
Abstract 
Most existing sketch understanding systems require a 
closed domain to achieve recognition.  This paper de-
scribes an incremental learning technique for open-
domain recognition. Our system builds generalizations 
for categories of objects based upon previous sketches 
of those objects and uses those generalizations to clas-
sify new sketches. We represent sketches qualitatively 
because we believe qualitative information provides a 
level of description that abstracts away details that dis-
tract from classification, such as exact dimen-
sions. Bayesian reasoning is used in building represen-
tations to deal with the inherent uncertainty in percep-
tion. Qualitative representations are compared using 
SME, a computational model of analogy and similarity 
that is supported by psychological evidence, including 
studies of perceptual similarity. We use SEQL to pro-
duce generalizations based on the common structure 
found by SME in different sketches of the same ob-
ject. We report on the results of testing the system on a 
corpus of sketches of everyday objects, drawn by ten 
different people. 

1 Introduction 
The problem of sketch recognition has received much atten-
tion in recent years because sketching provides a convenient 
and natural interface for transferring information from a 
person to a computer.  This problem can be extremely diffi-
cult because everyone sketches differently and a single per-
son will often sketch the same thing in a different way each 
time.  The key is to identify the properties that remain con-
stant across each sketch of a given object. In order to deal 
with this quandary, many programs use a narrow domain 
containing a small set of possible sketch objects [e.g., circuit 
diagrams: Liwicki and Knipping, 2005; simple symbols: 
Anderson et al., 2004; architectural objects: Park and Kwon, 
2003].  Thus, the programmers can examine the domain 
ahead of time and either hand-code the classifiers them-
selves or train the classifiers on a large body of data (700 
images for Liwicki and Knipping [2005]).  Even systems 
designed to work in multiple domains require a certain 

amount of preprogramming for each particular domain [Al-
varado et al., 2002].  While these types of systems have 
certainly proven useful, they limit the communication be-
tween the person and the computer. Only information based 
in domains that the programmers expect the system to work 
in can be transmitted. 

We believe the key to recognition in the absence of 
domain expectations is efficient, on-line learning. This 
means that while a user works with the system, it should be 
learning from the sketches the user produces, so that when 
the user sketches an object that has been sketched in the 
past, it will recognize that object. Such a system has a cou-
ple of key requirements. Firstly, there must be a simple way 
for the user to tell the system what a sketched object is sup-
posed to be. Secondly, an algorithm that can learn a new 
category based on only a few examples is required. This is 
difficult if one is relying on quantitative information about 
lengths and angles because this information can vary sig-
nificantly from one sketch to another. Therefore, we believe 
qualitative sketch representations are necessary. 

Several efforts have examined building qualitative rep-
resentations of images, although few have dealt with raw, 
user-drawn sketches. Museros and Escrig [2004] worked on 
comparing closed shapes. Their representations contained 
descriptions of basic features of the curves and angles in the 
shapes. They were able to compare two shapes and deter-
mine whether one was a rotation of the other.   

Ferguson and Forbus’ [1999] GeoRep generated quali-
tative representations based on a line-drawing program that 
allowed users to make perfect lines and curves. GeoRep 
applied a low-level relational describer to each drawing to 
find domain-independent qualitative information, such as 
relative orientation of and connections between lines. Geo-
Rep also used high-level relational describers to extract do-
main-dependent information from the low-level description. 
It was used for recognizing objects in particular domains 
and identifying axes of symmetry. 

Veselova and Davis [2004] built a system that produced 
a qualitative representation of hand-drawn sketches.  Their 
representational vocabulary overlapped somewhat with 
Ferguson and Forbus’. Their system used several cogni-
tively motivated grouping rules to determine the relative 
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weights of different facts in the representation. The system 
was designed to produce representations for classification, 
although the learning and classification stages have not, to 
the best of our knowledge, been integrated.  

We believe the three systems described above provide 
evidence for the effectiveness of using qualitative informa-
tion to represent and compare sketches. However, these sys-
tems lack the ability to learn robust categories of sketches 
based on multiple examples. Here, we describe our system, 
which we believe takes a step towards accomplishing this 
goal. We begin with the sketching environment in which our 
system operates. Next, we give a brief overview of the ap-
plications we use for comparing sketches and constructing 
generalizations. We then describe how our system decom-
poses rough sketches into perceptual elements and how 
those elements are represented using a qualitative vocabu-
lary. Finally, we discuss the results from an experiment de-
signed to test our system and consider areas for future work. 

