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Abstract 

The structure of mathematics notation is particularly 
dificult to recognize in handwritten notation because irregular 
symbol placements are common. We present an eficient and 
robust method of parsing handwritten and typeset mathematics 
notation without backtracking. The system is designed to be 
easily adaptable to various dialects of mathematics notation. 
The following strategies are used: ( I )  separate the analysis of 
layout, syntax, and semantics. ( 2 )  recursively apply search 
functions and image partitioning to recognize dominant and 
nested baselines, and (3) use tree transformations to express 
computations in a compact, eficiently executable form. 

1. Introduction 

Mathematics notation conveys information using a two- 
dimensional arrangement of symbols. Recognition software 
must analyze this spatial structure, in order to convert from a 
document image to a structural representation such as LaTeX or 
a semantic representation such as an operator tree or Maple. 
However, it is difficult to define robust, general and efficient 
methods for analyzing the spatial structure of mathematics 
notation. This problem is particularly difficult in handwritten 
mathematics notation (obtained from scanned document images, 
or from data tablet input), where irregular placement of symbols 
is common. 

1.1 Summary of Existing Work 

Research into automatic recognition of mathematical 
expressions has been ongoing for over thirty years [3,5]. 
Methods developed for recognizing the two-dimensional layout 
of symbols in a math expression can be roughly categorized into 
syntactic (grammar-based) and algorithmic approaches. 
Syntactic methods have been used extensively, including 
coordinate grammars [ 1,251, attributed string grammars 
[2,12,13,14,34], stochastic grammars [ 10,261, structure 
specification schemes [6], and graph transformation 
[ 17,22,23,28]. Algorithmic approaches have included 
recursively locating vertically stacked groups of symbols using 
procedural [24] and blackboard-style methods [ 15,301, recursive 
baseline location [20], and minimization of penalty functions on 
symbol relations [ 161. Another algorithmic approach, projection 
profile cutting with subsequent adjustments, has been used to 
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obtain expression structure directly from pixel maps [ 18,27,29]. 
Ambiguities of symbol layout and identity have been handled by 
constructing multiple interpretations and then eliminating 
unsyntactic [3 I]  or unlikely [26] interpretations. 

We obtain two insights from this literature. First, almost all 
authors use trees to describe the spatial structure of mathematics 
notation. In many cases the tree is an explicit data structure; in 
other cases an implicit parse tree is created. Second, 
mathematical expressions have a preferred direction of 
interpretarion, as used by human readers; this directionality can 
be exploited by a recognition system (1,14,25]. The direction of 
interpretation is usually left-to right; however, Arabic notation is 
read right-to-left [ 131. Our recognition system makes extensive 
use of trees, tree transformations, and directionality of the 
notation. 

1.2 System Overview 

The DRACULAE system (Diagram Recognition 
Application for Computer Understanding of Large Algebraic 
Expressions) interprets the symbol layout of large mathematical 
expressions [32]. The input to DRACULAE is a list of symbols 
with their spatial locations, from which DRACULAE produces 
LaTeX and operator tree outputs. This system quickly 
recognizes symbol layout in a general way even when the 
semantics of a construct are unknown, and is capable of 
successfully analyzing large handwritten expressions with poor 
layout. The amount of search needed to analyze layout is 
reduced by exploiting the left-to-right reading order of 
mathematics notation. 

We obtained software for on-line entry, segmentation and 
recognition of handwritten symbols from the Freehand Formula 
Entry System (FFES) developed by Steve Smithies, Kevin 
Novins and Jim Arvo [28]. We used FFES to create test 
expressions using a data tablet and mouse. FFES runs a nearest- 
neighbour symbol recognizer while a user enters an expression 
and allows the user to correct any symbol recognition errors that 
occur. After entering symbols a use:r may invoke DRACULAE 
from within FFES and obtain bitmap or style-preserving morph 
feedback [33] on DRACULAEs interpretation. 

