
*Corresponding author. Tel.: #1-517-355-9319; fax:#1-
517-432-1061.

E-mail addresses: connell@cse.msu.edu (S.D. Connell),
jain@cse.msu.edu (A.K. Jain).

Pattern Recognition 34 (2001) 1}14

Template-based online character recognition

Scott D. Connell*, Anil K. Jain

Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA

Received 5 November 1998; received in revised form 16 August 1999; accepted 16 August 1999

Abstract

Handwriting is a common, natural form of communication for humans, and therefore it is useful to utilize this modality
as a means of input to machines. One well-known method of classifying individual characters or words is template
matching. We demonstrate a template-based system for online character recognition where the number of representative
templates is determined automatically. These templates can be viewed as representing di!erent styles of writing
a particular character. The templates are then used as a reference for e$cient classi"cation using decision trees. Overall,
our classi"er achieves an 86.9% accuracy on a set of 17,928 alphanumeric characters (36 classes; 10 digits and 26
lowercase letters) with a throughput of over 8 characters per second on a 296 MHz Sun UltraSparc. (2000 Pattern
Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Clustering; String matching; Online handwriting; Prototypes; Decision trees

1. Introduction

The amount of information that can be stored and
processed by desktop computers is increasing at a tre-
mendous rate. Given this rate of increase, the ease at
which information can be exchanged with a user becomes
a serious bottleneck. In order to be e!ective, user inter-
faces should be (1) e$cient and (2) natural to the user,
thereby requiring little or no learning curve for the user.
While there has been much progress on machine pre-
sentation of data to humans, such as data visualization
tools, the primary mode of data input from a human to
a computer is the keyboard. Speech recognition and
handwriting recognition utilize other, more natural,
forms of human communication, which have recently
been integrated in many consumer products (e.g., Apple's
Newton Messagepad, the CrossPad by A.T. Cross and
IBM, Interactive Voice Response Units (IVRUs) used by
many telephone companies, etc). However, for these in-

put modalities to be economical and user-friendly, their
recognition accuracy must be su$ciently high such that
the user needs to make only a minimal number of correc-
tions to the recognized text or speech.

Handwriting recognition can be broken into two "elds
which di!er in the form in which the data is presented to
the system. In ow-line handwriting recognition, the user
writes on paper which is later digitized by a scanner. The
data is presented to the system as an image, requiring
a segmentation of the writing from the image back-
ground before recognition can be done. In contrast, the
"eld of online handwriting recognition requires that the
user write on a digitizing tablet using a special stylus, so
that the user's written strokes are captured as they are
being formed by sampling the pen's (x, y) coordinates at
evenly spaced time intervals. The use of a pressure-sensi-
tive switch on the pen tip indicates pen-up/pen-down
status and disambiguates stroke segmentations.

To perform classi"cation of handwritten characters,
a recognition system must attempt to leverage between
class variations, while accommodating potentially large
within-class variations. If a recognition system is to work
well for a large number of di!erent writers (a writer-
independent system), this within-class variation can be
very large. The variance within a particular character

0031-3203/00/$20.00 (2000 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
PII: S 0 0 3 1 - 3 2 0 3 (9 9) 0 0 1 9 7 - 1

Fig. 1. Variations within three di!erent writing styles for the lowercase character `ra. Each box, (a), (b), and (c), show three examples of
the same writing style, with a di!erent style represented in each box. The beginning of each stroke is shown by a dot.

class can be thought of as made up of two components:
the variations between writing styles, and the variations
within a writing style. This is illustrated in Fig. 1. Our
goal is to automatically learn these writing styles from
a given data set, so that adequate character models can
be built. In this paper, we attempt to "rst "nd an appro-
priate representation for each character class by
modeling the individual writing styles, and then make use
of these models to train a classi"er to discriminate be-
tween character classes. Section 2 gives a background to
the problem of online handwriting recognition. Section
3 describes our template-based method of character rec-
ognition, including two methods of data reduction: clus-
ter center representation (Section 3.3.1), and training set
editing (Section 3.3.2). We present results on two di!erent
classi"ers which are discussed in Section 4: nearest
neighbor, and decision trees. Section 5 presents our
experimental results, and our conclusions are discussed
in Section 6.

2. Background

With online handwritten data, the trace of a writer's
pen is stored as a sequence of points sampled at equally
spaced time intervals. The information captured for each
sample is the (x, y) coordinates of the pen on the digitiz-
ing tablet. It has been shown [1] that utilizing this
information about the pen dynamics can lead to better re-
cognition accuracies than applying OCR techniques alone.

Bellegarda et al. [2] identify "ve categories of online
handwriting recognition techniques: (i) primitive de-
composition, (ii) motor models, (iii) elastic matching, (iv)
stochastic models, and (v) neural networks. The advant-
ages and disadvantages of each of these techniques are
summarized in Table 1.