2 The Sketching Environment 
Our system uses sketches drawn in sKEA, the sketching 
Knowledge Entry Associate. sKEA is an open-domain 
sketch understanding system [Forbus et al., 2004].  It is able 
to reason about user-drawn sketches without any domain 
expectations of what a user is likely to sketch because it is 
not dependent on sketch recognition.  Rather, it is based on 
the idea that when people communicate through sketching, 
their communication is a multi-modal process. People ver-
bally describe what they are sketching as they create it.  
Similarly, sKEA allows users to label each glyph, or object 
in a sketch, with categories from its knowledge base. sKEA 
computes a number of spatial relations between glyphs in a 
sketch, and it uses this information along with its knowledge 
about the categories of the glyphs to reason about a sketch, 
or to compare two sketches. 

While humans do often describe what they are sketch-
ing, they also expect others to recognize some objects with-
out having to be told what they are. Thus, it is not surprising 
that sKEA’s requirement that every glyph be labeled can 
become onerous at times, especially if the user is perform-
ing a task that requires the same objects to be sketched and 
labeled many times. This concern leads to the question of 
whether some type of sketch recognition can be added to 
sKEA without sacrificing domain independence. 

Our approach to domain-independent recognition is 
based on incremental learning. When a user begins using 
sKEA to perform some task, sKEA should have no expecta-
tions about what the user will sketch. However, over time, if 
the user sketches the same object more than once, sKEA 
ought to learn to recognize that object. Thus, the fourth time 
the user draws, say, a building, sKEA could generate a 
guess as to what that object is most likely to be. If that guess 
is wrong, the user can perform the usual glyph labeling task 
to correct it, just as a person would correct another person 
who misunderstood part of a sketch. We see any sketching 

session as an opportunity for sKEA to learn to recognize 
objects in parallel with the user’s sketching of those objects. 

In order for sKEA to learn to recognize objects, three 
other components are required: a system for building repre-
sentations of sketched objects, a system for learning percep-
tual categories of objects, and a system for comparing a new 
object’s  representation to the category representations in 
order to classify it.  We will describe the comparison and 
learning components in the next section.  

3 Comparisons and Generalization  
We compare representations using the Structure-Mapping 
Engine (SME) [Falkenhainer et al., 1989].  SME is a com-
putational model of similarity and analogy based on Gent-
ner’s [1983] structure-mapping theory.  According to struc-
ture-mapping, humans draw analogies between two cases by 
aligning their common structure.  Each case’s representation 
contains entities, attributes of entities, and relations.  Struc-
ture is based on the connections between elements in the 
representation.  A simple relation between two entities has a 
small amount of structure, whereas a more complex relation 
between other relations has a deeper structure.  

SME takes as input two cases: a base and a target. It 
finds possible correspondences between entities, attributes, 
and relations in the two cases. It combines consistent corre-
spondences to produce mappings between the cases. SME 
attempts to find mappings which maximize systematicity, 
the amount of structural depth in the correspondences.  

Our system learns categories of objects using SEQL 
[Kuehne et al., 2000; Halstead and Forbus, 2005], a model 
of generalization built on SME. SEQL is based on the the-
ory that people form a representation of a category by ab-
stracting out the common structure in all the exemplars of 
that category. SEQL uses SME to compare new cases to the 
known generalizations. If a new case aligns with a sufficient 
amount of the structure in one of the generalizations, the 
case is added to that generalization. SEQL associates prob-
abilities with each expression in a generalization, represent-
ing the proportion of the instances of that generalization that 
include that particular expression. When a new case is 
added to the generalization, if its structure does not align 
with an expression in the generalization, that expression’s 
probability is decremented. 

SEQL is capable of quickly learning new generaliza-
tions. Even a generalization based on a pair of exemplars 
may be sufficient for classifying new cases.  Each additional 
exemplar further refines the generalization. 

4 Perceptual Elements  
Our system decomposes a sketch into a set of primitive per-
ceptual elements. There are two types of primitive elements: 
segments and the endpoints of segments. These elements 
align with elements of the raw primal sketch in Marr’s 
[1982] theory of vision. Segments may be straight or 
curved. Endpoints may be classified as corners, meaning 



there is a corner between two segments; connections, mean-
ing they connect two collinear segments; or terminations, 
meaning the endpoint does not connect to another segment. 
Once the primitive elements are found, they can be grouped 
to form more complex elements, creating an element hierar-
chy. So far, there is only one level to the hierarchy. Seg-
ments and their terminations can be grouped to form edges. 
While there are rules for grouping edges, there are currently 
no explicit structures for more complex perceptual elements. 

