
Assignment 2 – Research Contest – Polyline Corner Finding
CAP6938

Due: 9/30/08 11:59pm

This purpose of this assignment is twofold. First, it is designed to give you a feel for the
intricacies and complexities of polyline corner finding, an important tool used in gesture
and sketch-based interfaces. Second, it is to give you experience in implementing a state
of the art algorithm from a research paper and to develop a new algorithm that improves
upon it.

Requirements
There are two main requirements for this assignment. First, you will implement
ShortStraw, a polyline corner finding technique that was published in the Eurographics
Workshop on Sketch-Based Interfaces and Modeling in June 2008. The paper is attached
to this document. Second, you will attempt to improve upon this algorithm by
developing your own approach to polyline corner finding. Your approach can be based
on any technique or strategy you want.

To test your algorithm against ShortStraw, I am providing you with the data that was
used to test the original algorithm. Thus, the results from your ShortStraw
implementation should be close to the results found in the paper. The data is in xml
format and should be easy to parse using the XML tools found in C# and .NET.

Finally, as part of your deliverables, you are to provide a 1-2 page report on your
algorithm and how it compares against Short Straw. In the report you will need to
describe your algorithm as if you were writing it as part of a research paper.

I will give an extra 15 points extra credit to anyone who beats ShortStraw with their own
algorithm.

Deliverables

You must submit a zip file containing your source and any relevant files needed to
compile and run your application. Also include your report and a README file
describing what works and what does not, any known bugs, and any problems you
encountered. To submit, you can email me your zip file.

Grading

Grading will be loosely based on the following:

40% correct implementation of ShortStraw
40% development of new polyline corner finding algorithm
20% documentation

EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2008)
C. Alvarado and M.- P. Cani (Editors)

ShortStraw: A Simple and Effective Corner Finder for
Polylines

A. Wolin†, B. Eoff‡, and T. Hammond§

Texas A&M University
Dept. of Computer Science

College Station, TX 77843-3112

Abstract
In this paper we introduce ShortStraw, a simple and highly accurate polyline corner finder. ShortStraw uses a
bottom-up approach to find corners by: (1) resampling the points of the stroke, (2) calculating the “straw” distance
between the endpoints of a window around each resampled point, and (3) taking the points with the minimum straw
distance to be corners. Using an all-or-nothing accuracy measure, ShortStraw achieves an accuracy more than
twice that of the current best benchmark.

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Segmentation]: Edge and feature detection

1. Introduction

Sketch recognition involves understanding user-drawn
strokes to allow for new human-computer interface tech-
niques besides the standard mouse and keyboard. In an at-
tempt to make human-computer interaction as natural as
human-human interaction, we would like to build sketch sys-
tems that allow people to draw as they would naturally with-
out placing drawing constraints on the user such as drawing
strokes in a certain order, drawing each primitive in a sep-
arate stroke, or requiring the user to learn a set of prespeci-
fied gestures (e.g. [Rub91]). Researchers have begun to build
free-sketch recognition systems in domains such as circuit
diagrams [AD04] or UML diagrams [HD02].

A fundamental step in providing free-hand sketch recog-
nition is allowing users to draw multiple primitives (such as
a square drawn out of four lines) with a single stroke. Once a
stroke is broken down into primitives, the primitives can be
recognized with high accuracy [PH08], and then recombined
using geometrical rules [AD04, HD05] to allow for recogni-
tion of naturally sketched shapes.

Corner finding is the technique that involves splitting up

† e-mail: awolin@cs.tamu.edu
‡ email: bde@cs.tamu.edu
§ e-mail: hammond@cs.tamu.edu

a stroke into primitives, such as lines and arcs. In polyline
corner finders, such as the one presented in this paper, the
corner finder finds the minimum set of points such that, if
the polyline is split at those points, the resulting primitives
would consist of only lines.

