unique symbol pair, our algorithm
takes as input training set ð~x1; y1Þ; . . . ; ð~xm; ymÞ, where each~xi
represents a feature vector containing J features. Each
yi labels ~xi using label set Y ¼ f�1; 1g, and m is the total
number of training samples. Since we are using a pairwise
approach, our algorithm needs to train all unique pairs of
symbols. For each unique pair, our AdaBoost algorithm is
called on a set of weak learners, one for each element of the
feature set described in Section 3.1. For example, with the
2D point histogram feature, nine weak learners are used, one
for each part of the 3� 3 grid. Thus, there are a total of 47 weak
learners in our initial formulation.4 We chose this approach
because we found, based on empirical observation, that our
features can discriminate between different symbol pairs
effectively. We wanted the features to be the weak learners
rather than having the weak learners act on the features
themselves. Thus, each weak learner Cj uses the jth element
in the ~xi training samples, which is noted by ~xiðjÞ for
1 � j � J .

3.2.1 Weak-Learner Formulation

We use weak learners that employ a simple weighted
distance metric, breaking ð~x1; y1Þ; . . . ; ð~xm; ymÞ into two
parts corresponding to the training samples for
each symbol in the symbol pair. Assuming that the
training samples are consecutive for each symbol, we
separate ð~x1; y1Þ; . . . ; ð~xm; ymÞ into ð~x1; y1Þ; . . . ; ð~xn; ynÞ and
ð~xnþ1; ynþ1Þ; . . . ; ð~xm; ymÞ and define D1ðiÞ for i ¼ 1; . . . ; n
and D2ðiÞ for i ¼ nþ 1; . . . ;m to be the training weights
for each symbol. Note that in our formulation, D1 and
D2 are the training weights calculated in the AdaBoost
algorithm (see Section 3.2.2).

For each weak learnerCj in each feature vector~xiðjÞ in the
training set, the weighted averages are then calculated as

�j1 ¼
Pn

k¼1 xkðjÞD1ðkÞPn
l¼1 D

1ðlÞ ð6Þ

and

�j2 ¼
Pm

k¼nþ1 xkðjÞD2ðkÞPm
l¼nþ1 D

2ðlÞ : ð7Þ

These averages are used to generate the weak hypotheses
used in the AdaBoost training algorithm. If a given feature
value for a candidate symbol is closer to �j1, the candidate is
labeled as 1; otherwise, the candidate is labeled as �1. If the
feature value is an equal distance away from �j1 and �j2, we
simply choose to label the symbol as 1.5 Note that it is
possible for the results of a particular weak classifier to
obtain less than 50 percent accuracy. If this occurs the weak
learner is reversed so that the first symbol receives a �1 and
second symbol receives a 1. This reversal lets us use the
weak learner’s output to the fullest extent.

3.2.2 AdaBoost Algorithm

For each round t ¼ 1; . . . ; T � J , where T is the number of
iterations over the J weak learners, the algorithm generates a
weak hypothesis ht : X ! f�1; 1g from weak learner Cj and
the training weights DtðiÞ, where j ¼ modðt� 1; JÞ þ 1 and
i ¼ 1; . . . ;m. This formulation lets us iterate over the J weak
learners and still conform to the AdaBoost framework [34].
Indeed, the AdaBoost formulation allows us to select weak
classifiers from different families at different iterations. We
take advantage of that and force the algorithms to alternate
between weak learners in Step (4) of Algorithm 1. Thus, the
resulting strong classifier has an equal representation for all
features.

Initially,DtðiÞ are set equally to 1
m , wherem is the number

of training examples for the symbol pair. However, with each
iteration, the training weights of incorrectly classified exam-
ples are increased, so the weak learners can focus on them.
The strength of a weak hypothesis is measured by its error

�t ¼ Pri�Dt
½htð~xiðjÞÞ 6¼ yi� ¼

X
i:htð~xiðjÞÞ6¼yi

DtðiÞ: ð8Þ

Given a weak hypothesis, the algorithm measures its
importance using the following parameter:

�t ¼
1

2
ln

1� �t
�t

� �
: ð9Þ

With �t, the distribution Dt is updated using the following
rule:

Dtþ1ðiÞ ¼
DtðiÞ expð��tyihtð~xiðjÞÞÞ

Zt
; ð10Þ

where Zt is a normalization factor ensuring that Dtþ1 is a
probability distribution. This rule increases the weight of
samples misclassified by ht so that subsequent weak
learners will focus on more difficult samples. Once the
algorithm has gone through T � J rounds, a final hypothesis

HðxÞ ¼ sgn
XT�J
t¼1

�thtðxÞ
 !

