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Course Overview 
 

 
Sketch-based interfaces offer a natural method of interaction with computer 
applications because they mimic traditional pencil and paper.  The desire for this 
form of interaction has been around since the 1960s, but has only recently begun 
to be possible. Today, sketch-based interfaces are starting to be used in many 
different applications such as modeling, animation, user interface prototyping, 
music composition, and object oriented design.  To many, these interfaces often 
seem “magical” in nature.  Thus is important for anyone interested in working 
with and developing sketch-based interfaces to have a firm understanding of the 
techniques and methodologies for creating them.  
 
In this course, the presenters will demystify the workings of sketch-based 
interfaces by exploring how they are developed and examining their internal 
components.  We will discuss a variety of different sketch-based interface styles 
along the sketch-input continuum ranging from gestural command systems for 
application control to sophisticated sketch understanding systems that rely on 
techniques from pattern classification, 2D parsing, and machine learning.  
Attendees will receive a thorough understanding of what types of sketch-based 
interfaces exist and what tools and strategies are needed to develop their own. 
 
Topics will include: 
 

• the sketch-input continuum 
• sketch-based applications 
• gestural command systems 
• modeless gestural user interfaces 
• gestures used in interactive computer graphics 
• multi-domain sketch understanding 
• sketching for mechanical design and CAD 
• sketching freeform surfaces 
• creating geometry from sketches 
• mathematical sketching 
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Sketch-Based Interfaces: Techniques and Applications

Welcome and
Introduction 

Welcome and
Introduction 

Joseph J. LaViola Jr.

School of EECS

University of Central Florida

Welcome to the Sketch-Based Interfaces course at SIGGRAPH 2007.  The 
organizer of this course is Joseph LaViola from the University of Central Florida.  In 
this lecture, you will meet the other presenters, get an overview of the topics we will 
cover during the course, and see some examples of sketch-based interfaces.

My contact information:

Joseph J. LaViola Jr.
Assistant Professor
University of Central Florida
School of EECS
4000 Central Florida Blvd.
Orlando, FL 32816

Email: jjl@cs.ucf.edu
http://www.cs.ucf.edu/~jjl/
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Who We Are?Who We Are?

• Joseph J. LaViola Jr.
– Assistant Professor, UCF
– Adjunct Assistant Professor, Brown University – Microsoft 

Center for Research on Pen-Centric Computing

• Takeo Igarashi
– Associate Professor, University of Tokyo 

• Christine Alvarado
– Assistant Professor, Harvey Mudd College 

• Hod Lipson
– Assistant Professor, Cornell University

Joseph LaViola (University of Central Florida)
jjl@cs.ucf.edu
http://www.cs.ucf.edu/~jjl/

Takeo Igarashi (University of Tokyo)
takeo.igarashi@gmail.com
http://www-ui.is.s.u-tokyo.ac.jp/~takeo/

Christine Alvarado (Harvey Mudd College)
alvarado@cs.hmc.edu
http://www.cs.hmc.edu/~alvarado/

Hod Lipson (Cornell University)
hod.lipson@cornell.edu
http://www.mae.cornell.edu/lipson/
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Agenda – MorningAgenda – Morning

• Welcome and Introduction : 8:30 – 8:50
• Sketching and Gestures 101 : 8:50 – 9:15
• Sketch Understanding Systems : 9:15 – 10:00 
• Break : 10:00 – 10:15
• Sketch-Based Interfaces for Interactive Computer 

Graphics : 10:15 – 11:15
• Sketching for Mechanical Design and CAD : 11:15 

– 11:45
• Sketching and Education : 11:45 – 12:00
• Questions : 12:00 – 12:15

We will begin the course by introducing the idea of sketch-based interfaces and 
looking at some examples.  Next, we will give a short tutorial on sketching and 
gestures and talk about some of the issues you need to think about when working 
with these types of interfaces. Next, we will discuss sketch understanding systems 
and present an architecture for building them. After the break, we will have two 
lectures on sketching and computer graphics. First, we will discuss how sketch-
based interfaces are used for general interactive computer graphics. Second, we 
will discuss sketch-based interfaces directly related to mechanical design and CAD. 
The last lecture in the morning session will be on some examples of how sketch-
based interfaces can be used in educational settings. To close out the morning, we 
will have a short question and answer period.
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Agenda – AfternoonAgenda – Afternoon

• Multi-Domain Sketch Understanding : 1:45 – 2:35

• Designing Freeform Surfaces by Sketching : 2:35 –
3:20

• Break : 3:20 – 3:35

• Creating Geometry from Sketch-based Input : 3:35 
– 4:35

• Mathematical Sketching : 4:35 – 5:15

• Questions : 5:15 – 5:30

In the second half of the course, we will go into more algorithmic detail on sketch-
based interfaces.  In the first lecture of the afternoon, we will discuss how to 
develop sketch understanding systems that can handle multiple domains.  The 
second lecture will focus on algorithms for designing free-form surfaces by 
sketching.  After the break, we will give a lecture on creating geometry, related to 
mechanical design and CAD, from sketch-based input.  The final lecture in the 
course will discuss mathematical sketching, which is an approach for creating 
dynamic illustrations by combining handwritten mathematics and free-form 
drawings.  We will conclude the afternoon with a short question and answer period.
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Sketching and GesturesSketching and Gestures

• What is Sketching?
– to make a hasty or undetailed drawing or painting often 

made as a preliminary study (dictionary)

• What is a Gesture?
– the act of moving the limbs or body as an expression of 

thought or emphasis (dictionary)

• not focusing on this type of gesture 

• interested in 2D pen, finger, and mouse-based gestures

• Gestures are like simple sketches

According to the dictionary, the idea of sketching is to make a hasty or undetailed
drawing or painting as a preliminary study.  For our purposes, as it pertains to 
interfaces, sketching is a process for entering information into the computer using a 
stylus or mouse with digital ink strokes.  Typically in a sketch-based interface, the 
user enters a series of strokes and the computer interprets them to accomplish 
some task, be it creating a conceptual model, making an animation, or recognizing 
mathematics.  

When we look up “gesture” in the dictionary, the definition states it is the act of 
moving the limbs or body as an expression of thought or emphasis.  The dictionary’s 
definition is more suited to 3D gestures such as hand gestures used in virtual reality 
applications or in sign language.  We will not focus on these types of gestures in this 
course. In our case, gestures, just like in sketching, are created using a stylus or 
mouse.  The main difference between them is that gestures can be much shorter in 
terms of  the number of strokes used.  With a sketching-based interface, the user 
could make dozens of strokes before the computer interprets the sketch.  Typically 
one or two strokes are used (sometimes as many as 3 or 4) as a gesture.  Thus, we 
can consider gestures to be simple sketches.
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Sketch-Based InterfacesSketch-Based Interfaces

• Interaction with mouse or 
stylus (2D)

• Strokes for the computer 
to interpret
– commands (gestural UI)
– drawings
– symbols, words, 

mathematics

• Mimic pencil and paper
• Inference and ambiguity

(ChemPad 2007) 

Sketch-based interfaces typically use a mouse or stylus and are restricted to 2D input 
(there are some sketch-based interfaces that use 3D strokes but we will not discuss 
them here).  Given a set of strokes, the computer interprets them, and, depending on 
the number of strokes and the application, they can be used to issue commands, take 
drawings and turn them into models or diagrams, or interpret them as symbols, words, 
or mathematical expressions.  The main idea behind sketch-based interfaces is that 
we want them to mimic pencil and paper, a tool we have been using since the early 
days of our education that represents a natural way to think about ideas and 
communicate.  By creating interfaces that mimic pencil and paper, we can, in many 
cases, enter information more easily keeping a natural style of interaction and 
leveraging the power of computation.  For example, the figure in the slide shows a 
screenshot of the ChemPad application.  It lets organic chemistry students sketch out 
molecules in 2D and then represents them in 3D so they can gain a better 
understanding of the 3D structure of certain molecular configurations. Sketch-based 
interface also have the property that they often contain ambiguities, since it can be 
difficult for the computer to completely and precisely understand the user’s intentions 
when they make the sketch. Dealing with these ambiguities and making inferences 
about the users’ intentions is one of the fundamental research areas in sketch-based 
interfaces.

References:
graphics.cs.brown.edu/research/chempad/home.html
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Historical Perspective (60s and 70s)Historical Perspective (60s and 70s)

SketchPad (Sutherland 1963)
Architecture-By-Yourself

(Weinzapfel & Negroponte 1976)
HUNCH

(Herot 1976)

Math Reco (Anderson 1967)

Logic Diagrams 
(Sutherland 1966)

The idea of using sketching and gestures for interacting with computers is not a new idea.  In 
fact, researchers have been thinking about sketch-based interfaces since the early 1960s.  
The pictures in the slide show some of the earliest examples of work on sketch-based 
interfaces.  Most notably, Ivan Sutherland’s seminal work on SketchPad, where he used a light 
pen to make drawings and create geometric primitives.   His brother, Bert, created a system 
for sketching out logic diagrams.  Richard Anderson used the RAND tablet to recognize 
mathematical expressions. Other notable work came out of MIT in the late 1970s, such as 
Architecture-By-Yourself  and HUNCH, which began to explore how computers could interpret 
hand-drawn diagrams and what inference mechanisms and domain knowledge were needed 
to do so. 