Other uses for polyline corner finding abound, including
node traversal - identifying which nodes a user purposefully
selected. For instance, ShapeWriter, previously known as
SHARK [SZ05], allows a user to stroke out words on a vir-
tual keyboard by drawing a stroke that connects each letter
of the word in sequence; a corner finder could be used as a
first pass to identify the letters (effectively, the corners) of
the word.

Another node traversal application (and corner finder use)
is an urban route planner and guidance system in conjunc-
tion with a mapping program. A user could use a stylus to
trace a driving route onto a map. Since urban environments
are typically set up in grids, the corners in the route would
correspond to intersections and turns that the guidance sys-
tem could watch out for and alert the driver to.

Polyline corner finding also has uses within 3D sketch
systems. Many of these systems require users to draw
straight lines in “slices” of cartesian coordinates that al-
low users to overcome the issues involved with drawing
within 3D environments. Other systems, such as [MM05],

c© The Eurographics Association 2008.

A. Wolin, B. Eoff, & T. Hammond / ShortStraw

rely on primitive lines and planar curves to be drawn in-
dividually, and objects are then constructed by determining
where lines meet in a three-dimensional space. Corner find-
ing can assist these applications by allowing users to draw
three-dimensional objects with single strokes.

As we can see, polyline corner finding is quite valuable
for a variety of applications. Our goal is to provide an easy-
to-program algorithm (such as [WWL07]) that outperforms
all current polyline corner finding algorithms. A simple al-
gorithm is valuable for educational purposes to help teach
beginning students in a field and lead into more complicated
techniques.

We present ShortStraw, an easily implemented algorithm
for polyline corner finding that dramatically outperforms the
state-of-the-art corner finding techniques for polylines. The
remainder of this paper will discuss how our algorithm re-
lates to previous work, our algorithm’s implementation, and
the results from comparing ShortStraw to current baseline
corner finders.

2. Related Work

Sezgin et al. use a stroke’s curvature and pen speed to deter-
mine stroke corners [SSD01]. In their system, points of high
curvature are considered corner candidates, as well as points
of low speed. After the authors obtain an initial collection
of curvature and speed corners, their system picks either the
“best” curvature or speed corner, one at a time, and creates a
new corner fit for the stroke using the picked corner and the
previous corner fit. The best corner is determined by defined
metrics. This process of adding the best curvature or speed
corner candidate to create a new fit is continued, and then a
final corner fit is chosen as the fit with the least amount of
corners and an error below some threshold.

Kim and Kim propose new curvature metrics in their cor-
ner finding system [KK06]. The metrics, local convexity and
local monoticity, measure the curvature in the same direc-
tion at a point. Convexity adds together all of the curvatures
of the same sign within a window, whereas local monotoc-
ity looks at decreasing curvatures of the same sign around
a point. Kim and Kim also have a different measure for the
curvature at a point than in [SSD01]. In [KK06], the system
first resamples the points of a stroke to be equidistant from
one another. Since the distance between consecutive points
is now constant, a point’s curvature value does not have to
take into account arc length changes, so the curvature at each
point is equal to the direction change at that point.

Both algorithms in [SSD01] and [KK06] rely on some
techniques that novices to computer science might not have.
Curvature for a point on a stroke can be found with deriva-
tives or least-squares regression, both of which are found
in more advanced math courses like calculus and statistics.
Beginning programmers might not have taken these courses,
which would hinder them from understanding how curvature

is computed. Our algorithm is founded on a simple concept
using only the length between two points, which requires
a small amount of mathematical background in geometry.
Also, like in [KK06], our algorithm resamples the points of
a stroke.

Hershberger and Snoeyink, Yu and Cai, and Hse et al. all
fit primitives to stroke segments in order to find the cor-
ners of a stroke for beautification purposes [HS92, YC03,
HSN04]. Hershberger’s algorithm in [HS92] is an extension
of the Douglas-Peucker algorithm for line simplification pre-
sented in [DP73], which fits the “best” set of lines to a poly-
line stroke. This improved algorithm has been proven to run
in Θ(n logn) in the worst case, with the original algorithm’s
performance at Θ(n2). Hse et al. fit both line segments and
elliptical arcs to symbols using dynamic programming tech-
niques [HSN04]. Although their algorithm is accurate and
can handle more complex shapes than polylines, the algo-
rithm’s memory and run-time performance is rather poor
compared to Douglas-Peucker’s.