ð11Þ

is used to classify symbols, where �t is the weight of the
weak learner from round t, and ht is the weak hypothesis
from round t. If HðxÞ is positive, the new symbol is labeled
with the first symbol in the pair, and if HðxÞ is negative, it is
labeled with the second symbol in the pair (Algorithm 1
summarizes our approach). These strong hypotheses are
computed for each pairwise recognizer with the labels and

LAVIOLA, JR. AND ZELEZNIK: A PRACTICAL APPROACH FOR WRITER-DEPENDENT SYMBOL RECOGNITION USING A... 1921

4. Once the Microsoft recognizer is added into our formulation, the
number of weak learners increases based on how many symbols the
Microsoft recognizer can support in a user’s symbol alphabet.

5. This phenomenon most often occurs in cases where feature values are
Boolean (see Section 3.3).

strong hypothesis scores tabulated. To combine the results
from each strong hypothesis, we use the approach
suggested by Friedman [14]; the correct classification for
the new symbol is simply the one that wins the most
pairwise comparisons. If there is a tie, then the raw scores
from the strong hypotheses are used, and the one of greatest
absolute value breaks the tie.

Algorithm 1. Algorithm summary for generating a pairwise

classifier using AdaBoost learning

Input: Training set ð~x1; y1Þ; . . . ; ð~xm; ymÞ
Output: A pairwise recognizer

GENERATECLASSIFIERðð~x1; y1Þ; . . . ; ð~xm; ymÞÞ
(1) Set D1ðiÞ ¼ 1

m for 1 � i � m
(2) for t ¼ 1 to T � J =� # of rounds �=

(3) j ¼ modðt� 1; JÞ þ 1 =� index into Cj =
�

(4) Create weak classifier ht from Cj using ð~xiðjÞ; yiÞ,
and DtðiÞ for 1 � i � m

(5) Calculate error �t using
P

i:htð~xiðjÞÞ6¼yi DtðiÞ
(6) Calculate weak classifier weight �t using 1

2 ln 1��t
�t

� �
(7) Update Dtþ1ðiÞ ¼ DtðiÞ expð��tyihtð~xiðjÞÞÞ

Zt
where Zt

ensures Dtþ1 is a probability distribution

(8) return Strong Classifier HðxÞ ¼ sgn
PT�J

t¼1 �thtðxÞ
� �

3.3 Using the Microsoft Recognizer as a Feature

Incorporating the Microsoft handwriting recognizer into our
pairwise AdaBoost classifier takes advantage of its robust-
ness and strengthens our existing feature set (see Section 3.1).
Thus, we added its output as an additional feature. Since the
output of the Microsoft recognizer is a symbol, we needed to
convert it into a numeric quantity so that it would work as
part of our recognition algorithm. We chose to encode the
Microsoft recognizer’s output as a vector ~vmsft of Boolean
values where the number of elements in~vmsft is equal to the
number of possible symbols that the Microsoft recognizer can
report.6 ~vmsft will be all zeros except for the vector element
corresponding to the recognized symbol. For example, if~vmsft
encodes the symbols a� z consecutively and the Microsoft
recognizer classifies an input symbol as an a, then the ~vmsft
will have a 1 in its first element and a 0 for the remaining
elements. A weak learner is associated with each element in
the ~vmsft. One concern with this approach is that for any
pairwise classifier, the Microsoft recognizer will output a
symbol that is not one of the two symbols in the pair. In these
cases, two different possibilities can occur.