Primitive decomposition identi"es sub-strokes that
form common building blocks for characters. Examples
of such building blocks are loops, dots, crossovers,
arcs, ascenders, and descenders. This method generally

2 S.D. Connell, A.K. Jain / Pattern Recognition 34 (2001) 1}14

Table 1
Summary of techniques for the recognition of online handwriting

Technique Advantages Disadvantages

Primitive decomposition [3,4] Powerful high-level features Not very robust to large variations in
writing style

Motor models [5}7] Takes advantage of pen dynamics May lack robustness when writing style
variations are large

Elastic matching [8}10] Works very well for writer-dependent data writer-
dependent data Does not require a relatively
large amount of training data

Does not generalize well for writer-
independent tasks Classi"cation
time grows linearly with the number of
training examples

Stochastic models [2,13] Models temporal relations well Requires a large amount of training data

Neural networks [14}16] Classi"cation time is fast Does not model temporal relations very
well

requires a pre-segmentation of the strokes into sub-
stroke pieces. Word recognition is performed by match-
ing identi"ed sub-stroke sequences to previously ob-
served sequences for words using such methods as dic-
tionary lookup [3] or hidden Markov models [4].

Motor models [5}7] are a technique commonly used
in what is known as Analysis by Synthesis in which models
of stroke segments are created along with rules for con-
necting them to form characters. Motor models represent
these stroke segments as parameterized models of the
motion of the pen tip, simulating the physical properties
of human hand motion.

Elastic matching [8}10] works on the sequence of
sample points directly by searching for an alignment of
data points between an input character, and some tem-
plate character. Duin et al. [11] have referred to such
data as `featurelessa. The distance between an input
character and a template is taken as the sum of distances
between aligned points. Classi"cation can then be done
using a nearest-neighbor classi"er. A `featurelessa repres-
entation of o%ine characters has been demonstrated by
Jain and Zongker [12], in which they used deformable
models to "nd the similarity between characters.

Stochastic models are often used in a similar fashion as
elastic matching in that they represent the data in terms
of a temporal sequence. The most common such method
is to represent each class using a hidden Markov model.
These models are often created using features extracted
from the individual sample points [13], or from the
points that are contained within a sliding window which
slides along the sample point sequence thereby produ-
cing a sequence of features [2].

Time delay neural networks are often used to recog-
nize characters or character segments as a sliding win-
dow passes over their temporally sampled sequence. Fea-
tures extracted from the sample points in the sliding
window are passed to the input layer of a feed-forward
neural network. The activation level of each output node,

one per class identity, approximates the likelihood that
the sequence of points in the sliding window belongs to
that class. This then produces a sequence of likelihood
values, which can be used to "nd the best sequence of
character identities using methods such as non-linear
dynamic time warping algorithms [14] and hidden Mar-
kov models [15]. Other neural network classi"ers [16]
have combined both stroke based features, and OCR-
type features, in which a character is converted into
a pixel array and features are taken as the pixel values in
di!erent regions of the image.

Table 2 presents some recent results from the literature
for the isolated character recognition problem, where
segmentation is assumed to have been correctly done. It
should be stressed that these di!erent studies have used
di!erent datasets, and this makes a comparison of these
results di$cult. Recently, results have been reported using
data from the Unipen dataset [18]. The Unipen project
was formed to gather data from many di!erent organiza-
tions to eventually form a publicly available dataset which
would enable researchers to report results that are compa-
rable to each other. At the time of this writing however,
this database is not yet publicly available. The dataset
used in our experiments is particularly di$cult in that it
contains both discretely written and manually segmented
cursive characters in a variety of handwriting styles.
Some examples of these characters are shown in Fig. 2.

3. Template-based approach

Our method of online character recognition is based
on template matching using a string matching distance
measure. We describe two methods of data reduction,
one based on a clustering of the data, and the second
based on editing the full training set to retain only those
templates that lie near the class boundaries. An overview
of the system is shown in Fig. 3.

S.D. Connell, A.K. Jain / Pattern Recognition 34 (2001) 1}14 3

Table 2
Recent results from the literature on presegmented character recognition

Author Method Accuracy Notes

Li and Yeung [8] Nearest neighbor using elastic
matching

Upper and lowercase classi"er:
87.1% on 780 lowercase, 92.9%
on 780 uppercase Digit
classi"er: 96.3% on 300 digits

0.35 s/char. 180 reference
templates selected from 840
examples

Scattolin and Krzyzak [9] Nearest neighbor using weighted
elastic matching

88.67% on 1650 digits 33 writers used 293 reference
templates

Yaeger et al. [16] Combined online and o%ine
neural network classi"er

95-class classi"er (52 chars, 10
digits, 33 symbols): 86.1%

45 writers used

Chan and Yeung [17] Manually designed structural
models

97.4% on 9300 upper and
lowercase chars

150 writers used

Li et al. [19] Hidden Markov models 92% (after 3.9% reject)
on 3126 digits

Unipen data used

Prevost and Milgram [20] Combined online and o%ine
nearest-neighbor classi"ers

digits: 98.70% uppercase:
97.81% lowercase: 96.84%

Total of 11,162 chars from
Unipen data used

Fig. 2. Examples of characters in our dataset.

3.1. Preprocessing

Strokes captured by a digitizing tablet tend to contain
a small amount of noise, most likely introduced by the
digitizing device, causing the sampled curves to be some-
what jagged. In order to reduce this noise, some form of
smoothing is often applied such as a smoothing spline
"lter [21], or a Yulewalk "lter for low-pass "ltering of the
data [22]. Most preprocessing techniques produce a re-
sampling of the data so that points are equi-distant in
space rather than time. This provides a time normaliz-
ation, without which slowly written strokes would con-
tain a much larger number of sample points than quickly
written strokes of the same shape. In our approach, we
have applied an equi-distant resampling of the data,
followed by a Gaussian "lter applied independently to
each of the x and y coordinates of the point sequence:

xfiltered
t

"

3p
+

i/~3p
w
i
xorig
t`i

, (1)

where

w
i
"

e~*
2@2p2

+3p
j/~3pe~+

2@2p2
. (2)

This is de"ned similarly for yfiltered
t

. Throughout both of
these operations, there are certain critical points along
the curve whose locations should be preserved, such as
endpoints and points of high curvature. These points are
detected and included with the resampled points. In
addition, size normalization is applied such that all digits
have the same height, but retain their original aspect
ratio.