ShortStraw relies on a set threshold for the window (i.e.
number of points) examined when determining if a certain
point is a corner. In Teh and Chin’s corner finder [TC89],
they vary the window for each point examined during cor-
ner finding calculations. Although having a scaling window
can increase the accuracy for finding points that are corners,
ShortStraw was designed to be as simple as possible while
still providing high polyline accuracy. Other research exclu-
sively uses scaling techniques to locate corners. Rattarangsi
and Chin smooth a stroke’s x and y points with a varying
Gaussian scale in order to eliminate noise and allow for easy
corner detection [RC92], and Sezgin improved upon the per-
formance of this algorithm in his implementation scaling
curvature data [SD06].

3. Implementation

ShortStraw is designed to be simple to understand and easy
to implement. As such, the entire algorithm can be discussed
in detail in the paper, and pseudocode for the algorithm is
also presented in the Appendix.

3.1. Resampling

The first step to ShortStraw involves resampling the points
of a stroke to be evenly spaced apart. Resampling points is
necessary in ShortStraw, for reasons that will be discussed
in Section 3.2.1.

The algorithm for resampling is based on the algorithm
presented in [WWL07]. Although the resampling remains
the same, the interspacing distance of the points is deter-
mined differently.

In ShortStraw, points are resampled based on the diagonal
length of the stroke’s bounding box. The interspacing dis-
tance is equal to the diagonal divided by a constant factor. In

c© The Eurographics Association 2008.

A. Wolin, B. Eoff, & T. Hammond / ShortStraw

(a) Original points of the stroke (b) Resampled points of the stroke

Figure 1: The original points (a) are varied in distance away from each other, whereas the resampled points (b) are interspaced
evently..

our implementation, this constant was set to 40; this constant
factor was determined empirically. We found that increasing
the value of this constant caused too much noise, whereas
decreasing the constant created oversmoothed strokes. The
interspacing distance is chosen this way in order to accom-
modate for strokes of varying size. Human perception of
what constitutes a significant change in a symbol varies with
stroke size [VD04].

The original points (called points) of the stroke can be
resampled once we have calculated the interspacing dis-
tance, S. First, an empty set of points is created to store any
new resampled points, and, for simplicity, this set is called
resampled. The first point in the original point set, points0,
is then appended to resampled. A distance holder D is ini-
tialized to 0.

The main algorithm is as follows:

1. The Euclidean distance d between two consecutive points
pointsi−1 and pointsi is added to D.

2. If D is less than the interspacing distance S, then we in-
crement i by 1 and repeat from step (1).

3. Otherwise:

a. Create a new point q that is located approximately
S euclidean distance away from the last resampled
point. qx and qy are calculated to be (S−D)/d dis-
tance between pointsi−1 and pointsi.

b. Append q to resampled, and insert q before pointsi.
c. Repeat from step (1) without incrementing i.

The main algorithm loop terminates when i > |points|.
The algorithms for both the interspaced distance calculation
and the point resampling can be found in the Appendix. An
example of a resampled stroke can be seen in Figure 1(b).

3.2. Corner Finding

ShortStraw finds corners using both a bottom-up and top-
down approach. The bottom-up approach attempts to build
corners from primitive information, whereas the top-down
approach looks at higher-level patterns to determine possible
insertion or deletion of corners.

3.2.1. Bottom-Up

ShortStraw finds corners in a stroke based on the length of
the “straws”. A straw for a point at pi is computed as:

strawi = |pi−W , pi+W | (1)

where W is a constant window and |pi−W , pi+W | is the Eu-
clidean distance between the points pi−W and pi+W . As a
stroke starts to bend at a corner, the straws of points will be-
gin to shorten, and the local minimum straw at point index k
is a likely corner.