2. Separate Analysis of Layout, Syntax, Semantics 

DRACULAE is divided into three passes: Layout, Syntax, 
and Semantics, as illustrated in Figure I and Table I .  Using 
separate passes has the advantage of separating the knowledge 
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Figure 1 .  The Three Passes Used to Process a Math Expression. 

uses integers as  the domain for operator tree (d) 
domains, such as real numbers or  matrices. 

In  (a), the irregular symbol placement causes a misleading alignment of A+B. Here, the Semantics pass 
The Semantics pass can be reconfigured for other 

bases and analysis routines that are used in each pass. This 
makes the software better structured, easier to maintain, and 
easier to adapt to different dialects of math notation. 

Mathematics notation has many variants (or dialects), all of 
which use similar spatial structure but vary in semantics. Our 
recognition system uses the following methods to handle 
dialects: 

Each recognition pass (Layout, Syntax, and Semantics) has its 
own data structures to describe the aspects of math notation 
used in that pass. This separation means, for example, that 
the semantics of a dialect can be changed without affecting 
the syntactic description, as whenf ' can mean differentiation 
or function inverse or simply an annotated symbol. 

The first recognition pass, the Layout pass, extracts spatial 
structure from a list of symbols and represents this in a 
dialect-independent fashion (a baseline structure tree; see 
Section 3.1). The general structural description from the 
Layout pass is altered in the Syntax and Semantics passes. 
All three passes may be adapted to conform with different 
dialects of mathematics notation. 

There is no. formal definition of mathematics notation that 
can be used as a standard of correctness. Written descriptions 
regarding the generation of mathematics notation are available 
[7,19,21]. However, these are not in a form that can be used as a 

specification for a mathematics recognition system. While some 
formal definitions of mathematics notation have been proposed 
(e.g. [34]), the notation itself continues to evolve through use in 
society. 

3. The Layout Pass: Construction of a Baseline 
Structure Tree 

The Layout pass identifies the baseline structure of the 
mathematical expression, producing a baseline srrrucfure free. In 
this tree, every symbol is assigned to one baseline. The 
baselines are grouped into a hierarchy of dominant and nested 
baselines. The baseline structure tree explicitly captures 
important aspects of symbol layout without committing to any 
particular syntactic or semantic interpretation. 

We specify how baselines may be nested relative to 
individual symbols in a BST using a symbol layout model. The 
symbol layout model presented in this paper contains four 
symbol classes. These are Limit (operators that may have limits, 
such as sum and integral), Sqrt, Nonscripted (symbols that are 
never followed by superscripts or subscripts: unary and binary 
operators, open brackets, horizontal line), and Plain (all other 
symbols, including alphanumeric symbols and closed brackets). 
In the symbol layout model we also specify the centroid location 
for symbols, which is used to test whether a symbol lies within a 
region. The centroid for each symbol is computed based on its 
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Pass 

Layout 
symbols 
BST 

Syntax 
BST 

OutDut parse tree 

Semantics 

OvtDut operator tree 
parse tree 

Processing Performed 

Identify the baseline 
structure of the math 
expression and create a 
baseline structure tree (BST). 
The symbol layout model 
and search functions are used 
to construct the BST. 

Identify grammatical 
structures such as E and the 
baselines of its limits and 
body. Identify multi-symbol 
tokens such as numbers 
(digits and decimal points), 
function names (e.g. cos), = 
and I . Create a parse tree. 

Analyze operator precedence 
and associativity to create an 
operator tree. 

Image Coordinates 

Extensive use of image 
coordinates. Analyze 
relative placement of 
symbols. Amount of white 
space does not affect 
interpretation. 

Image coordinates not used. 

Image coordinates not used. 

Knowledge base used; 
can be adjusted to the 

dialect 

Symbol layout model 
(symbol classes define 
regions around symbols, 
e.g. regions around c). 
Knowledge in search 
functions Sturt() and Hor(). 