References:
Sutherland, I. SketchPad: A Man-Machine Graphical Communication System, Proceedings of AFIPS Spring Joint 
Computer Conference, 329-346, 1963.
Sutherland, William Robert. On-Line Graphical Specification of Computer Procedures. PhD. Thesis, MIT, 1966
Anderson, Robert. Syntax-Directed Recognition of HandPrinted Two dimensional Equations. PhD. 
Thesis, Harvard University, 1968.

Weinzapfel, G. and N. Negroponte. Architeture-By-Yourself: An Experiment with Computer Graphics for House 
Design, Proceedings of SIGGRAPH’76, 74-78, 1976.
Herot, C. Graphical Input Through Machine Recognition of Sketches, Proceedings of SIGGRAPH’76, 97-102, 
1976.
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Wang Freestyle (1988) GRIDPad (1989)

Newton (1993)

GO +PenPoint
(1991)

Slate (1992)

PenWindows (1991)

CrossPad (1999)Palm Pilot’s 
Graffiti (1994)

Anoto
(1999)

Historical Perspective (80s and 90s)Historical Perspective (80s and 90s)

In the 80s and 90s, a number of pen-based devices began to appear.  An 
example of some of them are shown in the slide.  Unfortunately, most of 
these commercial efforts failed for various reasons such as slow computing 
speed, insufficient battery life, and lack of sophisticated recognition 
technology. Given our advances in software and hardware, we have seen 
an explosion of both sketch-based interfaces and pen-based computing 
devices in the last decade as they are becoming much more practical.  
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A Sketch Input ContinuumA Sketch Input Continuum

Number of 
Strokes per 
Operation

Ambiguity Level

Ambiguity level refers to sketch interpretation difficulty 
and domain generality

Domain Specific 
Gestural

Commands 

Complete Sketch
Understanding

Systems

1

N

Mathematical
Sketching

2D/3D
Gestural Shape 

Recognition
And 

Modeling

Low High

Real-Time 
Mathematical 
Expression 
recognition

Sketching
3D Geometry

There are many different sketch-based interfaces that exist today.  Thus, it is 
important to be able to distinguish and categorize them in some way.  Two of the 
most important characteristics of sketch-based interfaces are the number of strokes 
the computer looks at to make an interpretation and the underlying ambiguity level.  
The ambiguity level refers to how difficult it is to interpret a sketch given the 
generality or specificity of the domain. In other words,  a sketch-based interface can 
have a high ambiguity level if there are many possible interpretations the computer 
could find for any one particular sketch, and this often occurs with very general 
domains.  Restricting the domain to be very limited in scope (e.g., simple geometric 
shapes) can reduce the ambiguity level, but not always.

We refer to our classification scheme (there are, of course, other possibilities) as 
the sketch input continuum. The figure in the slide show some examples of where 
certain types of sketch-based interfaces fit into the continuum.  For example, 
complete sketch understanding systems often must examine many strokes at a 
time, which can lead to high ambiguity levels.  In another example, domain specific 
gestural commands (e.g., simple editing commands for note taking) often require 
only one or two strokes per command with low ambiguity levels, given they are often 
very application specific.  Of course, keep in mind that this continuum is more of a 
guideline than a strict rule.
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Sketch-Based ApplicationsSketch-Based Applications

• 2D/3D Graphics

• UI Prototyping

• Animation

• Note Taking

• Symbol/Word/Math Recognition

• Etc…

Sketch-based interfaces have been used in a variety of different application 
domains such as graphics, user interface prototyping, animation, character 
recognition, and others.  In the next several slides, we will look at some specific 
examples.
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Conceptual 2D DesignConceptual 2D Design

(Gross 1994)

A system for doing conceptual 2D design is Gross’s Electronic Cocktail Napkin. It 
lets users make simple 2D drawings that are interpreted using low-level recognizers 
as part of a diagram interpretation system.

References: 
Gross, Mark. Advanced Visual Interfaces in "Recognizing and Interpreting Diagrams 
in Design" Gross, M.D. In T. Catarci. M. Costabile, S. Levialdi, G. Santucci eds., 
Advanced Visual Interfaces '94 (AVI '94), ACM Press, 1994.

Gross, Mark. Stretch-a-Sketch: A Dynamic Diagrammer. IEEE Symposium on 
Visual Languages (VL '94) 232-238, 1994.
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Character and Mathematical 
Expression Recognition
Character and Mathematical 
Expression Recognition

Sketch-based interfaces are used for character, word, and mathematical expression 
recognition.  Although these tasks are not traditionally associated with sketch-based 
interfaces, alphanumeric symbols and languages such as Graffiti can be considered 
simple sketches or gestural commands, as they have many of the same features 
that more traditional sketch-based interfaces do.  Mathematical expression 
recognition is actually a more complex recognition process than dealing with 
isolated symbols, like those used in Graffiti, because the spatial relationships 
between the symbols in a mathematical expression are critical to its interpretation.   
Work in the recognition of handwritten characters and mathematics has been going 
on since the 1960s.  Only recently, have we seen these recognizers robust enough 
for use in commercial applications. 

References:
D. Blostein and A.Grbavec. Recognition of Mathematical Notation,  Handbook of 
Character Recognition and Document Image Analysis, Eds. H. Bunke and P. Wang, 
World Scientific, 1997, pp. 557-582. 

Tappert, C.C., C.Y. Suen, and T. Wakahara, The state-of-the-art in on-line 
handwriting recognition, IEEE Transactions Pattern Analysis Machine Intelligence, 
Vol. PAMI-12, pp. 787-808, August 1990.
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3D Modeling3D Modeling

SKETCH
(Zeleznik et al. 1996)

TEDDY
(Igarashi et al. 1999)

Parameterized Object 
Sketching

(Yang et al. 2005)

A common application for sketch-based interfaces is 3D modeling.  Using a sketch-
based interface for this type of task is a very natural one since users can make rough 
drawings of the models they are interested in and have the computer interpret them to 
generate the 3D geometry.  The SKETCH (the figure on the left) system, developed by 
Zeleznik et al., uses a  gestural interface to create standard 3D geometric primitives such 
as cubes, cylinders, and pyramids for conceptual 3D modeling.  The figure on the right 
shows  the Teddy system, developed by Igarashi et al., that lets users make more free-
form, organic 3D models.  Both of these systems try to reduce the number of strokes to 
create 3D geometry.  Other approaches use more strokes, such as the sketch-based 
system for modeling of parameterized objects, developed by Yang et al. 

References:
Zeleznik, R., K. Herndon, and J. Hughes. SKETCH: An Interface for Sketching 3D 
Scenes. Proceedings of SIGGRAPH’96, ACM Press, 163-170, 1996.

Igarashi, T., S. Matsuoka, and H. Tanaka. Teddy: A Sketching Interface for 3D Freeform 
Design. Proceedings of SIGGRAPH’99, ACM Press, 409-416, 1999.

Yang C., D. Sharon, and Mi. van de Panne. Sketch-based Modeling of Parameterized 
Objects. 2nd Eurographics Workshop on Sketch-Based Interfaces and Modeling, 63-72, 
2005.
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Musical Score CreationMusical Score Creation

(Forsberg et al. 1998)Music NotePad

Sketch-based interfaces have also been used for entering music.  The figure in the 
slide shows the Music Notepad, an application that lets users enter and edit musical 
notation with gestural commands. Once interpreted, the music can be played 
through the computer’s sound card.

References:

Forsberg, A., M. Dieterich, and R. Zeleznik. The Music Notepad. Proceedings of the 
ACM Symposium on User Interface and Software Technology (UIST). ACM Press, 
203-210, 1998. 
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User Interface PrototypingUser Interface Prototyping

(Landay and Myers 1995)SILK

Sketch-based interfaces can be used to prototype other user interfaces. The SILK 
system let users sketch out the design of a user interface by drawing where the 
buttons, menus, sliders, and other widgets should be on the screen.  The system 
then interprets the drawing and creates an interface skeleton that could be used in 
the early stages of UI design.  In a similar vain, the DENIM system helps web site 
designers by letting them create web site prototypes using sketches.

References:

Lin J., M. Newman, J. I. Hong, and J. A. Landay, DENIM: Finding a Tighter Fit 
Between Tools and Practice for Web Site Design. CHI Letters: Human Factors in 
Computing Systems, CHI 2000, 2(1):510-517, 2000.

Landay J. and B. A. Myers, Interactive Sketching for the Early Stages of User 
Interface Design. Proceedings of Human Factors in Computing Systems: CHI 95, 
43-50, 1995.
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SimulationSimulation

Sim-U-Sketch
(Kara and Stahovich 2004) 

VibroSketch
(Kara et al. 2004)

Sketch-based interfaces can be used in simulation.  The figure on the left show an 
example of a sketch used as input to Simulink. The figure on the right shows a 
sketch that explores vibratory systems.  In both cases, the users sketches out a 
system, the computer interprets the drawings and uses that interpretation as input 
to a backend system for running a simulation. 