First, consider applying our algorithm to the ab-pair
classifier. In the case that the Microsoft recognizer outputs
only an a or b for each training sample,~vmsft will have a 1 in its
first or second element (a or b) and a 0 for all other elements in
the vector. In these cases, (6) and (7) will evaluate to zero
regardless of the values of Dt. The weak learners will
therefore always output 1s (or �1s depending on the
implementation) for each training sample, which is equiva-
lent to random guessing. �t from (8) will be 0.5, resulting in (9)
evaluating to zero. Thus, the strong hypothesis will not be
affected by these weak learners. Second, it is possible that the
Microsoft recognizer will output a symbol other than the
symbols in a particular pairwise classifier. In these cases, the

weak learner corresponding to the misrecognized symbol
will have an �t that is not 0.5. The weak learner for this other
symbol will have a correspondingly important effect on the
strong hypothesis depending on how frequently the Micro-
soft recognizer reports that symbol. For example, if in the
training data for a and b, the Microsoft recognizer reports
some as as 9s, then the weak learner corresponding to 9 will
have a potentially negative impact on the output of theab-pair
classifier. However, based on informal observations, �t is
often close to zero for all weak learners from the Microsoft
recognizer feature other than the two corresponding to the
symbols in the pairwise classifier. In cases where �t is not
close to zero, such as pairwise classifiers for symbols that are
in a user’s training set but not supported by the Microsoft
recognizer (for example,

R
and

P
), our AdaBoost algorithm

allows the other weak learners from the features described in
Section 3.1 to compensate for any negative contributions
made to the strong hypothesis from the Microsoft recognizer.

3.4 Pruning Symbol Pairs with the Microsoft
Recognizer

When using the Microsoft handwriting recognizer as a
stand-alone recognition engine, we observed that it stored
the correctly classified symbol in its n-best list the majority
of the time. To test our observation, we ran a simple
experiment using four writers. Each writer wrote the
symbols a-z, 0-9, (,), �, {, < , > , and þ 12 times each.
The Microsoft handwriting recognizer had the correct
symbol in its n-best ðn ¼ 10Þ list 99.58 percent of the time.
Based on this result, we decided to use the Microsoft
handwriting recognizer as a prerecognition step.7

We call the Microsoft handwriting recognizer on a new
handwritten symbol before proceeding to the pairwise
recognizers. All the symbols from Microsoft’s recognizer
are collected from its n-best list. (Note that this approach
works for any independent symbol recognizer that has an
n-best list.) Next, any symbols that are not in the user’s
training data are removed, and symbols that the Microsoft
recognizer cannot handle, such as

R
, �, �, and so forth, are

added to the symbol list. Finally, only the pairwise
recognizers having these symbols are used in the main
recognition step.

One of the important benefits of using this prerecognition
step is that it increases the accuracy of the main recognition
step by providing a reduced list of candidate symbols.
Another important benefit with this approach is that it
reduces the number of pairwise classifiers the algorithm
needs to run. One of the issues with using the compare-all-
pairs approach is that msðms�1Þ

2 unique comparisons are
required, where ms is the total number of symbols; if there
are 40 symbols in the user’s alphabet, the algorithm needs to
run 780 pairwise recognizers. With the prerecognition
approach, we reduce the computation time by requiring
at most ðrþkþ1ÞðrþkÞ

2 comparisons. Note that n is the total
number of alternates the Microsoft recognizer provides in
its n-best list, r is the number of alternates from the n-best list
that are in a user’s training set, k is the number of additional
symbols added that the Microsoft recognizer cannot handle,
and ðrþ kþ 1Þ < ms with r � n.

1922 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 11, NOVEMBER 2007

6. In our implementation, we, in fact, only make ~vmsft large enough to
hold Boolean values for symbols that are in the user’s training set.
Therefore, mathematical and other symbols that are not currently available
in the Microsoft recognizer are not included in ~vmsft.

7. Not all writer-independent recognizers have n-best lists and we cannot
use them with our current pruning approach.

4 EXPERIMENT RESULTS AND DISCUSSION

To examine the effect of augmenting our writer-dependent
pairwise AdaBoost recognition engine with the Microsoft
handwriting recognizer, we ran several experiments to
explore our hybrid recognizer’s performance. Handwriting
samples from 11 subjects (seven males and four females),
taken with an Hewlett-Packard Laboratories (HP) Compaq
tc1100 Tablet PC, were used to conduct our experimental
evaluation on 48 different symbols including a-z, 0-9, �, (,),
�,
p

,
R

, {, < , > , þ, 6¼ , and else (see Fig. 4). Note that we
chose to include some mathematical symbols as part of our
evaluation because this recognizer is designed to be part of
a mathematical expression recognition system [22]. Using a
simple training application, each subject provided 10 sam-
ples of each symbol to train the recognizer, and for each
pairwise recognizer, 15 � J rounds were used for AdaBoost
learning. In total, it took users about 40-45 minutes to enter
their training samples and a little less than a minute for the
learning algorithm to run. After training, each subject wrote
each symbol 12 times for testing.