Grammar describing 
structural composition 
Specified as a BNF grammar 
and transforination rules In 
TXL (see Section 5 )  

Grammar describing 
operator precedence and 
associativity. Specified as 
a BNF grammar and 
transformation rules in 
TXL (see Section 5). 

Table 1. The Three Passes used in DRACULAE to Analyze a Set of Mathematical Symbols 
- 

bounding box coordinates, and reflects whether the symbol is an 
ascender, descender, or neither. 

3.1 Baseline Structure Trees 

A baseline structure tree contains two types of nodes: 
symbol nodes and region nodes. These nodes are arranged in 
levels: any path through the tree encounters symbol nodes and 
region nodes in alternation. The root of the tree, EXPRESSION, 
is a region node representing the entire image. Every region 
node in the BST represents an image region which contains a 
baseline, possibly with nested baselines. The subtree that is 
rooted at a region node represents the baseline structure of all 
the symbols in this region. Region nodes represent all 
mathematically-important spatial relationships other than 
horizontal adjacency. Horizontal adjacency has special status 
because it defines baselines. Symbols that are on the same 
baseline are represented in the tree as ordered siblings. This is 
illustrated by the tree in Figure I(b). This tree contains four 
region nodes (EXPRESSION, SUPER, ABOVE, BELOW) and 
eight symbol nodes (A + - - D C B 2). The dominant baseline of 
the whole expression is (A + - - D). The “2” is the sole symbol 
in a baseline located BELOW the first “-”. The “C’ is the sole 
symbol of the baseline located in a superscripted region 
(SUPER) relative to the “A”. 

The extent of an image region depends on the walls defined 
by other symbols in the expression. For example, in Figure I(b), 
the SUPER region of “A” is walled by the “+”: the maximum x 
coordinate of the SUPER region equals the minimum x 
coordinate of the “+”. 

3.2 Identifying Baseline Structure of an Expression 

By exploiting reading order, the baseline structure tree can 
be constructed efficiently, without backtracking, even when 
symbol layout is irregular. Here is a summary of the processing 
steps. Extensive research went into defining the search 
functions Start() and Hor() used in steps 4 and 5. Space does not 
permit a full explanation of these functions. 

1. 

2. 

3. 

4. 

5. 

6.  

Sort the input symbols by leftmost bounding box coordinate. 

Look up the symbol class and cenrroid for each symbol 

Initialize: The Baseline Structure Tree is a single 
EXPRESSION node. R is the image region that contains the 
entire expression. L is the sorted list of symbols from step 1. 

Compute Si =Start(L) to find the symbol Si  which starts the 
dominant baseline in region R [32]. Start() checks for cases 
in which symbol S I  is not the leftmost symbol in list L. For 
example, the limits of a Z can begin to the left of the C. 

Find the rest of the symbols in the baseline that begins with 
symbol S i .  Hor() finds the next symbol in a baseline; it 
handles irregular layouts such as those in Figure 1 [32]. 
Compute S2 = Hor(S1, L), S3 = Hor(S2, L), and so on until 
Hor returns null. 

The symbols Si ,  S2, ..., Sn ;are the dominant baseline in 
region R. Add these symbols to the baseline structure tree: 
insert n symbol nodes as offspring of the region node 
representing R. 
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The symbols in the dominant baseline (Si, S2, ..., Sn) 
partition region R into subregions. All symbols have 
ABOVE and BELOW regions. (For Limit symbols, these 
regions are labeled UPPER and LOWER; they may extend 
to the left and right of the symbol.) Sqrt symbols have a 
CONTAINS region. Symbols in classes Plain and Sqrt have 
SUPER and SUBSC regions. Assign each remaining 
symbol in L (any symbol other than S I ,  S2, ..., S,) to one of 
these subregions. 

Add region nodes to the baseline structure tree to represent 
the non-empty sub-regions found in step 7. Apply steps 4 to 
8 to the symbol lists in each of these regions. 

This algorithm is illustrated using the expression in Figure 
I ( @ .  First, the dominant baseline is found (steps 4 and 5) .  
Start() finds A and Her() finds + - - D. Note the robustness of 
these search functions: starting at the +, Hot() finds the -, 
despite the alignment of the + and the B. 