4 S.D. Connell, A.K. Jain / Pattern Recognition 34 (2001) 1}14

Fig. 3. Online character recognition system. The #ow of data during training is shown by the dashed line arrows, while the data #ow
during recognition is shown by the solid line arrows.

3.2. String matching

A stroke is represented as a sequence of events (feature
vectors, which will be described later), corresponding to
the sequence of sample points in the stroke. This se-
quence forms a variable-length string with an average of
about 62 events after preprocessing. The distance be-
tween two di!erent strings, A and B, involves computing
the distance between the corresponding pair of events
eA
i

and eB
j
. This requires an alignment of the events

between the two strings, and calculating the distances
between the individual pairs of aligned events. This string
matching technique is used to provide a distance measure
between character pairs. Similar methods under the
name elastic template matching have been applied to
online handwritten data [10].

In our approach, adopted from Jain et al. [23], each
event is represented with three measurements: the x and
y o!sets with respect to some reference coordinate, and
the angle of curvature of the written stroke at the sample
point. We de"ne the reference coordinate as the "rst
sample point of the digit's "rst stroke. Table 3 shows this
string representation for three di!erent characters. Given
an alignment of the events between two strokes, the
distance, d

E
(i, j), between a pair of events, eA

i
"(xA

i
, yA

i
, hA

i
)

from stroke A and eB
j
"(xB

j
, yB

j
, hB

j
) from stroke B, is

de"ned as a linear combination of the respective di!er-
ences between the two events of the three measurements
taken for each event:

d
x
(i, j)"D(xA

i
!xA

1
)!(xB

j
!xB

1
)D, (3)

d
y
(i, j)"D(yA

i
!yA

1
)!(yB

j
!yB

1
)D, (4)

dh (i, j)"Min(DhA
i
!hB

j
D, 360!DhA

i
!hB

j
D), (5)

d
E
(i, j)"ad

x
(i, j)#bd

y
(i, j)#cdh (i, j), (6)

where all h are in the range (0, 360), and a, b, and c are the
weights of the linear combination. These weights are
empirically determined, but we have observed that plac-
ing a large weight on dh (i, j) results in a better classi"ca-
tion accuracy.

The distance between two characters is then the sum of
the distances between each pair of corresponding points
from the strings, given some alignment of the points. For
our experiments, characters containing multiple strokes
(delayed strokes) are handled by creating a connecting
segment from the last point of a stroke to the "rst point of
the next stroke, and therefore all characters are repre-
sented as a single string.

S.D. Connell, A.K. Jain / Pattern Recognition 34 (2001) 1}14 5

Table 3
The string representation (e

t
"(x

t
, y

t
,h

t
)) after preprocessing of the three digits from Fig. 4 ~ (a) the digit `2a, (b) the digit `3a of

Fig. 4 * (a), (c) the leftmost digit `3a of Fig. 4(b).

(0, 0, 223), (!2,!1, 223), (!1, 2, 223), (0, 5, 182), (1, 9, 194), (3, 13, 193), (5, 16, 190), (7, 19, 201), (10, 22, 239), (14, 24, 289), (16, 21, 261),
(16, 17, 196), (16, 13, 180), (16, 9, 188), (16, 5, 189), (15, 1, 182), (15,!2, 187), (14,!5, 178), (13,!9, 172), (13,!13, 187), (12,!17, 193),
(11,!21, 189), (9,!25, 183), (8,!28, 186), (6,!32, 196), (4,!35, 190), (1,!38, 185), (!1,!41, 207), (!4,!43, 211),
(!8,!44, 218), (!12,!45, 254), (!15,!42, 255), (!16,!38, 240), (!15,!34, 237), (!12,!31, 232), (!9,!30, 220),
(!5,!30, 211), (!1,!31, 196), (2,!33, 172), (6,!34, 172), (9,!35, 179), (13,!36, 172), (17,!37, 159), (21,!37, 155),
(25,!36, 155), (27,!35, 155)

(a)

(0, 0, 192), (2, 2, 192), (6, 3, 192), (10, 4, 187), (14, 5, 201), (18, 5, 216), (22, 4, 232), (25, 1, 251), (25,!1, 232), (24,!5, 200), (22,!9, 199),
(20,!12, 195), (17,!15, 191), (14,!18, 186), (11,!20, 180), (8,!23, 186), (5,!25, 264), (2,!27, 343), (3,!23, 286), (7,!21, 207),
(10,!19, 195), (14,!18, 203), (18,!17, 208), (22,!18, 203), (26,!19, 205), (29,!21, 211), (32,!24, 201), (34,!28, 192),
(36,!31, 202), (37,!35, 212), (37,!39, 203), (36,!43, 196), (35,!47, 195), (33,!50, 186), (31,!54, 195), (29,!57, 205),
(26,!59, 196), (22,!62, 200), (19,!63, 202), (15,!64, 202), (11,!64, 201), (7,!63, 196), (3,!62, 199), (0,!60, 213),
(!3,!58, 253), (!4,!54, 259), (!1,!51, 221), (1,!49, 199), (5,!47, 199), (5,!47, 199)