For each subject’s test data, experiments were run on the

pairwise AdaBoost recognizer

1. in isolation (PWI),
2. with the Microsoft recognizer used as weak learners

(PW-MSFT1),
3. with Microsoft recognizer pruning (PW-MSFT2),

and
4. with both weak learners and pruning using the

Microsoft recognizer (PW-MSFT12),

where PWI and PW-MSFT2 use 47 weak learners ðJ ¼ 47Þ
during training, and PW-MSFT1 and PW-MSFT12 use 86
ðJ ¼ 86Þ. In addition, these experiments were run across
different numbers of training samples per symbol (3, 5, 8, and
10) to see how reducing the training set affects recognition.
We also tested the Microsoft recognizer in isolation (MSFT) to
compare it against our hybrid recognizer and to see if our
accuracy results were overly biased by it. Note that the
Microsoft recognizer we used does not support certain
mathematical symbols, so we could only test it on a-z, 0-9, (,
), �, {, < , > , and þ. In addition, because we were unable to
tell the Microsoft recognizer to recognize only these symbols,
we counted certain capital letters such as C, K, M, O, P, S, U, V,
W, X, and Z as being correctly recognized since these letters
are often confused with their lowercase counterparts.

Accuracy Results. A total of 6,336 symbols were tested in
each of the experiments, except for the MSFT test where
5,676 symbols were tested due to the Microsoft recognizer’s
inability to handle some of the mathematical symbols. The
mean recognition accuracies across the different recognizer
configurations are summarized in Fig. 5 and their standard
deviations in Table 1. MSFT has a standard deviation of
4.17 percent. Fig. 6 shows the recognition accuracies for PWI
and PW-MSFT12 for each subject using 10 training samples
per symbol. In particular, the graph shows that there was a
4 to 5 percentage point improvement in accuracy for
subjects 5, 6, and 10. We suspect this improvement is a
result of these subjects having handwriting styles that fit
especially well with the combination of the Microsoft
recognizer and our AdaBoost classifier. Future work is
needed to verify this conjecture.

These results show that using PW-MSFT1 and PW-MSFT2
both make slight accuracy improvements over using PWI.

LAVIOLA, JR. AND ZELEZNIK: A PRACTICAL APPROACH FOR WRITER-DEPENDENT SYMBOL RECOGNITION USING A... 1923

Fig. 4. Example symbols taken from the 11 test subjects used in the

testing and training of our recognizer.

Fig. 5. Mean accuracy results shown across different numbers of

training samples per symbol and the different recognizer configurations.

PW-MSFT12 improves the accuracy over PWI even further.
PW-MSFT12 performs significantly better than PWI when
using only 3 ðt10 ¼ 8:23; p < 0:000006Þ and 10 ðt10 ¼ 6:42; p <
0:00005Þ training samples per symbol.8 The results when
using five and eight training samples per symbol are similar.
PW-MSFT12 using three samples per symbol also performs
significantly better than PWI using 10 training samples per
symbol ðt10 ¼ 1:83; p < 0:048Þ indicating that using PW-
MSFT12 can be used to reduce the number of training
samples per symbol that users need to provide. This
reduction has the important effect of reducing the start-up
costs for using a writer-dependent recognizer while still
maintaining accuracy. In our experimental setup, it takes
users only 10-15 minutes to enter three samples per symbol
for 48 symbols; a significant decrease in start up time over the
40-45 minutes required for writing 10 samples per symbol.

The standard deviations shown in Table 1 are all lower
than the standard deviation for the MSFT test indicating
that there was less fluctuation in the accuracy results for the
writer-dependent configurations. These results make in-
tuitive sense because the writer-dependent configurations
are tailored toward an individual’s handwriting style.
Additionally, the majority of the standard deviations for
the different configurations are between 3 and 3.5 percent,
with the exception of the deviations for PW-MSFT12 under

5, 8, and 10 training samples per symbol. This result
indicates that recognition stability is increased when using
the Microsoft recognizer as a feature and as a pruning step.