Once the symbols in the dominant baseline have been found, 
step 6 extends the baseline structure tree to be EXPRESSION 
with five branches, leading to A, +, -, -, D. Step 7 defines 
regions around these symbols. The nonempty subregions are 
added to the tree in step 8: A has offspring SUPER, and "-" has 
two offspring, ABOVE and BELOW. Steps 4 to 8 are 
recursively applied to these three non-empty subregions to 
complete the construction of the baseline structure tree. Figure 
I(b) shows the final tree. 

In summary, the Layout pass recursively applies search 
functions and image partitioning to recognize dominant and 
nested baselines. The search function Start() is used to locate 
the leftmost symbol of the dominant baseline, and the search 
function Hor() is used to locate successive symbols in a 
baseline. This use of search functions was inspired by the 
Positional Grammar work of Costagliola et al. [ I l l .  The 
directionality present in  mathematics notation made it possible 
for us to adapt these ideas for use in our Layout pass. 

4. The Syntax and Semantics Passes 

The syntax pass converts a Baseline Structure Tree into a 
parse tree. This involves tree transformations which reorganize 
the tree to identify tokens comprised of multiple symbols (e.g. 
numbers), and grammatical structures comprised of multiple 
baselines (e.g. fractions, or the limit and body baselines 
associated with a Z ). 

The semantics pass converts a parse tree into an operator 
tree. This involves tree transformations which reorganize the 
tree according to operator precedence and associativity. The 
processing done in this stage is analogous to processing done by 
the semantic analysis phase of a compiler. Neither the syntax or 
semantic passes depend on image coordinates, though the syntax 
pass collects coordinate information for user interface purposes. 

5. Tree Transformation vs. Graph 
Transformation 

As was illustrated in Figure 1, trees are the central data 
structure used in our recognizer. To construct and modify these 
trees, a programming-language construct called tree 
transformation is used throughout the implementation. A tree 
transformation rule searches a host tree for a subtree that 
matches the rule's pattern (left hand side); this subtree is then 
locally transformed according to the rule's replacement (right 
hand side). The TXL language specifies tree transformations in 
a compact, abstract manner [8,9]. TXL specifications are 
directly and efficiently executable. The amount of code needed 
to describe a tree transformation is orders of magnitude smaller 
in TXL than in a language such as C. Sample TXL code is 
shown in Figure 2. 

Tree transformation is well-suited to the math recognition 
domain, because math expressions have a recursive structure 
which is naturally described by a tree. Further research is 
required to determine the extent to which our ideas can be 
applied in recognizing diagrams from domains other than 
mathematics. We believe that the separation of layout, syntax 
and semantics can be used as a structuring principle in designing 
diagram recognizers from many domains. 

In earlier work, we used graph transformation for 
mathematics recognition [ 171. Graph transformation is an 
attractive and versatile style of computation, but easily runs into 
efficiency problems. Some work has been done to increase the 
efficiency of graph grammar parsing in the context of 
recognizing mathematical expressions [22,23], but we have 
found a tree transformation-based approach to be adequate. 
Careful application of search functions and dominance analysis 
allows an initial tree to be constructed by DRACULAEs Layout 
pass. Separating Layout, Syntax and Semantics has also made 
DRACULAE easier to extend than our former graph 
transformation system [ 171, where transformation rules dealt 
with layout, syntax and semantics all at once. 

rule convertAdditionsToOperatorTrees 
replace [expression] 

by 
LeftSubexpression[expressionl + RightSubexpression[terml 

"Integer Add" ( Leftsubexpression ) { Rightsubexpression ) 
end rule 

Figure 2. A Tree Transformation Rule Written in TXL. 

This rule from the Semantics Pass replaces the parse subtree for each subexpression parsed as a binary + 
operation with an operator subtree,for the corresponding integer addition. 
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Figure 3. Examples of Expressions used in Testing. 