Our system begins with the raw output from sKEA, 
consisting of a list of polylines.  Each polyline is a list of 
points corresponding to a line drawn by the user.  The sys-
tem does not assume that the endpoints of polylines match 
endpoints of edges in the shape.  Rather, it begins by joining 
together polylines with adjacent endpoints, provided there is 
no third adjacent polyline to create ambiguity. 

The system then searches for discontinuities in the 
slope of each polyline, representing potential corners.  Dis-
continuities are a key concept at every level in Marr’s 
[1982] model, and they provide vital information about the 
location of segment endpoints. In our system, evidence for a 
discontinuity includes both changes in the overall orienta-
tion and high values for the derivative of the slope of the 
curve, as calculated by Lowe [1989]. Polylines are divided 
into segments which are linked by endpoints anywhere there 
is a sufficiently salient discontinuity. 

The system also finds potential corners and connections 
between segments from separate polylines whose endpoints 
are not adjacent.  Two segments may have a corner between 
them if extending the lines beyond their endpoints would 
result in an intersection at some point in space.  They may 
have a connection between them if they are collinear. 

Once the system has located endpoints and gathered 
evidence, the endpoints must be classified. Previous systems 
have used Bayesian Networks (BNets) to deal with uncer-
tainty in perception [Bokor and Ferguson, 2004; Alvarado 
and Davis 2005]. We utilize BNets which use the evidence 
gathered about an endpoint to classify it as a corner, connec-
tion, or termination  

After endpoints have been classified, segments can be 
grouped together to form edges.  Edges consist of maximal 
lists of unambiguously connected segments. Segments are 
unambiguously connected if there is an endpoint between 
them that has been classified as a connection and if the con-
nected endpoints of the two segments are not linked by con-
nections or corners to any other segments. The threshold for 
connection detection is lowered if the segments to be 
grouped form a compatible curve.   

Edges inherit connection information from the seg-
ments upon which they are built.  Thus, edges whose seg-
ments were connected will themselves be connected.  This 
connection information is used by the system to group edges 
into connected edge groups, lists of sequentially connected 
edges. A cyclic edge group is a connected edge group in 
which the first and the last edge are connected.  These edge 
groups represent closed shapes in the sketch.  For example, 

a square would be a cyclic edge group containing four 
edges.  Once the edges and edge groups have been com-
puted, the system uses this information to build a qualitative 
representation of the sketch. 

5 Qualitative Representation  
An appropriate representational vocabulary is crucial for 
any kind of comparison between sketches. If the vocabulary 
fails to capture the key properties of each sketch, there will 
be no way to determine whether two sketches are similar. 
Our qualitative vocabulary draws on the work of Ferguson 
and Forbus [1999], Museros and Escrig [2004], and Ve-
selova and Davis [2004]. 

The terms in our vocabulary can be divided into three 
types: attributes, pairwise relations, and anchoring rela-
tions. Attributes convey information about a single edge in 
the sketch. Pairwise relations describe a relationship be-
tween two edges. Because these first two types of terms can 
apply to only one or two entities in the representation, they 
contain relatively little structural depth. SME uses structure 
to match two representations, so it is difficult to find corre-
sponding entities using only these predicates, particularly 
when there is a large number of them in each representation. 
Thus, anchoring relations are necessary. Anchoring rela-
tions, which convey information that we believe is particu-
larly salient in the match, refer to more than two edges, and 
contain greater structural complexity. Because of SME’s 
systematicity bias, they are generally the first relations SME 
matches up. Thus, they anchor the rest of the mapping. 

Attributes describe an edge’s type. An edge can be clas-
sified as straight, curved, or elliptical, where an elliptical 
edge is a curved edge that closes on itself, such as a circle. 
In addition, straight edges that align with the x or y axes are 
assigned the horizontal or vertical attributes. 

Pairwise relations describe the relative position (left-of 
or above), relative length (same-length or longer-than), or 
relative orientation (parallel or perpendicular) of pairs of 
edges. One major concern with pairwise relations is deter-
mining the pairs of edges for which relations will be as-
serted. Asserting relations between every pair of edges in a 
sketch results in an overly complex representation with a 
large number of redundant or irrelevant facts. We follow 
Veselova and Davis [2004] in only asserting pairwise rela-
tions between adjacent edges. We further limit the relative 
length relations between straight edges by only asserting 
relative length for pairs of edges that are parallel or perpen-
dicular. 

Connections between edges, and particularly corners 
between edges (connections that occur at the edges’ end-
points), are key to recovering the spatial structure of most 
shapes. We use a general connected relation any time two 
edges are connected to allow connections of different types 
to potentially align.  However, we also classify the connec-
tions into three types: corner, connects-to (where one 
edge’s endpoint touches the middle of another edge), and 



intersection (when two edges meet between both their end-
points). We also use cyclic edge groups to compute the con-
vexity of any corners that make up part of a closed shape. 