References:

Kara, L. B. and T. F. Stahovich. Sim-U-Sketch: A Sketch-Based Interface for 
Simulink, Proceedings of Advanced Visual Interfaces, 354-357, 2004.

Kara L. B., L. Gennari, and T. F. Stahovich. A Sketch-Based Interface for the 
Design and Analysis of Simple Vibratory Mechanical Systems,  2004 ASME 
International Design Engineering Technical Conferences (ASME/ DETC 2004).
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Electronic Whiteboard SystemsElectronic Whiteboard Systems

Flatland
(Mynatt et al. 1999)

Tivoli
(Pedersen et al. 1993)

Sketch-based interfaces have been developed for electronic whiteboard systems 
that are specifically targeted toward office meetings.  The two examples shown in 
the slide, Tivoli and Flatland, use gestural commands rather than complex sketches 
for interaction.  They lets users group objects together and edit and manipulate 
notes written down on the whiteboard.

References:

Mynatt, E.,  T. Igarashi, W. K. Edwards, A. LaMarca, Flatland: New Dimensions in 
Office Whiteboards,  ACM SIGCHI Conference on Human Factors in Computing 
Systems CHI'99, 346-353, 1999.

Pedersen, E., K. McCall, T. Moran, and F. Halasz, Tivoli: An Electronic Whiteboard 
for Informal Workgroup Meetings, Proceedings of the INTERCHI '93 Conference on 
Human Factors in Computing Systems, 391-389, 1993.
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AnimationAnimation

Motion Doodles
(Thorne et al. 2004)

Sketch-based interfaces can be used for making informal animations. The figure in 
the slide shows an example from the Motion Doodles system.  Users can sketch out 
how a character is supposed to move in 2D and the computer interprets the sketch 
in order to make the animation. Other examples of sketch-based tools for animation 
will be given in Dr. Igarashi’s lecture.

References:

Thorne, M.,  D. Burke, and M. van de Panne, Motion Doodles: An Interface for 
Sketching Character Motion. ACM Transactions on Graphics, 23(3):424-431, 2004.
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Resources (1)Resources (1)

• Course notes
– papers

– bibliography

• EG Workshop on Sketch-Based Interfaces and 
Modeling

• Sketch-based interface project web pages

• Microsoft Center for Research on Pen-Centric 
Computing website
– http://graphics.cs.brown.edu/research/pcc/home.html

There is a lot of information available on sketch-based and gestural interfaces. The 
notes for this course has valuable information in the lecture slides as well as some 
important papers about various aspects of sketch-based interface design and the 
types of applications that use sketch-based interfaces.  Additionally, we are 
including a bibliography that can act as a good starting point for working in sketch-
based interfaces.  Another good resource is the Eurographics workshop on sketch-
based interfaces and modeling.  This workshop occurs yearly and has been going 
on since 2004.  The Microsoft Center for Research on Pen-Centric Computing has a 
website and a wiki where researchers and practitioners can share ideas.  

Another valuable resource are the various sketch-based interface research project 
pages.  A nice sample of them is given below:
www.engr.ucr.edu/~stahov/
rationale.csail.mit.edu/
graphics.cs.brown.edu/research/#gesture
www-ui.is.s.u-tokyo.ac.jp/~takeo/research/Projects.html
dub.washington.edu/index.shtml
code.arc.cmu.edu/lab/html/projects.html



Sketch-Based Interfaces: Techniques and Applications

Welcome and Introduction 20

Resources (2)Resources (2)

Sketch Understanding
Papers from 2002 AAAI Spring Symposium
Randall Davis, James Landay, and Tom Stahovich, Program Cochairs
Technical Report SS-02-08
Published by The AAAI Press, Menlo Park, California
see http://www.aaai.org/Library/Symposia/Spring/ss02-08.php

Making Pen-Based Interaction Intelligent and Natural 
Papers from the 2004 AAAI Fall Symposium
Randall Davis, James Landay, Tom Stahovich, Rob Miller, and 
Eric Saund Program Cochairs
Technical Report FS-04-06
Published by The AAAI Press, Menlo Park, California
see http://www.aaai.org/Library/Symposia/Fall/fs04-06.php
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GoalsGoals

• Explore issues involved with sketch-based 
and gestural interfaces
– things to look for

– things to watch out for

– things to think about

• Provide some guidance on how to get 
started

The goals for this lecture are to introduce you to some of the important issues 
involved with designing and implementing sketch and gesture-based interfaces.  
Additionally, this lecture will give you some guidance about how to get started with 
these interfaces.   For the remainder of this lecture, unless otherwise noted,  we will 
include gestural command systems and interfaces within the general area of sketch-
based interfaces.
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Lecture OutlineLecture Outline

• Motivating Sketch-based interfaces

• Key Issues

• Sketch-based interface dataflow

• Toolkits

• Conclusions

First, we will discuss why someone would want to use sketch-based interfaces and 
what they are good for.  Second, we will discuss some important key issues that are 
fundamental to designing and developing sketch-based interfaces.  Third, we will 
look at how data is typically processed moves from when users enter strokes with a 
stylus or mouse to the desired action, command, or interpretation.  Fourth, we will 
briefly look at some toolkits that can assist the developer with building sketch-based 
interfaces.  Finally, we will present some conclusions and general observations 
about sketching and gestures.
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Why Sketches and Gestures?Why Sketches and Gestures?

• Mimic pencil and paper
– direct and natural for many tasks

– familiar affordances

• Powerful and expressive
– more freedom

– can be faster

– non-WIMP 

One of the main reasons why using sketching and gestures for interacting with 
computer applications is that these types of interfaces can mimic pencil and paper 
(when using a stylus). They give users familiar affordances because typically most 
users will have had intimate knowledge of the pencil-and-paper medium.  
Additionally, sketch-based interfaces can be a direct and natural way to interact for
many different tasks from entering notes and mathematics to drawing shapes and 
entering musical notation.  Sketch-based interfaces can be more powerful and 
expressive than traditional WIMP (Windows, Icons, Menus, Point and Click) 
interfaces.  Gestural interfaces can also be much faster than traditional interaction
techniques because they often are performed “in band”.  In band means performing 
a gestural command where the action is supposed to take place. For example, a 
user who wants to delete an object can simply use a scribble erase gesture (moving 
a stroke back and forth over  the object) over that object instead of having to first 
click on a button to get into delete mode or select a menu item in the upper left 
corner of the screen. 
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Key Issues – Recognition, Resolving 
Ambiguity, and Self-Disclosure
Key Issues – Recognition, Resolving 
Ambiguity, and Self-Disclosure

• Recognition
– need to understand sketch 

components

• Ambiguity
– deal with multiple 

interpretations

• Self-Disclosure
– invisible interface  (mostly 

gestural commands)

www.ueda.nl/earth/development.html

In terms of designing and developing sketch-based interfaces, there are three 
fundamental issues that must be addressed.  First, some form of recognition will be 
needed. Second, there typically will be some form of ambiguity involved.  In some 
cases, there may be multiple interpretations for a sketch or sketch-component.  In 
other cases, there might not be enough information to make an interpretation.  
Third, because sketch-based interfaces often try to mimic pencil and paper, they are 
often non-disclosing.  In other words, a novice user will not know how to use the 
interface by simply looking at it.  For a sketch-based interface to be usable by both 
novices and experts, it is important to have a way for users to learn the system.
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RecognitionRecognition

rationale.csail.mit.edu/project_earlyprocess.shtml

MathPad2

Regardless of what the sketch-based interface does, there will almost always be 
some form of recognition involved.  The type and sophistication of the recognition 
algorithms used will vary depending on the application.  Additionally, the way the 
recognizer is used will also vary depending on the application and tasks involved.  
The figure on the left shows the sketch and subsequent interpretation of the 
direction reversal mechanism for a walkman.  In this case, the recognizer would 
take as input the complete drawing and output the interpreted result.  The figure on 
the right shows several mathematical expressions.  In this case, each expression is 
recognized individually using a lasso gesture.  In other cases, real-time recognition 
can be performed where, as users enter strokes, the recognition algorithm is 
continuously running in the background trying to interpret each stroke as it is 
entered.  
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Resolving AmbiguityResolving Ambiguity

• Difficult problem

• Focal point of research

• Many approaches
– limiting the domain

– underlying rules and knowledge

– suggestive interface

Sketches are inherently ambiguous and resolving these ambiguities is both a 
difficult problem and a focal point of research in making sketch-based interfaces 
usable.   For example, the figure in the slide shows the number 12 and the function 
log.  Both the letter l and the number 1 can be written the same way making it very 
difficult to recognize them correctly.  In this particular case, either the number 1 or 
the letter l is before the og. However, since the last two symbols are og, we are 
pretty confident that the first symbol in the function is an l.  The first symbol in the 
number 12 is not as obvious. There are many different approaches to resolving 
ambiguities.  One of the best ways to deal with this issue is to limit the sketch-based 
interface’s domain. Limiting the domain can help to reduce the number of possible 
interpretations for a particular sketch.  Another approach is to have additional 
knowledge about the domain and underlying rules embedded in the sketch 
interpretation scheme.  In some cases, it might not be possible to resolve an 
ambiguity automatically. In these cases, asking the user for assistance can help by 
presenting several alternatives that the user can choose from.  Dealing with 
ambiguities will be addressed further throughout the rest of the course and we also 
include the Mankoff, Hudson, and Abowd (2000) paper on techniques for ambiguity 
resolution in the course notes.
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Self-DisclosureSelf-Disclosure

How do we interact with this application? What are the commands?