On the left are hand-drawn expressions created in FFES 1261. The images on the right are generated from the 
corresponding LaTeX strings created by DRACULAE. The LaTeX strings are derived,from the parse trees. (The 
processing in the Semantics Pass is not needed for  LaTeX.) Runr~ing on a 500 MHz Pentium 111 under Linux, each 
of these expressions is processed in less than one second. 

6. Implementation and Testing 

DRACULAE is implemented in TXL [8,9]. The current 
version of the system recognizes single-line expressions which 
do not include matrices. We have tested DRACULAE on 
hundreds of hand-drawn expressions, a few of which are 
illustrated in Figure 3. This testing is made possible by 
connecting DRACULAE to the user interface and character 
recognition software from the Freehand Formula Entry System 

DRACULAEs multi-pass design makes it easy to adapt the 
system to recognize new constructs. For instance, the following 
additions allow DRACULAE to process Boolean negation, 
notated by an overbar. No change is made to the Layout pass. 
In the syntax pass, add a tree transformation rule to find any 
horizontal line that has symbols below it and no symbols above; 
change the label of this line to "OVERBAR". In the code that 
generates LaTeX from the parse tree, replace this label with 
"\overline( 1". These types of alterations are easy to perform on 
the compact, abstract TXL specifications of the tree 
transformations. 

DRACULAE recognizes the layout of a wide variety of 
handwritten mathematics expressions efficiently, using the 
reading order of mathematics notation to reduce the amount of 
search needed. A baseline structure tree and LaTeX string are 
produced for all input expressions, including syntactically 
invalid expressions with errors such as unbalanced parentheses. 
This is because the Layout pass does not enforce syntax or 
semantics, and the Syntax pass only rewrites tree structures, 
leaving any unsyntactic symbol layouts in the parse tree. The 
parse tree is translated to LaTeX regardless of whether the tree 
represents a valid mathematical expression. 

Wl. 

7. Conclusion 

Separating recognition of mathematics notation into Layout, 
Syntax and Semantic analysis passes is a powerful and useful 
technique. The separation of structure from semantics is 
common practice in compiler designs, but has been rarely used 
in graphics recognition systems. The multi-pass design used in 
DRACULAE allows robust handling of unexpected input, and 
makes it easier to adapt the system to recognize new constructs. 

In DRACULAE we have exploited the left-to-right reading 
direction of mathematics notation in an algorithm and search 
functions that analyze the symbol layout of poorly formatted 
handwritten expressions in an efficient and general way. We 
describe the recognized symbol layout of mathematical 
expressions using baseline structure trees: these are a concise, 
readable, and dialect-independent representation of the hierarchy 
of baselines present in a mathematical expression. 

In future work we will refine our layout analysis algorithm 
and search functions, add the use of whitespace information, 
define a number of mathematical dialects and provide translation 
to computer algebra system formats (e.g. Maple, Mathematica). 
We also hope to explore the use of direction to restrict searching 
while recognizing other diagrammatic notations. 

Acknowledgements. 

We thank Steve Smithies, Kevin Novins, and Jim Arvo for 
use of the Freehand Formula Entry System. Genarro Costagliola, 
Edward Lank, Nick Willan and George Weigt contributed 
through helpful discussion and assistance with the 
implementation. This research is supported by the Natural 
Sciences and Engineering Research Council of Canada. 

172 

Authorized licensed use limited to: University of Central Florida. Downloaded on October 28, 2008 at 20:14 from IEEE Xplore.  Restrictions apply.



References. 

[I]  R. Anderson, “Two Dimensional Mathematical Notation,’’ in 
Syritactic Pattern Recognition, Applications, Editor K. S. Fu, 
Springer 1977, pp. 147-177. 

[2] A. Belaid and J. Haton, “A Syntactic Approach for Handwritten 
Mathematical Formula Recognition,” IEEE Trans. Pattern Analysis 
andMachim Iiitelligetice, 6(1), January 1984, pp. 105-1 11. 