These results also show that PW-MSFT12’s recognition
accuracy is not just a function of incorporating the Microsoft
recognizer into PWI because of MSFT’s lower recognition
accuracy (91.35 percent) compared to the other recognition
configurations. Thus, adding the Microsoft recognizer to the
pairwise AdaBoost recognition engine improves accuracy by
an average of 2.7 percentage points over PWI with 10 training
samples required per symbol. With three training samples
per symbol, PW-MSFT12 improves accuracy by an average of
2.9 percentage points over PWI.

Weight Analysis. In addition to recognition accuracy, we
also examined the weights �t from the strong hypotheses
from all pairwise classifiers for all 11 subjects. Specifically, we
are interested in those �t with maximum weight (calculated
using �t’s with minimum error9) because they provide the
most significant contributions to the overall classification for
any pair of symbols. Counting the �t with maximum weight
lets us answer two important questions: how much does the
Microsoft handwriting recognizer contribute to the pairwise
classifiers and how many maximum weight �t are there for
each pairwise classifier for T ¼ 15 iterations over the J weak
learners. We collected this data for the cases where the
recognizer was trained on 3 and 10 samples per symbol and
applied to PW-MSFT1 and PW-MSFT12, where J ¼ 86.
Table 2 shows what percentage of the weak learners with
maximum �t are from the Microsoft handwriting recognizer
for all pairwise classifiers per subject. For example, with
subject three, with three training samples per symbol,
5.34 percent of the weak learners with maximum �t are from
the Microsoft handwriting recognizer. Table 3 shows the
average number of weak learners with maximum �t for each
iteration over J weak learners of AdaBoost training for all
pairwise classifiers per subject. For example, with subject
seven, 12.2 weak learners on the average have a maximum �t
for each iteration in every pairwise classifier with 10 training
samples per symbol.

Tables 2 and 3 show two important general trends. First,
the Microsoft recognizer appears to make more of a
contribution to the pairwise classifiers with 10 training
samples per symbol than with three training samples per

1924 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 11, NOVEMBER 2007

Fig. 6. Recognition accuracy results per subject using 10 training

samples per symbol for the pairwise AdaBoost recognizer in isolation

(PWI) and with both weak learners and pruning using the Microsoft

recognizer (PW-MSFT12).

TABLE 2
The Microsoft Handwriting Recognizer’s Percent Contribution

to the Total Number of �t with Maximum Weight

The values are calculated over all pairwise recognizers.

8. We use matched pairs for examining the mean differences for all of
our statistical tests. Note the notation tn refers to the t-distribution with
n degrees of freedom and p is the significance value. 9. Minimum error in this experiment is less than 1e� 8.

TABLE 1
Standard Deviations for Each Recognizer Configuration

across Different Numbers of Training Samples per Symbol

symbol. Second, the average number of weak learners with
maximum �t over each iteration of J significantly decreases
from 3 to 10 training samples per symbol. These results make
sense since having more weak learners with maximum�t per
iteration will reduce the impact of the Microsoft handwriting
recognizer. However, we expected there would be more of a
contribution from the Microsoft recognizer for the three
samples per symbol case. Although the Microsoft recognizer
makes a contribution that leads to an accuracy improvement
from PWI to PW-MSFT1, these results suggest we can
improve recognition accuracy even further with three
training samples per symbol. Reducing the average number
of weak learners with maximum �t would increase the
Microsoft recognizer’s contribution. One approach to dealing
with this problem is to reduce the number of features by
removing those that are highly correlated (for example, using
principal component analysis). However, removing these
features globally might not be sufficient since correlations
between features could be different depending on the
particular symbol pair. Thus, removing correlations on a
pairwise basis is a promising option and we leave this for
future work.

Runtime. To determine the impact of the prerecogniton
step on runtime, we took a sample of the experimental runs
from PWI and PW-MSFT12 using 10 training samples per
symbol and recorded how long it took to recognize a given
symbol. The mean runtime over 100 samples for PWI was
216.2 ms and for PW-MSFT12 was 27.69 ms. Thus, PW-
MSFT12 achieves a higher recognition accuracy at a signifi-
cantly lower runtime than PWI.