(b)

(0, 0, 61), (!3,!1, 61), (0, 0, 61), (3, 3, 193), (7, 4, 186), (11, 6, 185), (14, 7, 189), (18, 8, 188), (22, 9, 209), (26, 9, 243), (29, 7, 255), (30, 3, 230),
(29, 0, 204), (28,!4, 204), (26,!7, 196), (23,!10, 180), (21,!13, 191), (18,!16, 195), (15,!18, 184), (11,!21, 189), (8,!23, 260),
(5,!24, 330), (6,!21, 276), (9,!18, 207), (12,!16, 199), (16,!14, 209), (20,!13, 215), (24,!14, 213), (27,!15, 210),
(30,!18, 197), (33,!21, 201), (35,!24, 205), (36,!28, 196), (37,!32, 203), (37,!36, 203), (36,!40, 196), (35,!44, 195),
(33,!47, 192), (31,!51, 201), (28,!54, 201), (25,!56, 196), (22,!58, 199), (18,!59, 196), (14,!60, 201), (10,!60, 201),
(6,!59, 188), (2,!58, 199), (!1,!57, 204), (!4,!54, 192), (!7,!52, 201), (!9,!49, 210), (!11,!45, 234),
(!11,!41, 240), (!8,!38, 240), (!6,!36, 240)

(c)

Fig. 4. The alignment between two digits, and the resulting matching score for (a) a &2' compared with a &3', (b) comparing two &3's.
Dotted lines are drawn to indicate corresponding aligned points between the two digits.

We place a restriction that prohibits alignments in
which two or more events in one string map to a single
event in the second string. Alternate alignments are cre-
ated by two methods: (1) skipping an event from the "rst

string if it is determined that, for the given alignment, the
event is spurious, (2) skipping an event in the second
string if it is determined that, for the given alignment, the
corresponding event in the "rst string is missing. In each

6 S.D. Connell, A.K. Jain / Pattern Recognition 34 (2001) 1}14

Fig. 5. Mean-squared error for di!erent values of K, the number
of clusters, for the character `ma.

case, we add a penalty to the total distance between the
strings, respectively, called spurious penalty and missing
penalty. These penalties also act as threshold values on
the distance between two events in determining if a spuri-
ous or missing event exists.

The distance between two strings is calculated by con-
sidering all possible alignments of events in the two
strings, and "nding the alignment for which the total
distance is minimum using dynamic programming. The
calculation of the distance between two strings, A and B,
is shown here in terms of the calculation of the distances
between a set of events, eA

i
and eB

j
:

D(i, j)

"MinG
D(i!1, j!1)#d

E
(i, j),

D(i!1, j)#missing penalty, 1)i)N
A
,

D(i, j!1)#spurious penalty 1)j)N
B
,

D(i!1, j!1)#missing penalty

#spurious penalty, (7)

Dist(A,B)"D(N
A
,N

B
). (8)

For our experiments, we have set missing penalty"
spurious penalty. The "nal distance between two strings
uses an additional global measurement: a stroke count
di!erence penalty term

Dist
SP

(A,B)"
Dist(A,B)2

Norm}Factor(N
A
,N

B
)
(SP)DS

A
!S

B
D,

(9)

where S
A

(S
B
) is the number of strokes that make up digit

A (B), SP is the stroke penalty, and Norm}Factor(N
A
,N

B
)

is the maximum possible distance between any two
strings of lengths N

A
and N

B
scaled by a constant factor.

3.3. Data reduction

Selection of representative prototypes from the train-
ing set is presented in this section. Two methods, cluster
centers and training set editing, are described.

3.3.1. Cluster centers
One of the methods of identifying representative

prototypes from the training data is to cluster the data
and retain the pattern (prototype) closest to each cluster
center. This can be viewed as a technique of separating
the training data based on writing styles and deriving
representative examples for these styles. Since our data is
`featurelessa, each character is represented by its distance
to every other character, with the same class identity, in
the training set. Using the distances calculated by our
string matching method, a pattern matrix is constructed

for each class of characters. Clusters are derived using
a squared-error clustering algorithm, called CLUSTER
[24].

CLUSTER attempts to produce the best clustering for
each value of K, where K is the number of clusters into
which the data is to be partitioned. Fig. 5 shows an
example of the number of clusters plotted against the
mean-squared error for the character class `ma. As ex-
pected, the mean-squared error decreases monotonically
as a function of K. An inspection of Fig. 5 shows that
identi"cation of a `kneea in the curve is not easily ac-
complished. This example is typical for most characters,
making the choice of K very di$cult by this method.
Automatically determining the number of clusters that
are present in a data set is a very di$cult problem [24].
We use the method proposed by Davies and Bouldin
[25] to select an `optimala value of K. Fig. 6 shows the
prototypes closest to the centers of three clusters, each
identi"ed for characters `f a and `sa, and four clusters
identi"ed for the character `za.

3.3.2. Training set editing
The goal of nearest-neighbor editing algorithms is to

select only those templates from the training set that fall
along the class boundaries in the feature space. These
selected prototypes then make up the reduced training
set. Common methods of identifying this reduced set
involve "rst deriving the Voronoi Tessellation of the
training set, and then removing any training example
whose cell does not border the cell of a training pattern of
a di!ering class [26].