[3] D. Blostein, A. Grbavec, “Recognition of Mathematical Notation,” 
in Handbook of Character Recognition and Documeiit Image 
Analysis, Eds. H. Bunke and P. Wang, World Scientific, 1997, pp. 

[4] D. Blostein and A. Schiirr, “Computing with Graphs and Graph 
Transformation,” Software - Practice arid Experience, 29(3), 1999, 
pp. 197-217. 

[5] K. Chan and D. Yeung, “Mathematics Expression Recognition: a 
Survey,” bid.  Joirrrial on Document Analvsis mid Recognition, 3( I) ,  
August 2000, pp. 3-15. 

[6] S. Chang, “A Method for the Structural Analysis of Two- 
Dimensional Mathematical Expressions,” Irformatiori Sciences, 

[7] T. Chaundy, P. Barrett, C. Batey, The Priritiiig of Mathematics, 
Oxford University Press, 1957. 

[8] J. Cordy, I. Carmichael, R. Halliday, The TXL Programming 
Language - Version IO,  TXL Software Research Inc., Kingston, 
Canada, January 2000 (65 pp). 

[9] J. Cordy, C. Halpern, E. Promislow, “TXL: A Rapid Prototyping 
System for Programming Language Dialects,” Computer Languages 
16( I), January 1991, pp. 97-107. 

[IO] P. Chou, “Recognition of Equations Using a Two-Dimensional 
Stochastic Context-Free Grammar,” Proc. SPIE Col$ OR Visual 
Communications and Image Processing IV, Philadelphia PA, Nov. 
1989, pp. 852-863. 

[ 1 I] G. Costagliola, A. De Lucia, S. Orefice, G. Tortora, “A Framework 
of Syntactic Models for the Implementation of Visual Languages,” 
Proc. 1997 IEEE Iriternational S.ymposium un Visual Languages 
(VL’97), Capri, Italy, Sept. 1997, pp. 58-65. 

1121 Y. Dimitriadis, 1. Coronado, C. de la Maza, “A New Interactive 
Mathematical Editor, Using On-line Handwritten Symbol 
Recognition and Error Detection-Correction with an Attribute 
Grammar,” Proc. ICDAR’9I Saint Malo, France, Sept. 1991, pp. 
242-250. 

[ 131 T. El-Sheikh, “Recognition of Handwritten Arabic Mathematical 
Formulas,’’ United Kingdom bformation Techiiologv Confrrorce, 
March 1990. 

[ 141 R. Fateman, T. Tokuyasu, B. Berman, and N. Mitchell, “Optical 
Character Recognition and Parsing of Typeset Mathematics,” J. 
Visual Commuriicatiorr arid Image Represeritation, 7( I ) ,  March 

[I51 C. Faure and Z. Wang, “Automatic Perception of the Structure of 
Handwritten Mathematical Expressions,” in Computer Processing of 
Haiidwririrtg, Eds. R. Plamondon and C. Leedham, World Scientific, 

[I61 R. Fukuda, S. I, F. Tamari, “A Technique of Mathematical 
Expression Structure Analysis for the Handwriting Input System,” 
Proc. ICDAR‘99, Bangalore, India, September 1999, pp. 13 I-  134. 

[I71 A. Grbavec and D. Blostein, “Mathematics Recognition Using 
Graph Rewriting,” Proc. ICDAR’95, Montreal, Canada, August 
1995, pp. 417-421. 

[ 181 J. Ha, R. Haralick, I. Phillips, “Understanding Mathematical 
Expressions from Document Images,” Proc. ICDAR’95, Montreal, 
Canada, August 1995, pp. 956-959. 

[ 191 N. Higham, Handbook of Writing for  the Mathematical Sciences, 
Siam, Philadelphia, 1993. 

[20] K. Inoue, R. Miyazaki, M. Suzuki, “Optical Recognition of Printed 
Mathematical Documents,“ Proc. Third Asian Technology 
Conference in Mathematics, Tsukuba, Japan, 1998, pp. 280-289. 