Ties. Finally, because our pairwise scheme makes a
classification based on the class that wins the most compar-
isons, ties are inevitable. Thus, we explored the effect that ties
had on PWI and PW-MSFT12 across the different training
sample configurations. For the PWI configuration, 1.31 per-
cent of the recognitions were ties, and of those, 52.63 percent
were correct. For PW-MSFT12, only 0.76 percent of the
recognitions were ties, with 63.64 percent correct. From this
data, ties play only a minor role in our recognizers, but
utilizing the Microsoft handwriting recognizer seems to
reduce the number of ties and help improve tie-breaking
accuracy.

Miscellaneous. Based on our experimental data, we
believe our approach has the ability to increase accuracy of

writer-dependent recognizers, reduce the number of training
samples needed per symbol, and decrease online recognition
time. In the future, we wish to explore more sophisticated
approaches for dealing with pairwise classification such as
loss-based decoding [1] and explore how an n-best list can be
used as part of our feature set. We also plan to explore how to
optimize our feature set for any pairwise classifier and how
our approach affects other writer-dependent recognition
algorithms to determine its use in more general terms.

5 CONCLUSION

We have presented two strategies for utilizing a writer-
independent symbol recognizer in a writer-dependent
recognition engine by incorporating it into a pairwise
AdaBoost framework and as a preprocessing step to reduce
the number of pairwise classifiers needed in the main
recognition step. Although we use the Microsoft hand-
writing recognizer as our writer-independent recognizer,
any writer-independent recognizer that provides an n-best
list can be used. Our empirical results indicate the feasibility
of our approach and show that we can improve the overall
accuracy of the recognizer, reduce its computation time,
and reduce the amount of training samples users must
supply to the training algorithm. We believe this work is a
good starting point toward making customizable symbol
recognizers more practical.

APPENDIX

To facilitate the reproducibility of this work and to provide
handwritten character data to the recognition community,
we have converted our training and test data to UNIPEN
format [16]. It can be freely downloaded at graphics.cs.
brown.edu/research/pcc/symbolRecognitionDataset.zip
or from as supplemental materials, which can be found at
http://computer.org/tpami/archives.htm.

ACKNOWLEDGMENTS

The authors would to thank Gregory Shakhnarovich for his
valuable comments and suggestions. This work is sup-
ported in part by a gift from Microsoft and grants from the
US National Science Foundation and the Joint Advanced
Distributed Co-Laboratory.

REFERENCES

[1] E. Allwein, R. Schapire, and Y. Singer, “Reducing Multiclass to
Binary: A Unifying Approach to Margin Classifiers,” J. Machine
Learning Research, vol. 1, pp. 113-141, 2000.

[2] C. Bahlmann, B. Haasdonk, and H. Burkhardt, “On-Line Hand-
writing Recognition with Support Vector Machines—A Kernel
Approach,” Proc. Eighth Int’l Workshop Frontiers in Handwriting
Recognition, pp. 49-54, 2002.

[3] A. Belaid and J. Haton, “A Syntactic Approach for Handwritten
Formula Recognition,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 6, no. 1, pp. 105-111, Jan. 1984.

[4] A. Biem, “Minimum Classification Error Training for Online
Handwriting Recognition,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 28, no. 7, pp. 1041-1051, July 2006.

[5] A. Brakensiek, A. Kosmala, and G. Rigoll, “Comparing Adapta-
tion Techniques for Online Handwriting Recognition,” Proc. Int’l
Conf. Document Analysis and Recognition, pp. 486-490, 2001.

[6] K. Chan and D. Yeung, “Mathematical Expression Recognition: A
Survey,” Int’l J. Document Analysis and Recognition, vol. 3, no. 1,
pp. 3-15, Jan. 2000.

LAVIOLA, JR. AND ZELEZNIK: A PRACTICAL APPROACH FOR WRITER-DEPENDENT SYMBOL RECOGNITION USING A... 1925

TABLE 3
The Average Number of Weak Learners with

Maximum �t for Each Iteration over the
J Weak Learners for All Pairwise Recognizers

There are 15 iterations over 86 weak learners of AdaBoost training.