How many
commands
are there?

Where do
I begin?

One area of research on sketch-based interfaces that has received little attention is 
how to teach users how to use a sketch-based or gestural interface.  Sketch-based 
interfaces are typically not self-disclosing (more so for gestural interfaces).  In other 
words, the application will start with just a blank screen or piece of virtual paper (like 
the figure in the slide).  Although the application screen looks like a piece of paper 
(giving us our pencil-and-paper interaction metaphor) it does not tell us what and 
how many commands there are and where a user begins.  Once the interface is 
learned (from a cheat sheet or tutor) self-disclosure is not an issue. One of the 
advantages of WIMP based interfaces is that a user can look at the application and 
have a pretty good idea on how to interact with the system.  This is not the case 
with a sketch-based interface.  Thus, presenting information on how to use the
interface but still maintaining the pencil-and-paper look is an interesting challenge.
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Sketch-Based Interface DataflowSketch-Based Interface Dataflow

Raw Stroke
Data Preprocessing Segmentation

Feature 
Extraction

And
Analysis

ClassificationInk ParsingSketch
Understanding

Make Inferences

The stroke data that users enter in a sketch-based interface goes through a series 
of transformations on the way to being interpreted as a gesture or sketch.  Typically, 
the raw data first undergoes a preprocessing step followed by a segmentation step 
that breaks up the stroke data into logical pieces.  These segmented pieces are 
analyzed and important features are extracted from them. These features are then 
used in a classification and parsing (interpretation) step, ultimately leading to some 
form of sketch understanding. Note that in some cases, feedback loops occur.  For 
example the results from the inference step (i.e., classification and ink parsing) can 
be fed back into the segmentation step to provide it with added knowledge to make 
better segmentation decisions. In another example, understanding part of a sketch 
can be used to help guide classification and ink parsing as new ink strokes are 
entered by the user. 

In the next few slides we will examine each of these steps.  Keep in mind that not all 
sketch-based interfaces use all of these transformations in the order presented in 
the slide.  Some approaches, especially when dealing with gesture-based 
interfaces, may skip some of the steps, while others may perform the steps in a 
different order or may perform a particular step more than once. However, having 
said this, the dataflow model shown in the slide is a good way to think about the 
internal workings of a sketch-based interface.
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Representing DataRepresenting Data

• Points and strokes

• Image
– pixel matrix

– not as popular

(x1,y1,t1)

(xn,yn,tn)

Raw stroke data is represented in one of two ways.  The first is with strokes where 
each stroke is made up of a list of points.  Each point has an x and y coordinate as 
well as a timestamp.  Note that the timestamp is not always present.  However, it 
can be very useful during feature extraction and sketch parsing. A sketch is then 
made up of a set of strokes.  The second way to represent raw stoke data to treat 
them as images where strokes are just pixel data.  This approach to representing 
the stroke data is not as popular as using points, but it does have some 
advantages. Specifically, computer vision algorithms can be used on images for 
segmentation and feature extraction. For our purposes, we will use the points and 
strokes approach.
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PreprocessingPreprocessing

• Often required to clean 
raw data

• Filtering and 
Smoothing

• Stroke Invariance
– scale

– position

– orientation

• Dehooking

Normal view
of stroke

Zoomed in view of stroke showing
unwanted cusps and self-intersections

In many cases, a preprocessing step is needed to get the raw stroke data ready for feature 
extraction and recognition.  This step is very important when dealing with pen-based input 
devices, such as the stylus, especially when there is a high sampling rate.  Preprocessing 
many not be required when dealing with mouse input.  There are several types of data 
transformations that can be done during the preprocessing step. First, filtering and smoothing, 
using Gaussian or exponential filters for example, are used to get rid of subtle variations and 
noise in the strokes. Second, the strokes should be transformed to an invariant state.  This 
involves moving strokes to a canonical position, size (while still maintaining aspect ratio), and, 
in some cases, orientation.  Making the stroke invariant to scale, position and orientation, 
allows for feature extraction to remain consistent, regardless of the location, size and rotation 
of the ink strokes.  Third, in many cases, strokes will have hooks at their endpoints that are 
caused when users lift the stylus off of the surface of the device.  These hooks can cause 
problems in recognition because they may or may not be present depending on the particular 
user. Thus, getting rid of them is important for maintaining consistency in recognition.  Other 
methods of preprocessing include maintaining stroke and direction ordering and slant 
invariance.  Nice surveys on preprocessing techniques can be found in

Guerfali, W. and R. Plamondon, Normalizing and Restoring On-Line Handwriting, Pattern 
Recognition, 26(3):419-431, 1993.
Tappert, C.C., C.Y. Suen, and T. Wakahara, The state-of-the-art in on-line handwriting 
recognition, IEEE Transactions Pattern Analysis Machine Intelligence, Vol. PAMI-12, pp. 787-
808, August 1990.
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SegmentationSegmentation

• Determine which strokes go together

• Determine which strokes should be apart

• Can be done in real-time or in batch

• Often uses proximity and timing information

After the preprocessing step, some form of segmentation is performed.  
Segmentation is one of those steps in the data flow diagram that has some freedom 
as to where it gets done  It could be done before preprocessing, for example. 
Segmentation could be done in real-time as the user makes a sketch or all at once 
after the sketch is complete. Segmentation not only involves finding which strokes 
should go together, such as the 5, k, and the geometric object shown on the right of 
the slide, but also determining which strokes show be apart, like the separate 
mathematical expressions shown on the left of the slide.  Basic techniques for 
performing segmentation use proximity or timing information or sometimes both at 
the same time.    The segmentation algorithm can check to see if strokes are 
touching or have any part of close to each other.  Additionally, strokes that have 
been written, one after another, may be treated as one symbol given their proximity. 
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Feature Extraction and AnalysisFeature Extraction and Analysis

• Want to distinguish sketch components from 
one another

• Good features are critical
• Extract important information

– geometrical, statistical, contextual

• Examples include
– arc length, histograms, cusps, aspect ratio
– self-intersections, stroke area, etc…

Once the strokes have been preprocessed and properly segmented, the feature 
extraction step is performed.  These features are used as input to a recognition 
algorithm since we want to distinguish the different pieces of the sketch from one 
another (or one gesture from another).  Finding good features to use is critical in 
having good recognition, and there are many different possibilities.  Features based 
on stroke geometry, statistics and context  have all been used as input to 
recognizers. Features based on stroke geometry include arc length, cusps, aspect 
ratio, and self-intersections. Examples of statistically-based features include angle 
and point histograms.  Contextual features include where a symbol or sketch 
component is in relation to other components such as two lines being parallel.  Note 
that is possible that a good set of features can be used to perform recognition for a 
small set of symbols or components without the need for sophisticated machine 
classification algorithms.  A nice list of features used for distinguishing strokes from 
one another can be found in chapter 5 of  

LaViola, J. Mathematical Sketching: A New Approach to Creating and Exploring
Dynamic Illustrations, Ph.D. Dissertation, Brown University, Department of 
Computer Science, May 2005.
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ClassificationClassification

• Use features as input to a classification 
algorithm
– recognize sketch components and gestures

• Can be simple as an FSA
• Commonly use machine learning algorithms

– linear classifiers, neural networks, HMMs, SVMs
– AdaBoost, K-means classifiers, etc…

• Algorithm choice dependent on problem

The features collected from the last step are used as input to a classification 
algorithm which will recognize sketch components and gestures.  The choice of 
classification algorithm is really dependent on the problem.  A classification can be 
as simple as a finite state machine (FSM). For example the SKETCH system used 
an FSM for gesture recognition.  As the number and complexity of the sketch or 
gesture set increases, the more sophisticated the classification algorithm needs to 
be.  There are many different classification algorithms that could be used, and they 
all have advantages and disadvantages.  Going into detail on these algorithms is 
beyond the scope of this course, but Pattern Classification, by Duda et al., is a 
excellent resource.