To find the initial corner set, all the straws are first com-
puted for points pW to p|points|−W . The median straw is
then found and a threshold t is set to be equal to the
median× 0.95. For each strawk ∈ straws, if strawk is a lo-
cal minimum below the threshold t, then k is a corner. We
set the window W = 3; this value was determined to be the
most effective at helping locate correct corners.

An example of finding corners from straws is seen in Fig-
ure 2.

From these equations, it follows that the straw length must
remain relatively constant throughout the stroke in order for
the correct corners to be found. Resampling the points of
a stroke assures that our algorithm will have a static straw
length for the majority of the stroke, whereas the straws
of non-resampled points (such as in Figure 1(a)) would be
highly variant.

c© The Eurographics Association 2008.

A. Wolin, B. Eoff, & T. Hammond / ShortStraw

Figure 2: An example of “straws” in a stroke. The points (a-
e) all have a window of ±3 points. the distance at endpoints
at these windows forms a straw, with the shortest straws be-
ing at points (a), (c), and (e). These points are considered
corners. Points (b) and (d) have straws that are close to the
median straw length, so these points are not initial corner
candidates.

3.2.2. Top-Down

After the initial set of corners is found by taking the shortest
straws, some higher-level processing is run on the stroke to
find missed corners and remove false positives.

ShortStraw first checks to see if each consecutive pair of
corners passes a line test. Two points at indices a and b pass
a line test if the chord distance and the path distance between
the two points are relatively equal. We represent this equality
through the ratio:

r =
DISTANCE(points,a,b)

PATH-DISTANCE(points,a,b)
(2)

where 0.0 ≤ r ≤ 1.0, since the squared distance between
the two points will never be greater than the squared path
distance. If the ratio in Equation 2 is above a developer-set
threshold, then the segment between the points at a and b is
considered to be a line. In our system, this threshold is set to
0.95 (See the Appendix for the more detailed functions for
computing DISTANCE, PATH-DISTANCE, and the IS-LINE

test).

If the stroke segment between any two consecutive cor-
ners cm and cn does not form a line, then there must be addi-
tional corners in-between cm and cn. Missing corners are as-
sumed to be approximately halfway between the cm and cn.
Since these potential corners are below the original thresh-
old t, the threshold is relaxed and the new corner to add is
taken to be the point with the minimum straw that is in the
middle half of the stroke segment. This process of adding

Figure 3: The 11 symbols used during corner finder testing.

corners is repeated until all of the stroke segments between
pairs of consecutive corners are lines.

A collinear check is then run on subsets of triplet, con-
secutive corners. If the three corners are collinear, then the
middle corner is removed from the corner set. This process
checks and removes false positives. Three consecutive cor-
ners cl , cm, and cn are deemed collinear if the stroke segment
between cl and cn passes an IS-LINE test.

It is important to note that the final corners returned are
from the resampled points. If a domain requires the origi-
nal points of a stroke to be used, a developer implement-
ing ShortStraw can map resampled corners to original points
simply by taking each corner found and searching for the
closest original point to that corner.

4. Results

We built ShortStraw around training data gathered from stu-
dents. Five students sketched a total of 60 polylines, ranging
from simple lines to more complex six-line symbols. This
data set served as a training set as we constructed and con-
figured ShortStraw.

To test ShortStraw, we collected another set of polyline
data consisting of 11 shapes drawn by six different users.
The shapes are the 11 found in Figure 3. A single set of these
11 symbols contains 37 right, 16 obtuse, and 12 accute an-
gles. The users were presented with each shape, and over the
course of the study each shape was drawn four times. 264
strokes were collected, but there was an error in collecting
and saving some of the user data and 20 user strokes were

c© The Eurographics Association 2008.

A. Wolin, B. Eoff, & T. Hammond / ShortStraw

not properly saved. As such, our final test set consisted of
244 polyline strokes.