A Voronoi Tessellation requires that the training
patterns be represented as feature vectors in some d-
dimensional Euclidean space. Since our patterns are
`featurelessa, meaning that we have only their inter-pattern
distances, we have used the following algorithm to identify

S.D. Connell, A.K. Jain / Pattern Recognition 34 (2001) 1}14 7

the border patterns. This method relies only on knowing
the inter-class nearest neighbor to a character example.

Algorithm for constructing the Reduced Training Set

¹
Orig

, Original training set
¹

R
, Reduced training set

C, Set of class labels
C(x), The class of pattern x
NN

c
(x), The nearest neighbor template to pattern

x, that is from class c

¹
R
"0

∀x
i
3¹

Orig
∀c3C, where cOC(x

i
)

If NN
c
(x

i
) N¹

R
NN

c
(x

i
)P¹

R

The output of this algorithm, set ¹
R
, contains only those

patterns which have been identi"ed as the nearest neigh-
bor of another pattern which is across a class boundary;
in other words, those training patterns which are near the
class boundaries. However, this method retains many
more training patterns than the clustering method de-
scribed in the previous section.

4. Classi5cation

We discuss two di!erent methods of classi"cation:
nearest neighbor and decision trees. Both of these
methods can be used in combination with the data reduc-
tion techniques from the previous section.

Nearest-neighbor classi"cation is a common technique
[26] used in template-based approaches. We make use of
the string matching measure described in Section 3.2 as
the distance measure between patterns.

Decision trees [27] take a `divide and conquera ap-
proach to solve a complex classi"cation problem and
attempt to identify those features which provide the most
discriminating information. In order to represent a charac-
ter as a "xed length vector of features, the distance from
a given character to each of the M representative tem-
plates (which will henceforth be referred to as the reference
set characters) was measured giving the following feature
vector: [D

c,1
,D

c,2
,2,D

c,M
], where D

c,i
is the distance

between a character, c, and the ith reference character.
These features shall be referred to as the similarity features
and they can be used to partition the training data at each
node of a decision tree. For example, at node, n, when
feature D

c,i(n)
is used to partition the data based on thre-

shold ¹
Dc,i(n)

, the following rule will be applicable:

If D
c,i(n)

(¹
Dc,i(n)

, traverse the left branch of the node n

otherwise, traverse the right branch of the node n.

In such a case, characters which traverse the left branch
can be said to be similar to the i(n)th reference character,
and therefore may belong to the cluster corresponding to
this reference character, while the characters that traverse
the right branch can only be said to be dissimilar to the
i(n)th reference character, creating an imbalance in the
division of data between the two branches.

This imbalance motivates a second type of feature
which can be used to partition the template data into two
groups at each node. By measuring the distance of a char-
acter, c, to two reference characters rather than only one
at each node, we can ask the following question: `Is
character c more similar to reference i, or to reference j?a.
To pose such a question as a vector of continuously
valued features, we de"ne

[D
c,i,j

], i"1,2, M, j"1,2,M,

where

D
c,i,j

"D
c,i
!D

c,j
.

These features shall be referred to as the diwerence fea-
tures. When constructing a decision tree, at any node,
n, we choose a pair of reference characters, i(n) and j(n),
with corresponding feature D

c,i(n),j(n)
, and a threshold

¹
Dc,i(n),j(n)

for partitioning the data based on the following
rule

If D
c,i(n),j(n)

(¹
Dc,i(n),j(n)

, traverse the left branch of the
node n

otherwise, traverse the right branch of node n.

Fig. 7 illustrates these two feature representations. The
di!erence features have the disadvantage of requiring
two distance calculations per feature. However, as we
shall see in Section 5, these features have the potential to
produce superior classi"cation results, and redundancies
in the distances used by each feature keep the average
number of distances that must be calculated to classify
a test character relatively small.

For decision tree feature sets, we have removed the
e!ects of the number of strokes and aspect ratio from the
distance measure by eliminating the stroke count di!er-
ence from the measure, and by normalizing the size of each
character to a standard height and width. The stroke
count di!erence and original aspect ratio are then present-
ed to the decision tree as two additional features along
with the `locala features. In this way we allow the decision
tree to determine the relative importance of each feature.

5. Experimental results

This section compares classi"cation results based on
the full training set, edited training set, and cluster
centers. All timing results were obtained using a 296
MHz UltraSparc 1.

8 S.D. Connell, A.K. Jain / Pattern Recognition 34 (2001) 1}14

Fig. 6. Examples of the patterns closest to each cluster center found for the character classes (a) `f a, (b) `sa, and (c) `za.

5.1. Datasets

Experiments were run using a combination of three
di!erent sets of data: (i) a set of 600 handwritten digits
captured from 21 di!erent writers, which will be referred
to as DA; (ii) a set of digits, referred to as DB, which is an
independent set of 360 digits taken from an unknown

number of writers and has been shown to have a slightly
di!erent writing style distribution than DA [28]; (iii) a set
of 35,875 lowercase letters, originally written in a cursive
style, but manually segmented so that they are now
available as individual isolated characters. This set, refer-
red to as C, was produced by the same group of 21 writers
as DA.