[2 I ]  D. Knuth, “Mathematical Typography,” Bulletin of the American 
MathematicalSbcie~,  1(2), March 1979, pp. 337-372. 

557-582. 

2(3), 1970, pp. 253-272. 

www.txl.ca/txldocs.html 

1996, pp. 2-15. 

1990, pp. 337-361 

[22] A. Kosmala, G. Rigoll, S. Lavirotte, L. Pottier, “On-Line 
Handwntten Formula Recognition using Hidden Markov Models 
and Context Dependent Graph Grammars,” Proc. ICDAR’99, 
Bangalore India, Sept. 1999, pp. 107-1 IO. 

[23] S. Lavirotte and L. Pottier, “Mathematical Formula Recognition 
using Graph Grammar,” Document Recogriitiori V ,  SPIE 
Proceedbigs Series, Volume 3305, 1998, pp. 44-52. 

[241 H. Lee and J. Wang, “Design of a Mathematical Expression 
Understanding System,“ Pattern Recogtiition Letters, 18, 1997, pp. 

[25] W. Martin, “Computer InputIOutput of Mathematical Expressions,” 
Proc. 21id Symposium 011 Symbolic arid Algebraic Maiiipulatioris, 
ACM, New York, 1971, pp. 78-87. 

[26] E. Miller, P. Viola, “Ambiguity and Constraint in Mathematical 
Expression Recognition,” Proc. AAAI’98, 15th National Coifererice 
on Anificial I~itelligeiice, Madison, Wisconsin, July 1998, pp. 784- 
791. 

[27] M. Okamoto and A. Miyazawa, “An Experimental Implementation 
of Document Recognition System for Papers containing 
Mathematical Expressions,” in Structured Document Image 
Analysis, Eds. Baird, Bunke, Yamamoto, Springer 1992, pp. 36-53. 

[28] A. Smithies, K. Novins, J. Arvo. “A Handwriting-Based Equation 
Editor,” Proc. Graphics hterfuce ‘99, sponsor: Canadian Human- 
Computer Communications Society, Kingston, Ontario, June, 1999, 
pp, 84-91. 

[29] H. Twaakyondo and M. Okamoto, “Structure Analysis and 
Recognition of Mathematical Expressions,” Proc. ICDAR95, 
Montreal, Canada, August 1995, pp. 430-437. 

1301 Z. Wang and C. Faure, “Structural Analysis of Handwritten 
Mathematical Expressions,” Proc. Ninrh Iiitl. Cot$ on Pattern 
Recognition, pp. 32-34, Rome, Italy, November 1988. 

[31] H. Winkler, J. Fahrner, M. Lang, “A soft-decision approach for 
structural analysis of handwritten mathematical expressions,” Proc. 
IEEE International Coifererice on Acousrics, Speech, and Signal 
Processiiig -- ICASSP’95, pp. 2459-2462. 

(321 R. Zanibbi, “Recognition of Mathematics Notation via Computer 
Using Baseline Structure,” Technical Report ISBN-0836-0227- 
2000-439, Dept. Computing and Information Science, Queen’s 
University, Kingston, Ontario, August 2000. 

[33] R. Zanibbl, K. Novins, J. Arvo, K. Zanibbi, “Aiding Manipulation 
of Handwntten Mathematical Expressions through Style-Preserving 
Morphs,” Proc. Graphics Iiiterfuce 2001, Ottawa, Canada, June 
2001, pp. 127-134. 

[34] Y. Zhao, T. Sakurai, H. Sugiura, T. Toni, “Formalization and 
Parsing of Mathematical Expressions for Mathematical 
Computation,” J. Japaii Society f o r  Symbolic arid Algebraic 
Computatiuri. 6(3) ,  1998, pp. 2-29. 

289-298. 

773 

Authorized licensed use limited to: University of Central Florida. Downloaded on October 28, 2008 at 20:14 from IEEE Xplore.  Restrictions apply.