For comparison, we also tested an implementation of
Sezgin’s corner finder as well as Kim and Kim’s [SSD01,
KK06]. We used two different measures to determine the
accuracy of each corner finder. The first accuracy measure
is a “correct corners found” accuracy that is described in
[SSD01]. This accuracy is calculated by dividing the num-
ber of correct corners found divided by the total number of
correct corners a human would perceive. This accuracy mea-
sure does not discount false positives and only penalizes for
false negatives. Therefore, a system that returns every point
possible as a corner would achieve a perfect 1.00 accuracy
since all of the correctly perceived corners would be found.

We use a different accuracy measure to counteract this
issue: all-or-nothing accuracy. All-or-nothing implies that
only the minimum number of corners to segment a figure
are found in order for a stroke to be considered correctly
segmented. In other words, for a stroke to be counted a cor-
rect stroke has no false positives or negatives. This accuracy
is calculated by taking the number of correctly segmented
strokes divided by the total number of strokes. We feel that
all-or-nothing accuracy is a more important accuracy mea-
surement since ShortStraw is designed to be used quickly
in user interfaces and we do not want users to become frus-
trated if their polylines they do not segment correctly. From
a user’s point of view, the computer is either correct or it is
wrong, and we wanted to model this behavior in our results.

The results from our tests can be found in Table 1, and
examples can be seen in Figure 4.

ShortStraw Sezgin Kim
False Positives 32 42 76

False Negatives 38 324 387
Correct Corners Found 1804 1518 1455

Total Correct Corners 1842 1842 1842
Correct Corners Accuracy 0.979 0.824 0.790
All-or-Nothing Accuracy 0.741 0.278 0.297

Table 1: Accuracy results for ShortStraw and two base-
line corner finders. The results are for a set of 244 polyline
shapes drawn by six different users.

5. Discussion

ShortStraw has an outstanding improvement over both cur-
rent baseline corner finders. The all-or-nothing accuracy for
ShortStraw is over twice times that of the second-best cor-
ner finder, our Kim and Kim implementation. Furthermore,
ShortStraw greatly improves upon the [SSD01] version of
accuracy measuring the correct number of corners found, as
the algorithm has one-tenth the number of false negatives
than either the [SSD01] algorithm or the [KK06] algorithm.

The implementation of ShortStraw is also very simple,
and we provide the entire algorithm in the Appendix section
of this paper. We had a sophomore undergraduate student
unfamiliar with sketch recognition read our paper and code
our algorithm. After completion, the student mentioned that
the algorithm was “fairly easy to implement”, and the entire
time to read the paper, understand the algorithm, finish the
implementation, and debug and test the code took the under-
graduate took only 5-6 hours.

ShortStraw has some other benefits that have not been pre-
viously mentioned. ShortStraw is a very quick algorithm and
not computationally intensive, so it can be easily used on
mobile devices such as PDAs or touch-screen cell phones.
A quick analysis of ShortStraw shows that resampling the
points takes only O(n) time and O(n) memory. Calculating
the straws for each point also runs in O(n) time, as well as
finding the initial corner fit. The only two sections of the
algorithm that do not run in linear time include calculat-
ing the median straw length (which can run as quickly as
O(n logn) with an efficient sorting algorithm), and the POST-
PROCESS-CORNERS function, which runs in time O(cn)
where c is the number of corners found in the stroke. In the
very unlikely case that every stroke point is a corner (c = n)
AND all of the corners were missed during initial process-
ing (requiring each stroke point to be added as a corner via
the HALFWAY-CORNER function that searches for a corner
under relaxed constraints), this function, and, thus, the entire
algorithm, has a worst case scenario of O(n2) running time.

To further reduce the algorithm’s computation time, the
Euclidean distance measurement for calculating the straw
length can be replaced with a squared distance measurement.
This eliminates the need to perform over n square root calcu-
lations since the actual length of the straw is not important
(only the straw’s relation to the median straw length). We
refrain from performing that step in the description of the
algorithm to make the explanation easier to conceptualize
for quick understanding and implementation. All additional
distance calculations after the straws are computed, such as
the path distance calculations in the IS-LINE function, must
then use the squared distance measurement as well to remain
in the same scale as the straws. The necessary changes are
labelled by a footnote in the algorithm.