[7] S.D. Connell and A.K. Jain, “Writer Adaptation for Online
Handwriting Recognition,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 24, no. 3, pp. 329-346, Mar. 2002.

[8] S.D. Connell and A.K. Jain, “Template-Based On-Line Character
Recognition,” Pattern Recognition, vol. 34, no. 1, pp. 1-14, Jan. 2000.

[9] A.M. Day, J.R. Parks, and P.J. Pobgee, “On-Line Written Input to
Computers,” Machine Perception of Pictures and Patterns, pp. 233-
240, 1972.

[10] V. Deepu, S. Madhvanath, and A.G. Ramakrishnan, “Principal
Component Analysis for Online Handwritten Character Recogni-
tion,” Proc. 17th Int’l Conf. Pattern Recognition, pp. 327-330, 2004.

[11] Y. Dimitriadis and J. Coronado, “Towards an Art-Based Mathe-
matical Editor that Uses On-Line Handwritten Symbol Recogni-
tion,” Pattern Recognition, vol. 28, no. 6, pp. 807-822, June 1995.

[12] A. Donahey, “Character Recognition System and Method,”
US patent 3,996,557, 1976.

[13] Y. Freund and R. Schapire, “A Decision-Theoretic Generalization
of On-Line Learning and an Application to Boosting,” J. Computer
and System Sciences, vol. 55, no. 1, pp. 119-139, Aug. 1997.

[14] J. Friedman, “Another Approach to Polychotomous Classifica-
tion,” technical report, Stanford Univ., 1996.

[15] G.F. Groner, “Real-Time Recognition of Hand-Printed Symbols,”
Pattern Recognition, L.N. Kanal ed., pp. 103-108, 1968.

[16] Guyon, I.L. Schomaker, R. Plamondon, M. Liberman, and S. Janet,
“UNIPEN Project of On-Line Data Exchange and Recognizer
Benchmarks,” Proc. 12th Int’l Conf. Pattern Recognition, pp. 29-33,
Oct. 1994.

[17] T. Hastie and R. Tibshirani, “Classification by Pairwise Coupling,”
The Annals of Statistics, vol. 26, no. 2, pp. 451-471, Apr. 1998.

[18] R. Jarrett and P. Su, Building Tablet PC Applications. Microsoft
Press, 2003.

[19] D. Kerrick and A. Bovik, “Microprocessor-Based Recognition of
Hand-Printed Characters from a Tablet Input,” Pattern Recognition,
vol. 21, no. 5, pp. 525-537, May 1988.

[20] M. Koschinski, H.-J. Winkler, and M. Lang, “Segmentation and
Recognition of Symbols within Handwritten Mathematical Ex-
pressions,” Proc. Int’l Conf. Acoustics, Speech, Signal Processing,
pp. 2439-2442, 1995.

[21] A. Kosmala and G. Rigoll, “On-Line Handwritten Formula
Recognition Using Statistical Methods,” Proc. 14th Int’l Conf.
Pattern Recognition, pp. 1306-1308, 1998.

[22] J. LaViola, “Mathematical Sketching: A New Approach to
Creating and Exploring Dynamic Illustrations,” PhD dissertation,
Dept. of Computer Science, Brown Univ., May 2005.

[23] X. Li and D. Yeung, “On-Line Handwritten Alphanumeric
Character Recognition Using Dominant Points in Strokes,” Pattern
Recognition, vol. 30, no. 1, pp. 31-44, Jan. 1997.

[24] R. Marzinkewitsch, “Operating Computer Algebra Systems by
Hand-Printed Input,” Proc. Int’l Symp. Symbolic and Algebraic
Computation, pp. 411-413, 1991.

[25] C. Mathis and T.M. Breuel, “Classification Using a Hierarchical
Bayesian Approach,” Proc. 16th Int’l Conf. Pattern Recognition,
pp. IV: 103-106, 2002.

[26] N.E. Matsakis, “Recognition of Handwritten Mathematical Ex-
pressions,” master’s thesis, Dept. of Electrical Eng. and Computer
Science, Massachusetts Inst. of Technology, 1999.

[27] E. Miller and P. Viola, “Ambiguity and Constraint in Mathema-
tical Expression Recognition,” Proc. 15th Nat’l Conf. Artificial
Intelligence, pp. 784-791, 1998.