S.D. Connell, A.K. Jain / Pattern Recognition 34 (2001) 1}14 9

Fig. 7. Similarity and di!erence features. (a) Similarity features: while training patterns a and b are grouped based on their similarity, to
template X, examples c and d are very di!erent from each other but will be grouped together nonetheless; (b) Di!erence features: training
patterns on each side of the decision threshold (di!erence between template X and template >) are more similar to each other than to
patterns on the other side.

Table 4
Number of clusters chosen for 10 digit classes by manual selection, and by automatic selection

Digit class 0 1 2 3 4 5 6 7 8 9

Manually selected K 4 5 7 6 3 3 4 4 5 10
Auto. selected K 4 3 3 6 3 4 7 3 4 7

Table 5
Digit recognition rates (10 classes)

Training set No. templates Throughput Recog. rate
(%)

Full set 600 &2 char/s 91.10
Manually

selected K
51 &26 char/s 88.90

Auto. selected K 44 &31 char/s 87.50
Edited 402 &4 char/s 91.39

5.2. Digit recognition

Digit classi"ers were trained using the 600 digits in set
DA, and tested using the 360 digits of set DB. Clustering
was done for each of the 10 classes of the training set.
Table 4 shows the number of clusters chosen for each of
the digits using the following two methods: manually
selecting K using the K vs. MSE graphs (e.g., Fig. 5), or
automatic selection based on Davies and Bouldin's
method [25]. For automatic selection, we consider only
cluster counts greater than 2.

5.2.1. Nearest-neighbor classixer
Representative templates were chosen, one for each

cluster, based on their close proximity to the center of the
cluster. Table 5 shows the results of testing a nearest-
neighbor classi"er using four di!erent training sets: the
full set of 600 training examples, the set of 51 cluster
centers where the number of clusters is manually chosen,
the set of 44 clusters chosen by the Davies and Bouldin
method, and the edited training set. As can be seen, both
the cluster representation methods result in a signi"cant
reduction is classi"cation time at the expense of lower
classi"cation accuracy. The edited set does not lead to
substantial reduction in classi"cation time, however sur-

prisingly it results in a slightly better recognition accu-
racy.

5.2.2. Decision trees
The construction of decision trees was accomplished

using the package C5.0 [29]. The reference character set
used in the de"nition of features (similarity or di!erence)
to construct a decision tree can be any of the training
sets used for the nearest-neighbor classi"ers: the set of
cluster centers, the edited training set, or the full training
set.

10 S.D. Connell, A.K. Jain / Pattern Recognition 34 (2001) 1}14

Fig. 8. Boosting for 36 alphanumeric classes. Comparing decision trees built using similarity features and di!erence features, both based
on the cluster center reference set, and a combination of the two feature sets.

Table 6
Summary of best results for digit recognition using boosted decision trees

Reference set Features No. templates Throughput Recog. rate (%)

Cluster centers Similarity features
(18 comb. classi"ers)

51 (31.4 ave.) &34 char/s 88.6

Cluster centers Di!erence features
(9 comb. classi"ers)

51 (31.6 ave.) &27 char/s 88.1

Edited Similarity features
(19 comb. classi"ers)

402 (65.7 ave.) &17 char/s 87.2

Full set Similarity features
(11 comb. classi"ers)

600 (48.4 ave.) &22 char/s 86.4

Table 7
Number of clusters chosen for 36 alphanumeric classes

Class 0 1 2 3 4 5 6 7 8 9 a b c d e f g h

K 4 3 3 6 3 4 7 3 4 7 3 3 3 3 3 3 3 3

Class i j k l m n o p q r s t u v w x y z

K 5 6 4 3 3 3 3 3 3 9 3 3 3 3 5 5 8 4

One of the advantages of the C5.0 package is that it
can successively train multiple tree classi"ers from the
same data, with each new classi"er focusing on improv-
ing the misclassi"cations of the previously trained classi-
"ers, and then combine them using a technique called
boosting [30]. As the number of classi"ers used is in-
creased, so is the average time required to classify each
character, while the error rate approaches some lower
bound (see Fig. 8 for an example). The best results are
summarized in Table 6 for the similarity and di!erence
features based on the cluster center reference set, and

similarity features based on the edited reference set and
full set of training examples. This table also reports the
total number of templates available (the reference character
set), and the average number of templates used in the
classi"cation of a single character.

It seems clear from Table 6 that the classi"ers based on
the cluster center reference sets perform better than the
classi"ers based on the edited and full sets. Overall, the
similarity features based on the cluster center reference
set gives the best results: 88.6% recognition accuracy
with a throughput of approximately 34 characters/s.

S.D. Connell, A.K. Jain / Pattern Recognition 34 (2001) 1}14 11

Table 9
Standard nearest-neighbor vs. decision tree classi"ers for 36-class alphanumeric character classi"cation

Classi"er No. templates Throughput Recog. rate (%)

NN-full set 17,947 &0.05 char/s 88.92
NN-cluster centers 144 &6 char/s 45.41
Decision tree-similarity (23 boosted) 144 (100.1 ave.) &11 char/s 86.1
Decision tree-di!erence (20 boosted) 144 (130.5 ave.) &8 char/s 86.9
Decision tree-combined (18 boosted) 144 (127.7 ave.) &8 char/s 86.9

Table 8
Alphanumeric recognition rates (36 Classes) using nearest-
neighbor classi"er

Training set No.
templates

Throughput Recog. rate (%)

Full set 17,947 &0.05 char/s 88.92
Cluster centers 144 &6 char/s 45.41
Edited 11,867 &0.08 char/s 87.88

This classi"er compares well against our best nearest-
neighbor classi"er using cluster centers which achieves
88.9% recognition accuracy with a throughput of
approximately 26 characters/s (Table 5).