Another important aspect of ShortStraw is that the cor-
ner finding algorithm does not use any temporal informa-
tion. Our corner finder could therefore be used in conjunc-
tion with systems that reconstruct strokes from static, offline
images [YQY04], whereas the algorithm in [SSD01] relies
on speed information to locate corners.

Both baseline corner finders are designed to work with
complex fits as well as polylines, whereas ShortStraw is de-
signed only for polylines. Our algorithm is not designed to
work well with arc and curvature segments since the median
straw length of strokes with high curvature vary widely.

Finally, although ShortStraw does not explicitly use the

c© The Eurographics Association 2008.

A. Wolin, B. Eoff, & T. Hammond / ShortStraw

Figure 4: Examples of correctly classified symbols by ShortStraw. These symbols come from the set of 244 polyline shapes
drawn by six test users. The size ratio between the symbols has not been altered, although each symbol is similarly scaled so
that the entire image will fit in the paper.

word “curvature”, each straw or chord length is in essence
a simplified form of curvature. Instead of calculating curva-
ture as the change in tangent across a series of points, a straw
is a more naive representation for how bent a series of points
are. If we were to redescribe our algorithm in terms of cur-
vature, on a global scale we resample using a large number
of points, and then we progressively “compute curvature”
over an expanse of 7 points (our straws). The intuition be-
hind the improvement gained from this algorithm compared
to other algorithms is that we are able to effectively smooth
the stroke to remove noise without the common problem of
removing corner precision:

• Smooths out noise: Both resampling and computing
straw lengths across 7 points cause the algorithm to be
less succeptable to the pixelized noise commonly preve-
lant in stroke points.
• Keeps corner precision: Because the resampled stroke

still contains a large number of points, and, because the
system progressively computes the straw lengths by mov-
ing only one resampled stroke point at a time, the algo-
rithm is able to keep the corner precision which is usually
lost during stroke smoothing.

6. Future Work

One of the areas where ShortStraw can improve is in recog-
nizing corners at heavily obtuse angles, such as in Figure 5.
Obtuse angles are sometimes too close to shallow arcs or
slightly curved lines for ShortStraw to recognize that there
should be a corner.

A possible fix for this issue involves utilizing a varied win-
dow or straw length for each point, such as the method for
dynamic chord lengths provided in [TC89]. Although this
technique would sacrifice simplicity, the benefits might off-
set the obtuse angle problem.

Figure 5: ShortStraw misses corners most often at obtuse
angles, such as in the two figures above.

c© The Eurographics Association 2008.

A. Wolin, B. Eoff, & T. Hammond / ShortStraw

7. Conclusion

We presented ShortStraw, an accurate polyline corner finder
that is easy to understand and implement. ShortStraw al-
lows users to draw polylines free-form while achieving a
very high all-or-nothing accuracy measure that is far beyond
the current baseline corner finders. Our corner finder can be
quickly integrated into sketch-based interfaces such as for
route planning or node finding.

References

[AD04] ALVARADO C., DAVIS R.: Sketchread: a multi-domain
sketch recognition engine. In UIST ’04: Proceedings of the 17th
annual ACM symposium on User interface software and technol-
ogy (New York, NY, USA, 2004), ACM Press, pp. 23–32.

[DP73] DOUGLAS D., PEUCKER T.: Algorithms for the Reduc-
tion of the Number of Points Required to Represent a Digitized
Line or its Caricature. Cartographica: The International Journal
for Geographic Information and Geovisualization 10, 2 (1973),
112–122.

[HD02] HAMMOND T., DAVIS R.: Tahuti: A geometrical sketch
recognition system for uml class diagrams. Papers from the 2002
AAAI Spring Symposium on Sketch Understanding (March 25-27
2002), 59–68.

[HD05] HAMMOND T., DAVIS R.: Ladder, a sketching language
for user interface developers. Elsevier, Computers and Graphics
28 (2005), 518–532.