[28] Y. Nakayama, “A Prototype Pen-Input Mathematical Formula
Editor,” Proc. World Conf. Educational Multimedia and Hypermedia,
pp. 400-407, 1993.

[29] R. Plamondon and S.N. Srihari, “On-Line and Off-Line Hand-
writing Recognition: A Comprehensive Survey,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 63-84,
Jan. 2000.

[30] V.M. Powers, “Pen Direction Sequences in Character Recogni-
tion,” Pattern Recognition, vol. 5, pp. 291-302, Mar. 1973.

[31] L. Prevost and M. Milgram, “Automatic Allograph Selection and
Multiple Expert Classification for Totally Unconstrained Hand-
written Character Recognition,” Proc. 14th Int’l Conf. Pattern
Recognition (ICPR ’98), pp. 381-383, 1998.

[32] D. Rubine, “Specifying Gestures by Example,” Proc. ACM 18th
Ann. Conf. Computer Graphics and Interactive Techniques, pp. 329-
337, 1991.

[33] P. Sarkar and G. Nagy, “Style Consistent Classification of
Isogenous Patterns,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27, no. 1, pp. 88-98, Jan. 2005.

[34] R. Schapire, “A Brief Introduction to Boosting,” Proc. 16th Int’l
Joint Conf. Artificial Intelligence, pp. 1401-1406, 1999.

[35] H. Schwenk and Y. Bengio, “AdaBoosting Neural Networks:
Application to On-Line Character Recognition,” Lecture Notes in
Computer Science, vol. 1327, pp. 967-972, 1997.

[36] M. Shilman, P. Viola, and K. Chellapilla, “Recognition and
Grouping of Handwritten Text in Diagrams and Equations,” Proc.
Ninth Int’l Workshop Frontiers in Handwriting Recognition, pp. 569-
574, 2002.

[37] S. Smithies, K. Novins, and J. Arvo, “A Handwriting-Based
Equation Editor,” Proc. Graphics Interface Conf., pp. 84-91, 1999.

[38] J. Subrahmonia, K. Nathan, and M. Perrone, “Writer Dependent
Recognition of Online Unconstrained Handwriting,” Proc. Int’l
Conf. Acoustics, Speech, and Signal Processing, vol. 6, pp. 3478-3481,
1996.

[39] C. Tappert, C.Y. Seun, and T. Wakahara, “The State of the Art in
On-Line Handwriting Recognition,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 12, no. 8, pp. 787-808, Aug. 1990.

[40] E. Weisstein, CRC Concise Encyclopedia of Mathematics. Chapman
and Hall/CRC, 1998.

[41] H.-J. Winkler, “Symbol Recognition in Handwritten Mathematical
Formulas,” Proc. Int’l Workshop Modern Modes of Man-Machine
Comm., pp. 7/1-7/10, June 1994.

Joseph J. LaViola Jr. received the ScM degree
in computer science in 2000, the ScM degree in
applied mathematics in 2001, and the PhD
degree in computer science in 2005 from Brown
University. He is an assistant professor in the
School of Electrical Engineering and Computer
Science, University of Central Florida, and an
adjunct assistant research professor at the
Computer Science Department, Brown Univer-
sity. His primary research interests include pen-

based interactive computing, 3D interaction techniques, predictive
motion tracking, multimodal interaction in virtual environments, and
user interface evaluation. His work has appeared in journals such as
Presence and the IEEE Computer Graphics and Applications, and he
has presented research at conferences including the ACM International
Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH), the ACM Symposium on Interactive 3D Graphics, the IEEE
Virtual Reality Conference, and the Eurographics Symposium on Virtual
Environments. He has also coauthored 3D User Interfaces: Theory and
Practice, the first comprehensive book on 3D user interfaces. He is a
member of the IEEE and the IEEE Computer Society.

Robert C. Zeleznik received the MSc in
computer science from Brown University, where
he developed the gestural SKETCH 3D model-
ing system. He is the director of research for
Brown University’s Computer Graphics Group
and the Microsoft Center for Research on Pen-
Centric Computing at Brown University. His
overarching research interest is the design of
2D and 3D post-WIMP user interfaces. Cur-
rently, his focus is on symbolic and diagram-

matic pen-centric computing.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1926 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 11, NOVEMBER 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