5.3. Alphanumeric character recognition

Experiments were run using a set of 17,947 alpha-
numeric characters for training and 17,928 characters for
testing, created by combining datasets DA and C, and
splitting this combined set into testing and training sets
by random selection. Clustering was performed on each
of the 36 classes of this training set. The distribution
of templates retained using cluster centers is shown in
Table 7.

Table 8 shows the results of the nearest-neighbor clas-
si"er using the full training set, cluster centers where the
number of clusters are automatically chosen, and the
edited set. No signi"cant increase in accuracy was found
by using a K-nearest-neighbor classi"er over a 1-NN
classi"er in either the digit or alphanumeric classi"cation
cases. Upon examination, this appears to be an indica-
tion that most character misclassi"cations occur because
some of the characters are not well represented in the
training set. As can be seen, the cluster centers method
does not work well at all in this alphanumeric classi"ca-
tion case. This exposes a problem in using cluster centers
as training examples in a nearest-neighbor classi"er: all
the information about the size and shape of the cluster is
lost which may result in decision boundaries not being
properly represented. The edited set achieves a 33.7%
reduction in classi"cation time while maintaining most of

the recognition accuracy. The overall computational
requirement using this set, 12.18 s/ test character, cannot
be considered practical, however.

Fig. 8 shows the results of classifying the data using
boosted decision trees based on the 144 cluster centers
and using similarity features, di!erence features, and
a combination of the two. Due to the high dimensionality
of the di!erence feature set, a reduced set of these features
was obtained by training a single tree on the full set of
di!erence features using a small amount of randomly
sampled training data, and observing which features were
selected for use by the training algorithm. This reduced
the number of di!erence features from 20,736 (144]144)
to 644. As Fig. 8 shows, the decision tree classi"er does
a better job of discriminating classes through the use of it
is trained decision thresholds, compared to the simple
nearest-neighbor classi"er. Although the di!erence fea-
tures tend to provide a higher classi"cation accuracy for
a given level of boosting, the similarity features give
a better time vs. accuracy trade-o!. The best classi"ca-
tion accuracy reported is 86.9% with a throughput of
&8 characters/s (see Table 9). Comparing this to the
nearest-neighbor classi"er using the cluster centers as
a reference set, there is a 25.3% decrease in classi"cation
time, and compared to using the entire dataset as a refer-
ence set, there is a 99.3% decrease in classi"cation time.
In addition, the decision tree classi"er retains 97.7% of
the recognition accuracy achieved by the full dataset
nearest-neighbor classi"er.

6. Conclusions

We have demonstrated a method of online character
recognition which focuses on a representation of charac-
ters that models the di!erent writing styles found in the
training set. These models are then used by a decision
tree classi"er which yields good class discrimination.
A method of automatically identifying writing styles and
modeling them using templates has been proposed.
Through this character representation and using a string
matching distance measure, we are able to obtain an
86.9% classi"cation accuracy for a 36-class set of
alphanumeric characters with a throughput of over 8

12 S.D. Connell, A.K. Jain / Pattern Recognition 34 (2001) 1}14

characters/s on a 296 MHz Sun UltraSparc. In addition,
improvements in accuracy should be attainable through
the use of a rejection threshold.

In future work, we will study the bene"ts of writing
style-based representations, when characters are repre-
sented using hidden Markov models. The optimal space
for clustering should then be one in which the distance
from a character to a cluster is the probability that the
character was generated by a model for that cluster.
A pairwise comparison of characters is di$cult in this
space, which means that an initial clustering must contain
only clusters with some minimal membership such that
model parameters can be estimated for each. Further,
large intracluster variations may cause the clustering to be
very susceptible to local minima, and therefore a good
starting point may be crucial to the success of such a clus-
tering method. We believe the string matching technique
presented here will provide a good initial clustering.

Acknowledgements

The authors would like to greatfully acknowledge
Krishna Nathan, Jayashree Subrahmonia, and the Con-
sumer Devices group at IBM T. J. Watson Research
Center for providing data, feedback, and "nancial sup-
port for this research.

References

[1] E. Mandler, R. Oed, W. Doster, Experiments in on-line
script recognition, Proceedings of fourth Scandinavian
Conference on Image Analysis, June 1985, pp. 75}86.

[2] E.J. Bellegarda, J.R. Bellegarda, D. Nahamoo, K.S.
Nathan, A probabilistic framework for on-line hand-
writing recognition, Proceedings of IWFHR III, Bu!alo,
New York, May 25}27, 1993, pp. 225}234.

[3] S.A. Guberman, I. Lossev, A.V. Pashintsev, Method and
apparatus for recognizing cursive writing from sequential
input information, US Patent WO 94/07214, March 1994.

[4] S. Bercu, G. Lorette, On-line handwritten word recog-
nition: an approach based on hidden Markov models,
Proceedings Third International Workshop on Frontiers
in Handwriting Recognition, Bu!alo, USA, May 1993, pp.
385}390.

[5] J.M. Hollerback, An oscillation theory of handwriting,
Biol. Cybernet. 39 (1981) 139}156.