We assert two types of anchoring relations. Firstly, we 
use the cyclic edge groups to find any three-sided or four-
sided closed shapes, i.e., triangles or quadrilaterals. These 
shapes are important because they often make up the sur-
faces of three-dimensional objects, and because there is evi-
dence that humans identify basic shapes early on in percep-
tual processing [Ferguson and Forbus, 1999]. 

Secondly, we assert junction relations for points in a 
sketch where exactly three edges meet. Clowes [1971] dem-
onstrated that junctions between edges provide useful in-
formation for recovering shape information from line draw-
ings. We classify junctions into three types described by 
Clowes: arrow junctions, fork junctions, and tee junc-
tions, as well as a fourth, other type. We also assert 
positional relations between junctions. 

5.1 Organization of Facts 
Unfortunately, we found that when complex shapes were 
analyzed, the representations based on the vocabulary de-
scribed above became unmanageably large (600+ facts).  
Consequently we limit the number of facts that are allowed 
in a representation. We order the facts in our representation 
according to a ranking system. Once facts have been appro-
priately ordered, we can cut off the list of facts in a repre-
sentation at different points depending on how large we 
want to allow the representations to grow. 

Facts are ranked based on both the qualitative term and 
the edges being described. Among qualitative terms, anchor-
ing relations are ranked above other relations due to their 
importance in the mapping. Among edges, the highest rank-
ing is given to external edges, those that reach the outer 
bounds of the entire sketch.  These edges are considered the 
most important because the outer edges of an image convey 
vital information about the shape which the image repre-
sents [Hoffman and Richards, 1984]. The lowest ranking is 
given to purely internal edges, those that are not part of any 
connected edge group containing an external edge. Presently 
we do not assert relations between internal edges. 

6 Experiment  
We evaluated our system by testing its ability to build gen-
eralizations of sketches of 8 everyday objects: a house, a 
fireplace, a brick, a cup, an oven, a cylinder, a refrigerator, 
and a bucket. The objects were selected from Sun Up to Sun 
Down [Buckley, 1979], which uses simple drawings in 
teaching about solar energy. 10 subjects were instructed to 
sketch each object using the drawings from the book as 
guides. The drawings were provided so that the general fea-
tures and orientations of the sketches would be similar. 
However, subjects were told that they needed only sketch 
those parts of the object that they believed were necessary 
for a person to recognize it. On examining the sketches 

drawn by subjects, we found significant cross-subject dif-
ferences in the sketches, although most of the sketches of 
each object shared a core set of similarities (see Figure 1).  

 Subjects sketched the objects in sKEA. Of the 10 sub-
jects, 5 had previous experience working with sKEA. After 
subjects sketched the objects, each object was labeled by the 
experimenter using sKEA’s interface. 

We chose to throw out one subject’s set of sketches be-
cause the subject failed to follow the instructions. The re-
maining 72 sketches were used to test the system. In each 
test run, generalizations for the 8 objects were built based on 
sketches by a subset of the 9 users (the training set). Al-
though SEQL can determine generalizations automatically, 
our system forced SEQL to build exactly one generalization 
from the training sketches of each object. 
 

 
Figure 1. Examples of sketches drawn by subjects 

After the generalizations were built, they were used to 
classify the objects in the sketches by a subset of the re-
maining users (the test set). A given object was classified by 
comparing its representation to each of the 8 generalizations 
and returning the generalization with the strongest match. 
The strength of a match was calculated based on coverage.  
After SME was used to identify the common structure in a 
generalization (the base) and a new instance (the target), the 
base or target coverage could be calculated by determining 
the percentage of expressions in the base or target that were 
a part of the common structure.  For example, if every ex-
pression in the base matched something in the target, the 
match would have 100% base coverage. We found that both 
base and target coverage provided useful information about 
the strength of a match.  Therefore, the system calculates the 
match’s strength by taking the average of the two. 

We validated our results by averaging the scores over 
80 test runs. In each run, the sketches were randomly di-
vided into training and test sets. Because we were unsure 
how limiting the number of facts in a representation would 
affect the results, we ran the test with four different limits 
on the number of facts.  In addition, because we were inter-
ested in the incremental effect of adding more cases to a 
generalization, we ran the test multiple times with different 
training set sizes.  We varied the training set size from two 
to six cases, while keeping the test set size constant at three. 