[HS92] HERSHBERGER J., SNOEYINK J.: Speeding Up the
Douglas-Peucker Line-Simplification Algorithm. Tech. rep., Van-
couver, BC, Canada, Canada, 1992.

[HSN04] HSE H., SHILMAN M., NEWTON A.: Robust sketched
symbol fragmentation using templates. Proceedings of the 9th in-
ternational conference on Intelligent user interface (2004), 156–
160.

[KK06] KIM D., KIM M.-J.: A curvature estimation for pen in-
put segmentation in sketch-based modeling. In Computer-Aided
Design (2006), pp. 238–248.

[MM05] M. MASRY H. L.: A sketch-based interface for iterative
design and analysis of 3d objects. In EUROGRAPHICS Work-
shop on Sketch-Based Interfaces and Modeling (2005), pp. 109–
118.

[PH08] PAULSON B., HAMMOND T.: Paleosketch: Accurate
primitive sketch recognition and beautification. In IUI (Intelli-
gent User Interfaces) (2008).

[RC92] RATTARANGSI A., CHIN R.: Scale-based detection of
corners of planar curves. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on 14, 4 (Apr 1992), 430–449.

[Rub91] RUBINE D.: Specifying gestures by example. In SIG-
GRAPH ’91: Proceedings of the 18th annual conference on Com-
puter graphics and interactive techniques (New York, NY, USA,
1991), ACM Press, pp. 329–337.

[SD06] SEZGIN T. M., DAVIS R.: Scale-space based feature
point detection for digital ink. In SIGGRAPH ’06: ACM SIG-
GRAPH 2006 Courses (New York, NY, USA, 2006), ACM,
p. 29.

[SSD01] SEZGIN T. M., STAHOVICH T., DAVIS R.: Sketch
based interfaces: Early processing for sketch understanding.
Workshop on Perceptive User Interfaces, Orlando FL (2001).

[SZ05] SHUMIN ZHAI PER-OLA KRISTENSSON B. A. S.: In
search of effective text input interfaces for off the desktop com-
puting. In Interacting with Computers 17 (2005), pp. 229Ű–250.

[TC89] TEH C. H., CHIN R. T.: On the detection of dominant
points on digital curves. IEEE Trans. Pattern Anal. Mach. Intell.
11, 8 (1989), 859–872.

[VD04] VESELOVA O., DAVIS R.: Perceptually based learning
of shape descriptions. In Proceedings of the Nineteenth National
Conference on Artificial Intelligence (AAAI-04) (San Jose, Cali-
fornia, 2004), pp. 482–487.

[WWL07] WOBBROCK J. O., WILSON A. D., LI Y.: Gestures
without libraries, toolkits or training: a $1 recognizer for user
interface prototypes. In UIST ’07: Proceedings of the 20th an-
nual ACM symposium on User interface software and technology
(New York, NY, USA, 2007), ACM, pp. 159–168.

[YC03] YU B., CAI S.: A domain-independent system for sketch
recognition. In GRAPHITE ’03: Proceedings of the 1st inter-
national conference on Computer graphics and interactive tech-
niques in Australasia and South East Asia (New York, NY, USA,
2003), ACM Press, pp. 141–146.

[YQY04] YU QIAO; YASUHARA M.: Recovering dynamic in-
formation from static handwritten images. Frontiers in Hand-
writing Recognition, 2004. IWFHR-9 2004. Ninth International
Workshop on (2004), 118–123.

8. Appendix

This section contains the full algorithm for ShortStraw in object-
oriented pseudo-code. The variable points contains a sequential se-
ries of (x,y) points, whereas corners contains a set of indices that
reference points. For example, corneri = j indicates that point j is
the ith corner found.

Main body where the corner finding functions are called.
Takes in a series of original, non-resampled points and re-
turns the corners for the resampled points.