References:

Duda, Richard O., Peter E. Hart, and David G. Stork.  Pattern Classification, John 
Wiley and Sons, 2001. 
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Sketch ParsingSketch Parsing

• Often recognition of 
strokes is insufficient
– except for gestures

• Require an understanding 
of spatial relationships
– good examples are 

mathematical expressions

• Higher level classifications
– is it a word or a drawing?

www.engr.ucr.edu/~stahov/research/acsparc.htm

Except for simple gestural command systems, recognizing symbols and sketch 
components is often insufficient.  What is required is an understanding of the spatial 
relationships between sketch components so we can parse the sketch to obtain sketch 
understanding.  Even some more complicated gesture-based interfaces require a form of 
sketch parsing.  A great example of where sketch parsing is critical is when recognizing 
mathematical expressions. The expression shown in the top right requires more than just 
the recognition of the individual symbols. It also needs to be parsed so syntactic and 
semantic meanings can be extracted.  In another example, the circuit diagram also needs 
to be parsed, since the interface needs to know how the individual components fit together 
to make a correctly formed diagram. Other, higher level classifications can also be done in 
the sketch parsing step.  For example, the sketch parsing step could look to see whether a 
sketch is a group of words, mathematics, or a drawing.  There are many different 
approaches to sketch parsing.  One nice reference is the survey by Blostein and Grbavec.  
Although the techniques presented are focused on parsing mathematical expressions, they 
are applicable to more general parsing.

Reference:
Blostein, D. and A. Grbavec.  Recognition of Mathematical Notation. Handbook on Optical 
Character Recognition and Document Image Analysis, eds. P.S.P. Wang and H. Bunke, 
World Scientific Press, 557-582, 1997.
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Making InferencesMaking Inferences

• Sketches are often insufficient for 
understanding
– can be under- or over-constrained

• Can infer based on
– context
– domain knowledge
– domain restrictions
– stroke location

During the recognition and parsing stages, inferences are often required to deal with 
ambiguities or the lack of knowledge about the strokes in a sketch so it can be 
completely understood.  In some cases, the sketch will be under-constrained (i.e., 
we do not have enough information to recognize and/or parse a sketch component) 
or over-constrained (i.e., there are multiple recognitions and parses). In either case, 
making inferences can help resolve these problems. A sketch interpretation system 
can infer information from a variety of different sources such as context, domain 
knowledge, and stroke location.  For example, a gesture can be used for more than 
one command, given its location relative to other objects.  In another example, we 
could restrict the domain we are interested in to just  simple spring and pulley 
systems. This restriction would then help us to reduce the number of possible 
interpretations available during the recognition and parsing steps.  More details on 
making inferences will be provided in Dr. Davis’s lecture on sketch understanding. 
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Sketch UnderstandingSketch Understanding

• Understanding a 
sketch/recognizing a 
gesture is only half the 
battle

• What do we do with it?

• Example: VibroSketch
(Kara,Gennari, 
Stahovich 2004)

After we have gone through these sketch interpretation steps (and all has gone 
well), we will have some form of sketch understanding.  At this point, the real 
challenge begins in what we to do next.  We need to take our new knowledge and 
perform some action or task that will help the user in some way. A nice example 
showing a complete sketch-based interface, from beginning to end, is VibroSketch
(Kara, Gennari, Stahovich 2004).  You will see many more examples throughout the 
rest of the course and the videos we show are included in your course notes.  

References:

Kara L. B., L. Gennari, and T. F. Stahovich. A Sketch-Based Interface for the 
Design and Analysis of Simple Vibratory Mechanical Systems,  2004 ASME 
International Design Engineering Technical Conferences (ASME/ DETC 2004).
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Toolkits (1)Toolkits (1)

• Tablet PC SDK
– ink as first class object

• cusp, self intersection detection

• ink analysis

• built in gestures and recognizer

– uses C#

– get up and running quickly

– somewhat limiting

Getting started in designing and developing sketch-based interfaces can seem like 
a daunting task.  However, there are some toolkits that exist that can help and we 
will mention some of them here.  The first one is the Tablet PC SDK.  It is designed 
to run on Tablet PCs and uses C#.  It treats ink as a first class object and has some 
nice routines for determining cusps, self-intersections, and whether strokes are 
contained within other strokes.  It also uses the Microsoft handwriting recognizer 
and has a built in gesture recognizer.  It also has rudimentary ink analysis, giving it 
the ability to tell whether a collection of strokes is a word or a drawing.  The nice 
thing about the SDK is it is easy to use and you can get applications up and running 
very quickly because it has support for event handling and dealing with other MS 
Windows components. It is somewhat limiting in that it will only take you so far.  The 
gesture recognizer uses a standard set of gestures and the recognizer only deals 
with characters and words. The Tablet PC SDK can be downloaded on Microsoft’s 
web page.  
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Toolkits (2)Toolkits (2)

• SATIN (Hong and Landay 2000)
– Java toolkit for making pen-based apps

– ink stroke manipulation

– comes with Rubine’s Recognizer (Rubine 1991)

– notion of interpreters

– has scenegraph support

Another toolkit that can get designers and developers started is SATIN, developed 
by Jason Hong and James Landay.  SATIN is a Java-based toolkit for making pen-
based applications. It has support for ink stroke manipulation, scenegraphs, and 
uses the notion of interpreters for easy extensibility.  It also comes with Rubine’s
recognizer adapted from his 1991 SIGGRAPH paper. SATIN can be downloaded at 

guir.berkeley.edu/projects/satin/

References:

Hong, J. and J. Landay, SATIN: A Toolkit for Informal Ink-based Applications, ACM 
Symposium on User Interface Software and Technology, CHI Letters, 2(2):63-72, 
2000.

Rubine, Dean. Specifying Gestures by Example. Proceedings of SIGGRAPH'91, 
ACM Press, 329-337, 1991.
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Toolkits (3)Toolkits (3)

• LipiTk (Madhvanath, Vijayasenan, Kadiresan
2006)

• Generic toolkit for creating online handwriting 
recognition engines
– preprocessing routines 

– shape recognition algorithms

– data collection and annotation tools

– runs on both Windows and Linux

LipiTk is a toolkit developed at HP Labs, India by Madhvanath, Vijayasenan, and 
Kadiresan, designed to assist in the development of new online handwriting 
recognizers.  The toolkit provides implementations of tools, scripts and sample code 
required to support handwriting data collection and annotation, recognizer training 
and evaluation, and packaging of engines and their integration into pen-based 
applications.  It includes preprocessing routines for smoothing, size normalization, 
dehooking, and equidistant resampling. It also includes two shape recognition 
algorithms using subspace-based classification and nearest-neighbor classification 
based on Dynamic Time Warping.  Although the toolkit was developed primarily for 
handwriting recognition, it has enough generic functionality to be used for creating 
more general sketch and gesture-based interfaces.  
It is freely available on SourceForge at http://lipitk.sourceforge.net/.

References:

Madhvanath, S., D. Vijayasenan, and T. M. Kadiresan, LipiTk: A Generic Toolkit for 
Online Handwriting Recognition, Tenth International Workshop on Frontiers in 
Handwriting Recognition, 2006. 
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Toolkits (4)Toolkits (4)

• TORCH (Collobert, Bengio, Mariéthoz 2002)
– machine learning library in C++

– many different algorithms
• SVMs

• HMMs

• Bayes Classifiers

– maybe overkill for some applications

TORCH is a machine learning library written in C++. Although it has nothing to do 
with making sketch-based interfaces or pen-based applications, it provides many 
different machine learning algorithms that can be uses for recognition.  Thus, using 
the library can help reduce the amount of development time because the recognition 
portion of the sketch-based interface will be already taken care of.  TORCH can be 
downloaded at  www.torch.ch/

References:

R. Collobert, S. Bengio, and J. Mariéthoz. Torch: a modular machine learning 
software library. Technical Report IDIAP-RR 02-46, IDIAP, 2002. 
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ConclusionsConclusions

• Many issues to consider
– not an exact science

• Gesture recognition somewhat simpler than 
sketch understanding

• Some toolkit support

• Still open problem

In conclusion, there are many issues to consider when building a sketch-based 
interface with the decisions for dealing with them dependent on the application and 
the interface’s.  Gesture recognition is somewhat simpler than sketch understanding 
but it still can be challenging when the gesture set is large.  There is some toolkit 
support for developers and designers who want to get started in sketch-based 
interfaces. All in all, making sketch-based interfaces still has many open issues and 
remains an interesting research problem.  
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Pfleuger, Devin Smith, Paul Wais, Matt Weiner, Aaron Wolin

Harvey Mudd College

Randall Davis, MIT

Sketch Understanding Systems

I will be discussing the problem of sketch understanding which, as we shall see shortly, 
involves much more than just recognizing sketched symbols.  Most of the work that I will 
present has been done by myself and the other members of my former research group 
back at MIT, lead by Professor Randy Davis.  In addition, I would like to acknowledge 
my current team of undergraduate researchers who are helping me explore these 
problems further.