 
 

 
Figure 2. Cylinders, buckets, and cups drawn by subjects 

Preliminary tests indicated that many of the classifica-
tion mistakes made by the system involved a failure to dis-
tinguish between the three cylindrical objects: cylinders, 
buckets, and cups. This is hardly surprising, as these three 
objects have similar shapes, with nearly as much variation 
within category as across categories (see Figure 2). There-
fore, we used two criteria in reporting our results. According 
to the strong criterion, only an exact match between an ob-
ject’s actual type and its classified type was considered a 
correct classification. According to the weak criterion, a 
classification in which the two types did not match was still 
considered correct when both were cylindrical types.  
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Figure 3. Results when the fact limit is varied 

6.1 Results 
The results achieved when the limit on the number of facts 
in each representation was varied are found in Figure 3. 
These results were based on a training set size of 5. The best 
results were achieved with a limit of 175 facts.  With this 
limit, the strong criterion was met 77% of the time, and the 
weak criterion was met 93.5% of the time.  Note that chance 
performance with the strong and weak criteria would be 
12.5% and 21.9%, respectively. A t-test was used to look for 
statistical differences in the results.  We found that the in-
crease in performance when the number of facts went from 
100 to 150 was statistically significant (p < .01) for both the 
strong and weak criteria.  There were no significant differ-
ences between the results for 150, 175, and 225 facts. 

The results for different training set sizes, shown in 
Figure 4, were collected with a fact limit of 175 facts.  The 
results for both the strong and weak criteria consistently 
improved as the training set size increased.  With only two 

cases in each generalization, the results were 71% and 
88.5% for the strong and weak criteria.  With six cases in 
each generalization, the results were 77.5% and 94.2%.  
While there was a clear overall improvement, the differ-
ences between adjacent pairs of results were generally 
small.  Increasing the training set size from 3 to 4 resulted in 
significant performance improvements with both the strong 
and weak criteria (p < .01), but no other differences between 
adjacent pairs were statistically significant. 
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Figure 4. Results when the training set size is varied 

7 Discussion 
We believe we have demonstrated the effectiveness of our 
system in learning to classify sketches of simple, everyday 
objects. While the number of types of objects for classifica-
tion was not large, the objects varied significantly in terms 
of shape and complexity. Most importantly, the system 
worked with no prior knowledge of the object classes for 
which it learned generalizations. Based on only two sample 
objects for each type, it was able to build generalizations 
that were sufficiently robust to classify new objects into one 
of eight categories 71% of the time, and into one of six 
categories 88.5% of the time.  As expected, classification 
became more accurate as the number of sketches in the 
training set increased, suggesting that each additional sam-
ple allowed the generalizations to be refined and improved. 
The relatively narrow range of improvement is most likely 
due to a ceiling effect: the system achieved near-optimal 
performance with generalizations based on two examples, 
so there was not a great deal of room for improvement.  

We were concerned that limiting the number of facts 
that could be included in a representation might hamper 
performance. However, we found no significant differences 
between performance with 150, 175, or 225 facts. This re-
sult suggests that, given our ordering of the facts, the first 
150 or 175 facts were sufficient for recovering the shape of 
the sketch. Of course, one would expect the necessary num-
ber of facts to vary depending on the complexity of the 
shape being represented. However, given the range of the 
shapes used for this experiment, with the number of facts 
for a shape ranging from 60 to over 600, we believe the re-
sults support 175 being a good general cutoff for the current 
qualitative representation scheme.  



One assumption our system makes that limits our abil-
ity to generalize from these results is that relations between 
interior edges are not needed. If the system is to be able to 
learn to distinguish between more similar objects, it may be 
necessary to include these relations in the representations. 

One limitation of our experiment is that subjects were 
given a guiding illustration of each object, rather than draw-
ing objects from their own imagination. However, we be-
lieve the results represent an important step towards solving 
the problem of sketch perception. To the best of our knowl-
edge, no other recognition system has been tested on cross-
subject sketches of the complexity and variability used in 
this experiment. 

 8 Future Work 
Our system currently assumes that each new sketch must 
match one of the previously learned generalizations. This 
will not always be the case.  The ability to recognize that a 
new object is novel instead of forcing it into a category 
would be useful. This recognition could be based on a 
threshold for structural evaluation scores in the SME 
matches between new cases and previous generalizations. 

Thus far we have only shown that our system works in 
an experimental setting. In the future, we plan to incorporate 
the system with sKEA so that it will be running in the back-
ground while users are sketching. The interaction between 
the user, the system, and sKEA will create an environment 
in which we believe open-domain sketch recognition will 
become a possibility. 
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