MAIN(points)

1 S←DETERMINE-RESAMPLE-SPACING(points)
2 resampled←RESAMPLE-POINTS(points,S)
3 corners←GET-CORNERS(resampled)
4 return corners

Determines the interspacing pixel distance between resam-
pled points

DETERMINE-RESAMPLE-SPACING(points)

1 topLe f t.x← MINx(points)
2 topLe f t.y← MINy(points)
3 bottomRight.x← MAXx(points)
4 bottomRight.y← MAXy(points)
5 diagonal← DISTANCE(bottomRight, topLe f t)
6 S← diagonal/40.0
7 return S

Resamples the points in a stroke to be interspaced S pixel
distance away from each other

RESAMPLE-POINTS(points,S)

c© The Eurographics Association 2008.

A. Wolin, B. Eoff, & T. Hammond / ShortStraw

1 D← 0
2 resampled← points0
3 for i← 1 to |points| do

4 d← DISTANCE(pointsi−1, pointsi)
5 if D + d ≥ S then

6 q.x ← pointsi−1.x + ((S − D)/d) × (pointsi.x −
pointsi−1.x)

7 q.y ← pointsi−1.y + ((S − D)/d) × (pointsi.y −
pointsi−1.y)

8 APPEND(resampled,q)
9 INSERT(points, i,q)

10 D← 0

11 else

12 D = D + d

13 return resampled

Finds the resampled points that correspond to corners
within the stroke

GET-CORNERS(points)

1 corners←∅
2 APPEND(corners,0)
3 W ← 3
4 for i←W to |points|−W do

5 strawsi← DISTANCE(pointsi−W , pointsi+W)

6 t← MEDIAN(straws)×0.95
7 for i←W to |points|−W do

8 if strawsi < t then

9 localMin← +∞

10 localMinIndex← i
11 while i < |straws| and strawsi < t do

12 if strawsi < localMin then

13 localMin← strawsi
14 localMinIndex← i

15 i← i + 1

16 APPEND(corners, i)

17 APPEND(corners, |points|)
18 corners← POST-PROCESS-CORNERS(corners, straws)
19 return corners

Checks the corner candidates to see if any corners can be
removed or added based on higher-level polyline rules

POST-PROCESS-CORNERS(points,corners, straws)

1 do

2 continue← TRUE

3 for i← 1 to |corners| do

4 c1← cornersi−1
5 c2← cornersi
6 if ¬IS-LINE(points,c1,c2) then

7 newCorner ← HALFWAY-
CORNER(straws,c1,c2)

8 INSERT(corners, i,newCorner)
9 continue← FALSE

10 while ¬continue
11 for i← 1 to |corners|−1 do

12 c1← cornersi−1
13 c2← cornersi+1
14 if IS-LINE(points,c1,c2) then

15 REMOVE(corners,cornersi)
16 i← i−1

17 return corners

Finds a corner roughly halfway between point indices a and
b

HALFWAY-CORNER(straws,a,b)

1 quarter← (b−a)/2
2 minValue← +∞
3 for i← a + quarter to b−quarter do

4 if strawsi < minValue then

5 minValue← strawsi
6 minIndex← i

7 return minIndex

Determines if the stroke segment between the points at in-
dices a and b form a line

IS-LINE(points,a,b)

1 threshold← 0.95
2 distance← DISTANCE(pointsa, pointsb)
3 pathDistance← PATH-DISTANCE(points,a,b)
4 if distance/pathDistance > threshold then

5 return TRUE

6 else

7 return FALSE

Computes the Euclidean path distance between the points
at indices a and b

PATH-DISTANCE(points,a,b)†

1 d← 0
2 for i← a to b−1 do

3 d← d + DISTANCE(pointsi, pointsi+1)

4 return d

Computes the chord (Euclidean) distance between the
points at indices a and b

DISTANCE(points,a,b)†

1 ∆x← pointsb.x− pointsa.x
2 ∆y← pointsb.y− pointsa.y
3 return

√
∆x2 + ∆y2

† These two functions can use a squared distance metric instead of
the Euclidean distance metric to save computation time, as described
in Section 5

c© The Eurographics Association 2008.

	asgn2-1.pdf
	Wolin_Eoff_Hammond_SBIM08.pdf