My Contact information:

Christine Alvarado
Assistant Professor
Harvey Mudd College, CS Department
1250 N. Dartmouth Ave.
Claremont, CA 91711

Email: alvarado@cs.hmc.edu
http://www.cs.hmc.edu/~alvarado/ 
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Sketch Input ContinuumSketch Input Continuum

Number of 
Strokes per 
Operation

Ambiguity Level

Ambiguity level refers to sketch interpretation difficulty 
and domain generality

Domain Specific 
Gestural

Commands 

Complete Sketch
Understanding

Systems

1

N

Mathematical
Sketching

2D/3D
Gestural Shape 

Recognition
And 

Modeling

Low High

Real-Time 
Mathematical 
Expression 
recognition

Sketching
3D Geometry

Complete sketch understanding systems are the "holy grail" of this area of research.  
Unfortunately, they are also the most difficult to construct given the high ambiguity 
and the large (and variable) number of strokes per operation.
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Consider This Device...Consider This Device...

Sketches are powerful because of the amount of information they convey.  Consider 
this sketch of a circuit breaker.  How does it work?  If you understand the diagrams 
you will see immediately how it functions.  The bottom component is a bi-metallic 
strip.  When it gets too hot, it bends down and the circular spring causes the upper 
strip to rotate out to break the circuit.

The diagram along with a few simple words helps you understand completely what is 
going on.  You can now probably see how to reset the circuit.  In fact, you probably 
have a little movie that plays in your head of what happens when the circuit is broken 
and reset.  A diagram conveys this information in way no words could.
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Our ModelOur Model

• The user sketches with 
pen and paper

• The observer interprets 
the sketch

• The observer and user 
interact

Our goal is to build a system that understands sketches the way that you and I do 
and can interact with the user in the same way a human observer might—to learn 
how a device works, to offer feedback on a design, etc.  We would like to build a 
system that can literally "look over the user's shoulder" as she draws and interact 
with her seamlessly about her design.
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Sketches are Dead

Because of their power, diagrams are used in many domains.  Pen and paper 
provide a natural, seamless way for people to create diagrams, so users often 
sketch diagrams throughout the design process. 

Unfortunately, diagrams drawn on paper (or drawn on the computer but not 
interpreted) are dead.  If the computer does not understand them, they are nothing 
more than pixels on the screen.
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Magic PaperMagic Paper

Our dream is to build a system that is as free and natural to use as paper, but that 
brings a diagram to life by understanding the domain-specific meaning behind the 
strokes.

Of course, "paper" is a flexible concept in the electronic world.  We would like the 
user to be able to sketch in the medium that makes most sense to her, whether on 
the whiteboard…
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Magic PaperMagic Paper

… or on a tablet computer.  The important piece is the software behind the interface 
that can understand the users strokes as she draws.
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DemoDemo
Based on [Alvarado01]

This is a demo of the Microsoft Physics Illustrator, a power toy for the Tablet PC.  
This application was developed based on the ASSIST sketch understanding 
system.  It allows a user to sketch freely on the Tablet computer and then literally 
see their designs come to life when they press the play button.

References:

Microsoft Physics Illustrator for Tablet PC: 
http://www.microsoft.com/downloads/details.aspx?familyid=56347faf-a639-4f3b-
9b87-1487fd4b5a53&displaylang=en

Christine Alvarado and Randall Davis. Resolving Ambiguities to Create a Natural 
Sketch Based Interface. In Proceedings. of IJCAI-2001. August 2001. 
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OutlineOutline

• Sketch understanding subtasks

• Examples of sketch understanding systems

• Toward truly natural interaction

Sketch understanding is more than just recognizing the symbols in a diagram.  I will 
begin by talking about the many subtasks involved in complete sketch 
understanding.  Then I will describe a number of systems that address one or more 
of the various sketch understanding subtasks.  Finally, I will describe briefly the 
state of the art and where we are in our quest to build a system that understands 
freely hand-drawn diagrams.
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Sketch Understanding SubtasksSketch Understanding Subtasks

Stroke Fragmentation

• Subtask #1: Recognize the drawing

Stroke grouping

Symbol recognitionNOR

There are many different aspects to complete sketch understanding. The first (and 
most obvious) is being able to recognize the symbols in the sketch.  Even this 
recognition problem is not trivial, and it too involves a number of subtasks. 

First, it is often useful to identify corners in the corners in the individual strokes.  
This process, called Stroke Fragmentation, is important for two reasons.  First, 
users sometimes draw more than one symbol using a single stroke. In order to 
detect the boundary between the two symbols, we need to break the stroke apart 
into two (or more) pieces.  Second, fragmenting strokes into primitive components 
(i.e., lines and arcs) allows the system to construct a single, consistent 
representation for each symbol in terms of these primitive components.

Second, a diagrams recognition system must identify groups of symbols that 
comprise single objects.  This process is called stroke grouping.

Finally, the system must be able to recognize a given set of strokes (known to 
comprise a single object) as a symbol in the domain of interest. This process is 
called symbol recognition or symbol identification.
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Sketch Understanding SubtasksSketch Understanding Subtasks

• Subtask #2: Learn new symbols

Define AndGate
line L1 L2 L3
arc A
semi-circle A1
orientation(A1, 180)
vertical L3
parallel L1 L2
same-horiz-position L1 L2
connected A.p1 L3.p1
connected A.p2 L3.p2 
meets L1.p2 L3
meets L2.p2 L3

The next sketch understanding subtask is to learn the symbols to be recognized.  
While learning symbol representations is not strictly necessary (the programmer can 
also hand-code descriptions or recognizers), hand-coding recognizers or 
descriptions of symbols is tedious, and often leads to poor recognition.
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Define AndGate
line L1 L2 L3
arc A
semi-circle A1
orientation(A1, 180)
vertical L3
parallel L1 L2
same-horiz-position L1 L2
connected A.p1 L3.p1
connected A.p2 L3.p2 
meets L1.p2 L3
meets L2.p2 L3

Learning New SymbolsLearning New Symbols

• From hand-drawn example to a shape 
description

There are many possible ways to "learn symbols".  One way that ties in to what I will 
talk about this afternoon is to learn the symbolic description of a shape in terms of 
its primitive components and the necessary constraints between those components.  
I will talk more about how this process works later in this talk.
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Sketch Understanding SubtasksSketch Understanding Subtasks

• Subtask #3: Recognize the diagram
module example (input A,B,C,D,

E,F,G, output Y);

wire n1,n2,n3,n4,n5;

assign n1=A&B&C;
assign n2=F&G;
assign n3=~(n1&D);
assign n4=~(n2|E);
assignn5=~(n3|n4);
assign Y=~(n5&n5);

endmodule

Verilog code

Third, it is not enough simply to recognize the symbols in the diagram.  A sketch 
understanding system must also be able to compose those symbols into a 
meaningful diagram.  For example, understanding a circuit diagram means 
understanding how many inputs and outputs the circuit has, and which wires are 
connected to which gates (and whether they are inputs to or outputs from the gate).  
Once the sketch understanding system recovers this information, it can translate the 
sketched diagram into a more precise form that can be simulated (i.e., the Verilog
code that represents the circuit diagram on the left in the example above).
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Sketch Understanding SubtasksSketch Understanding Subtasks

• Subtask #4: Understand supporting speech

"There are only 3 gates between input D and output Y…"

Often, understanding a sketch involves more than just understanding what the user 
draws.  While sketching, designers often convey important information verbally, and 
this verbal information can help us make sense of the diagram.  In the example 
above, the user talks about the shortest path through the circuit.  This speech can 
potentially help us understand the annotation (in red) below the wire carrying input 
D.
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Sketch Understanding SubtasksSketch Understanding Subtasks

• Subtask #5: Understand supporting gestures

In addition to speaking, people often gesture when they sketch (or when they talk 
about a sketch).  Understanding these gestures can also help us understand the 
behavior of the system they are sketching.
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Sketch Understanding TasksSketch Understanding Tasks

• Recognize the sketch

• Understand the diagram

• Learn new symbols

• Understand supporting speech

• Understand supporting gestures

In this part of the talk, I will introduce a number of implemented sketch 
understanding systems that focus on one (or more) of the various sketch 
understanding subtasks.  All of these systems can be combined to form a complete 
sketch understanding system.  I will start by talking about a system that 
understands chemical diagrams.  In the process, I will discuss the difficulties 
inherent in the task of recognizing a sketch.
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Recognition subtasks, revisitedRecognition subtasks, revisited

Stroke Fragmentation

Stroke grouping

Symbol recognitionNOR

As we saw previously, diagram recognition involves a number of subtasks.  Here I 
will focus only on symbol recognition and stroke grouping.  I will talk about stroke 
fragmentation in some detail this afternoon.
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Using Domain KnowledgeUsing Domain Knowledge

• Domain: Sketching family trees

• Lexicon

male       female    child-of   married-to divorce

To illustrate the many of the challenges of sketch recognition, we will use a simple 
domain representing family trees.  The symbols in this domain are shown here.
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What’s Hard?What’s Hard?

• Task is incremental
• Signal is noisy
• Styles vary
• Stroke grouping is difficult
• The signal is 2-d, non-chronological

1 2

3 4 5 6 7

8 9
10

11
12

Imagine that the user draws the diagram above with the stroke order given by the numbers on the diagram.  
She first draws the mother, then the father, and then draws the three sons.  She then links the mother to each 
of the sons by drawing the shaft of three arrows and then drawing the arrowheads.