[6] R. Plamondon, F.J. Maarse, An evaluation of motor mod-
els of handwriting, IEEE Trans. Systems Man Cybernet.
19 (5) (1989) 1060}1072.

[7] L.R.B. Schomaker, H.-L. Teulings, A handwriting recogni-
tion system based on the properties and architectures of
the human motor system, Proceedings of the IWFHR,
CENPARMI Concordia, Montreal, 1990, pp. 195}211.

[8] X. Li, D.-Y. Yeung, On-line handwritten alphanumeric
character recognition using dominant points in strokes,
Pattern Recognition 30 (1) (1997) 31}44.

[9] P. Scattolin, A. Krzyzak, Weighted elastic matching
method for recognition of handwritten numerals, Proceed-
ings of Vision Interface '94, pp. 178}185.

[10] C.C. Tappert, Adaptive on-line handwriting recognition,
Proceedings of Seventh International Conference on Pat-
tern Recognition, July}August 1984, pp. 1004}1007.

[11] R.P.W. Duin, D. de Ridder, D.M.J. Tax, Experiments with
object based discriminant functions; a featureless ap-
proach to pattern recognition, Pattern Recognition Lett.
18 (11}13) (1997) 1159}1166.

[12] A.K. Jain, D. Zongker, Representation and recognition
of handwritten digits using deformable templates, IEEE
Trans. Pattern Anal. Mach. Intell. 19 (12) (1997)
1386}1391.

[13] T. Starner, J. Makhoul, R. Schwartz, G. Chou, On-line
cursive handwriting recognition using speech recognition
methods, Proceedings of ICASSP'94, Vol. 5, 1994,
pp. 125}128.

[14] S. Manke, U. Bodenhausen, A connectionist recognizer for
on-line cursive handwriting recognition, Proceedings of
ICASSP'94, Vol. 2, 1994, pp. 633}636.

[15] M. Schenkel, I. Guyon, D. Henderson, On-line cursive
script recognition using time delay neural networks and
hidden Markov models, Proceedings of ICASSP'94, Vol. 2,
1994, pp. 637}640.

[16] L.S. Yaeger, B.J. Webb, R.F. Lyon, Combining neural
networks and context-driven search for online, printed
handwriting recognition in the Newton, AI Mag. (1998)
73}89.

[17] K.-F. Chan, D.-Y. Yeung, Elastic structural matching
for on-line handwritten alphanumeric character recogni-
tion, Proceedings of 14th International Conference on
Pattern Recognition, Brisbane, Australia, August 1998,
pp. 1508}1511.

[18] I. Guyon, L. Schomaker, R. Plamondon, M. Liberman,
S. Janet, UNIPEN project of on-line data exchange and
recognizer benchmarks, Proceedings of 12th International
Conference on Pattern Recognition, Jerusalem, Israel,
October 1994, pp. 29}33.

[19] X. Li, R. Plamondon, M. Parizeau, Model-based on-line
handwritten digit recognition, Proceedings of 14th Inter-
national Conference on Pattern Recognition, Brisbane,
Australia, August 1998, pp. 1134}1136.

[20] L. Prevost, M. Milgram, Automatic allograph selection
and multiple classi"cation for totally unconstrained hand-
written character recognition, Proceedings of 14th Inter-
national Conference on Pattern Recognition, Brisbane,
Australia, August 1998, pp. 381}383.

[21] J. Hu, A.S. Rosenthal, M.K. Brown, Combining high-
level features with sequential local features for on-line
handwriting recognition, Proceedings of Italian Image
Process. Conference, Florence, Italy, September 1997,
pp. 647}654.

[22] H. Beigi, Pre-processing the dynamics of on-line
handwriting data, feature extraction and recognition,
Proceedings of the International Workshop on Frontiers
of Handwriting Recognition, Colchester, England,
September 2}5, 1996, pp. 255}258.

[23] A.K. Jain, L. Hong, S. Pankanti, R. Bolle, An identity-
authentication system using "ngerprints, Proc. IEEE 85 (9)
(1997) 1365}1388.

S.D. Connell, A.K. Jain / Pattern Recognition 34 (2001) 1}14 13

[24] A.K. Jain, R.C. Dubes, Algorithms for Clustering Data,
Prentice-Hall, Englewood Cli!s, NJ, 1988.

[25] D.L. Davies, D.W. Bouldin, A cluster separation measure,
IEEE Trans. Pattern Anal. Mach. Intell. 1 (2) (1979)
224}227.

[26] R.O. Duda, P.E. Hart, Pattern Classi"cation and Scene
Analysis, Wiley-Interscience, New York, 1973.

[27] L. Breiman, J. Friedman, R. Olshen, C. Stone, Classi"cation
and Regression Trees, Wadsworth, Belmont, CA, 1984.

[28] S. Connell, A.K. Jain, Learning prototypes for on-line
handwritten digits, Proceedings of 14th International
Conference on Pattern Recognition, Brisbane, Australia,
August 1998, pp. 182}184.

[29] J.R. Quinlan, C4.5: Programs for Machine Learning,
Morgan Kau!man, Los Altos, CA, 1993.

[30] J.R. Quinlan, Bagging, boosting, and C4.5, Proceedings
Thirteenth National Conference on Arti"cial Intelligence,
Portland, OR, August 1996, pp. 725}730.

14 S.D. Connell, A.K. Jain / Pattern Recognition 34 (2001) 1}14