This diagram illustrates many of the challenges a recognition system faces.  First, the task is incremental.  
The system cannot be sure when the user has completed one symbol and moved on to the next.  We would 
like to be able to recognize the diagram as the user sketches to enable seamless interaction with the 
diagram.  For example, if the user wants to move the middle son, she should be able to click and drag it and 
have the whole box move, without explicitly telling the system that there are two strokes in that symbol.

Second, the signal is noisy.  For example, the endpoints in the top circle do not meet exactly and there is a 
gap between strokes 6 and 7.

Third, drawing styles vary, even for a single user.  Notice that the user drew the left box with only one stroke 
(Stroke 3) and the right box with two strokes.   Style inconsistencies make it more difficult to build 
recognizers.

Fourth, stroke grouping is difficult.  Stroke 12 touches both stroke 3 and stroke 8, so it is difficult to know 
which stroke it should be grouped with unless you recognize the arrow already.

Fifth, people may (and do) draw the strokes in each symbol in many orders, and they may even draw part of 
one symbol, move to draw another symbol, and then come back to finish the first symbol.  We cannot rely 
strokes in a single symbol to be temporally contiguous.  
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The Importance of Domain 
Information
The Importance of Domain 
Information
• Problem: Recognize hand-drawn chemical 

structures

Tom Ouyang and Randall Davis [Ouyang06], 
In collaboration with Pfizer Research Technology Center, Cambridge, MA

The way we overcome many of these challenges is to rely on domain-specific 
information for recognition. This application, developed by Davis and Ouyang, uses 
chemistry domain information to cope with inherent ambiguities in the diagram.

References:

Tom Ouyang and Randall Davis. Recognition of Hand Drawn Chemical Diagrams.
In Second Annual CSAIL Student Workshop. 2006. 
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Classifying strokesClassifying strokes

• Ambiguity in stroke classification

Do these strokes represent 
bonds or parts of letters?
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Classifying strokesClassifying strokes

• Ambiguity in stroke classification

Bond Letter Letter Bond
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Interpreting StrokesInterpreting Strokes

• Ambiguity in bond segmentation

Do these strokes 
represent single bonds 
or multiple connected 
bonds?
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Interpreting StrokesInterpreting Strokes

• Ambiguity in bond segmentation

Multiple

Single

Single
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Interpreting TextInterpreting Text

4?
H?

• Ambiguity in text recognition

Which letters or 
numbers do these 
strokes represent?

N?
H?

N?
X?
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Interpreting TextInterpreting Text

• Ambiguity in text recognition

H

H

N
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Resolving AmbiguityResolving Ambiguity

• Use chemistry knowledge

The context surrounding each individual stroke combined what we know about 
chemical structure diagrams makes clear the correct interpretation of each of these 
ambiguous strokes.
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Using Chemistry KnowledgeUsing Chemistry Knowledge

Here we can see how chemistry knowledge allows the system to interpret the same 
set of strokes as two different symbols (Nitrogen or Hydrogen) based on the 
constraints of the domain.  In the structure on the left, although the symbol looks 
like an H, hydrogen, which contains room for only one electron, would not be able to 
bond with the three surrounding atoms, while nitrogen can.  On the left the system 
interprets the stroke as hydrogen because the bond structure is consistent with the 
structure of the hydrogen atom.

Domain knowledge is used in a similar way in the following system

Leslie Gennari, Levent Burak Kara, Thomas F. Stahovich (2005) Combining Geometry and 
Domain Knowledge to Interpret Hand-Drawn Diagrams. Computers & Graphics 29(4): 547-
562 2005.
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A Typical Approach to RecognitionA Typical Approach to Recognition

Stroke Fragmentation

Stroke Grouping

Symbol Recognition

So far we have focused on symbol recognition, assuming the stroke grouping was 
done prior to this step.  This example shows the typical model for many recognition 
systems: strokes are grouped, and then those groups are handed off to shape 
recognizers.
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A Typical Approach to Recognition: 
Problem
A Typical Approach to Recognition: 
Problem

incorrect grouping

However, there is a problem with this waterfall model—errors cascade through the 
system.  If the system groups strokes incorrectly, then it will also fail to recognize 
the symbol or symbols those strokes represent.
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Why is Grouping Hard?Why is Grouping Hard?

• No clear boundaries in space…

Stroke grouping is difficult, and errors are common.  There are two main reasons 
why grouping is difficult.  First, there are no clear spatial boundaries between 
symbols.  In this example, you can see that the two input wires touch the left piece 
of the XOR gate, but the two pieces of the gate itself do not actually touch one 
another.  A spatial grouper would not tend to group the strokes comprising the gate 
into a single symbol, but would prefer to group each have to the gate with the wires 
that connect to it.
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Why is Grouping Hard?Why is Grouping Hard?

• No clear boundaries in space or time
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Same Shape New Shape

[Alvarado06]

Stroke grouping is also difficult because there are no clear boundaries between 
symbols in time either.  This graph shows the median pause time between 
consecutive strokes for strokes that are part of the same shape and strokes that are 
part of different shapes.  The error bars show the interquartile range.  It is clear that 
these distributions overlap and there no temporal boundary that will reliably indicate 
when the user has finished drawing one shape and moved on to the next.

References:
Christine Alvarado and Michael Lazzareschi.  Properties of Real World Digital Logic 
Diagrams.  1st International Workshop on Pen-based Learning Technologies (PLT) 2007.
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Why is Grouping Hard?Why is Grouping Hard?

• No clear boundaries in space or time

• Trying all combinations of strokes is 
infeasible

Furthermore, trying all combinations of strokes is computationally infeasible.
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Reducing the number of combinations:
Anchor Shapes
Reducing the number of combinations:
Anchor Shapes [Kara2004]

• SimuSketch (Kara and Stahovich)

• Arrows are easily recognized

• Arrows separate other shapes in space

We must take steps to reduce the number of possible groupings the system must 
consider.  One approach taken by Kara and Stahovich is to use shapes that are 
easily recognized as "anchor points" in the drawing.  Their system reliably identifies 
arrows.  Once these arrows are identified, they spatially separate the remaining 
pieces of the drawing so grouping becomes straightforward using simple distance 
metrics.

References:
Levent Burak Kara, Thomas F. Stahovich (2004) Hierarchical Parsing and Recognition of 
Hand-Sketched Diagrams. 17th ACM User Interface Software Technology (UIST) 2004.
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SimuSketch VideoSimuSketch Video
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Sketch Understanding TasksSketch Understanding Tasks

• Recognize the sketch

• Understand the diagram

• Learn new symbols

• Understand supporting speech

• Understand supporting gestures

The next system I will discuss is a system for learning new symbols to be 
recognized.



Sketch-Based Interfaces: Techniques and Applications

Sketch Understanding Systems 37

Define AndGate
line L1 L2 L3
arc A
semi-circle A1
orientation(A1, 180)
vertical L3
parallel L1 L2
same-horiz-position L1 L2
connected A.p1 L3.p1
connected A.p2 L3.p2 
meets L1.p2 L3
meets L2.p2 L3

Learning New SymbolsLearning New Symbols

• From hand-drawn example to a shape 
description

[Veselova02]

One way we can represent shapes to be recognized is through a structural description of the 
shape in terms of its simple subshapes and constraints between those subshapes.  I will talk 
more about how we build a recognition system using this representation this afternoon.  

Notice that these descriptions, while relatively straightforward, are somewhat tedious to write 
out.  Futhermore, they are prone to errors—the human writing the description can easily 
forget to specify an important relationship between subcomponents.  

Instead, we would like to build a system that can decompose a single hand-drawn example 
into its primitive components and automatically detect the constraints between them.  
Unfortunately, a naïve system will detect constraints very literally (e.g., the angle between 
line 1 and line 2 is 182.3432 degrees).  Furthermore, it will likely detect constraints that don't 
really matter (i.e., the length of the arc is 1.54 time the length of the line at the base of the 
gate).  How can we build a system that will learn perceptually salient constraints?

References:
Olya Veselova and Randall Davis. Perceptually Based Learning of Shape Descriptions. In 
Proceedings of the Nineteenth National Conference on Artificial Intelligence (AAAI-04), 
pp.482-487. San Jose, California, 2004. 
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Learning New SymbolsLearning New Symbols

• Knowledge about human perception:
Some properties are more important
– Experiments by Goldmeier (1936) identify perceptually 

relevant properties and relations; singularities

Our goal is to build a system that will learn constraints the way we perceive 
them, so to figure out how we humans perceive constraints we must turn to 
the psychology literature.  Through experiments, Goldmeier deteremined a 
number of perceptually salient constraints that people tended to easily 
identify.  For example, people notice when a line is exactly vertical, or when 
two lines are exactly parallel.  They do not believe these relationships 
happened by accident; they believe they were intentional.  

Vesselova and Davis built a system capable learning shape descriptions 
from a single example by leveraging the notion of intentional constraints.

References:
Olya Veselova and Randall Davis. Perceptually Based Learning of Shape 
Descriptions. In Proceedings of the Nineteenth National Conference on 
Artificial Intelligence (AAAI-04), pp.482-487. San Jose, California, 2004. 
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Sketch Understanding TasksSketch Understanding Tasks

• Recognize the sketch

• Understand the diagram

• Learn new symbols

• Understand supporting speech

• Understand supporting gestures

Finally, we examine two systems that support multi-modal interactions.
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Multi-Modal InteractionMulti-Modal Interaction
[Adler04]

In many cases, people don't just sketch, but they also speak about the device they 
are designing.  Understanding this speech can help us understand what they are 
sketching.
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Multi-Modal InteractionMulti-Modal Interaction

“Three identical 
touching 

pendulums…”

• Graphical vs verbal communication:
What’s best said, what’s best sketched?

For example, in the Newton's cradle toy from the previous slide it is critical that all of 
the pendulums are identical in size and just barely touching each other at rest.  It is 
incredibly difficult to draw three identical, exactly touching pendulums, but it is quite 
simple to say this.  The tool designed by Adler and Davis, an extension of the 
ASSIST sketch understanding system, recognizes supporting speech and uses it to 
modify the diagram to achieve the designed behavior, as you see in the following 
video.

References:
Aaron Adler and Randall Davis. Speech and Sketching for Multimodal Design. In 
Proceedings of the 9th International Conference on Intelligent User Interfaces, pp.214-216. 
2004.
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Multi-modal interaction (speech)Multi-modal interaction (speech)

• Video
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Understanding GesturesUnderstanding Gestures

• Lexicon: What gestures do people make?

• Depends on task

• Our task: explaining how something works.=

[Eisenstein04]

Finally, physical gestures provide additional clues about the behavior of a system, 
and thus the correct interpretation of a sketch.  Eisenstein and Davis studied what 
kinds of gestures people make when describing how a physical device functions.
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Understanding GesturesUnderstanding Gestures

• 96% of gestures refer to the 
diagram.

• Two-handed gestures are 
common.

• Deixis is more frequent.

They found that the gestures people make when referring to diagrams are different 
from the gestures they make when interacting with other people. They also showed 
that gestures in reference to a diagram can be used to disambiguate associated 
speech.

References:

Jacob Eisenstein and Randall Davis. Visual and Linguistic Information in Gesture 
Classification. In International Conference on Multimodal Interfaces (ICMI'04), pp.113-120. 
New York, New York, October 14-15 2004.

Jacob Eisenstein and Randall Davis. Gesture Improves Coreference Resolution. In 
Proceedings of the Human Language Technology Conference of the NAACL, 
Companion Volume: Short Papers, pp.37-40. New York City, USA, June 2006. 
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State of the ArtState of the Art

• Akin to early speech understanding

Although we have made great progress over the past decades, there is still a long 
way to go.  In many ways, sketch recognition is at the level that speech recognition 
was at 15 to 20 years ago.  Back then, isolated word recognition was feasible and 
actually robust enough to be useful, domain-specific continuous speech recognition 
systems were just beginning to prove useful, but domain-independent continuous 
speech recognition was far too error-prone to be useful.  Today, isolated gesture 
recognition systems, such as Palm Graffiti, are commonplace.  Some domain-
specific recognition systems are emerging, but most of these systems require 
significant user assistance with the process of stroke grouping. Free-sketch 
recognition, even for restricted domains, remains an unsolved problem.
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Furthermore, a lot of work on sketch understanding focuses on symbolic diagram
understanding.  Recognizing artistic sketches such as these is well beyond the 
abilities of any system today.
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HardwareHardware

Hardware platforms continue to emerge, from electronic whiteboards, to electronic 
drafting tables, to the increasingly ubiquitous Tablet PC.
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With the rise of digital pen-based hardware, sketch understanding is becoming more 
relevant than ever.
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SummarySummary

• Once the sketch is understood, many things 
are possible.

• Break down the barriers: eliminate interfaces

• Natural interaction is enabled by intelligence
– About sketching, gesturing, speech

– About the domain

– About the task

True sketch understanding will open the door to many new types of interactions with 
the computer.  The better we can understand the user's sketch, the less she will 
have to think about the interface and the more she can focus on the more important 
task of design.  

Intelligence is critical for natural interaction.  To understand what the user is 
drawing, the computer must understand the symbols in her sketch, in her speech 
and in her gestures.  This understanding requires detailed knowledge about the 
domain and the task.  This afternoon we will explore this problem further, examining 
how to build a system that is capable taking this domain information as input, 
allowing us to build a single sketch understanding system that may be adapted 
easily to many different domains.



Sketch-Based Interfaces: Techniques and Applications

Sketch Understanding Systems 50

BibliographyBibliography

• Aaron Adler and Randall Davis. Speech and Sketching for Multimodal Design. 
In Proceedings of the 9th International Conference on Intelligent User 
Interfaces, pp.214-216. 2004. 

• Christine Alvarado and Michael Lazzareschi.  Properties of Real World Digital 
Logic Diagrams. 1st International Workshop on Pen-based Learning 
Technologies (PLT) 2007.

• Christine Alvarado and Randall Davis. Resolving Ambiguities to Create a 
Natural Sketch Based Interface. In Proceedings. of IJCAI-2001. August 2001. 

• Jacob Eisenstein and Randall Davis. Visual and Linguistic Information in 
Gesture Classification. In International Conference on Multimodal Interfaces 
(ICMI'04), pp.113-120. New York, New York, October 14-15 2004.

• Jacob Eisenstein and Randall Davis. Gesture Improves Coreference
Resolution. In Proceedings of the Human Language Technology Conference 
of the NAACL, Companion Volume: Short Papers, pp.37-40. New York City, 
USA, June 2006. 



Sketch-Based Interfaces: Techniques and Applications

Sketch Understanding Systems 51

BibliographyBibliography

• Leslie Gennari, Levent Burak Kara, Thomas F. Stahovich (2005) 
Combining Geometry and Domain Knowledge to Interpret Hand-
Drawn Diagrams. Computers & Graphics 29(4): 547-562 2005. 

• Levent Burak Kara, Thomas F. Stahovich (2004) Hierarchical Parsing 
and Recognition of Hand-Sketched Diagrams. 17th ACM User 
Interface Software Technology (UIST) 2004. 

• Tom Ouyang and Randall Davis. Recognition of Hand Drawn 
Chemical Diagrams. In Second Annual CSAIL Student Workshop. 
2006. 

• Olya Veselova and Randall Davis. Perceptually Based Learning of 
Shape Descriptions. In Proceedings of the Nineteenth National 
Conference on Artificial Intelligence (AAAI-04), pp.482-487. San Jose, 
California, 2004. 



Sketch-Based Interfaces: Techniques and Applications

1Sketch-Based Interfaces for Interactive Computer Graphics

Sketch-Based Interfaces: Techniques and Applications

Sketch-Based Interfaces
for Interactive Computer 
Graphics

Sketch-Based Interfaces
for Interactive Computer 
Graphics

Takeo Igarashi

The University of Tokyo

Sketch-Based Interfaces for Interactive Computer Graphics

Takeo Igarashi
Associate Professor, University of Tokyo
Department of Computer Science 
Graduate School of Information Science and Technology 
The University of Tokyo 
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 
Tokyo, JAPAN

Email: takeo@acm.org
www-ui.is.s.u-tokyo.ac.jp/~takeo/



Sketch-Based Interfaces: Techniques and Applications

2Sketch-Based Interfaces for Interactive Computer Graphics

OutlineOutline

• Introduction 

• Application Systems (demo and videos)
– 2D Drawing

– Shape Modeling

– Animation Control

– Special Purpose Editors

• Summary

In this lecture, we will introduce various sketching interfaces for computer graphics 
applications. We first give a short introduction and then discuss several sketch-
based systems.
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IntroductionIntroduction
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MotivationMotivation

• Traditional graphics tools are too complicated.
– Only accessible for experts

– Usable only after initial design is complete

Traditional tools for authoring computer graphics are mainly designed for expert 
users and are very difficult to use. One must spend a long time learning the tool and 
is expected to work on a task for a extended period of time to obtain a result.

These tools are certainly suitable for professional artists who create production 
quality graphics (movies, games, etc.), but they are not accessible for novice users. 
Suppose a child wants to make a 3D duck.  These traditional interfaces are too 
complicated for beginners.

Complicated interfaces can also make it difficult for professional users to use these 
tools in the initial design phase. As a result, artists still first work on pen and paper 
in initial design phase, and then move on to computational tools when the design is 
fixed.
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Basic IdeaBasic Idea

• Sketching can simplify the process.
– Accessible for novices

– Useful for initial design process

The goal of sketching interfaces is to solve the problem of accessibility by 
dramatically simplifying the user interface. Instead of requiring the user to work with 
traditional buttons, menus, and dragging operations, sketching allows them to 
directly express their thoughts in the form of freehand sketching. It can make 3D 
graphics authoring accessible to novice users, even children. In addition, simple 
interfaces make it possible for experts to use them in the initial design process.
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Key IssuesKey Issues

• Sketch is simple = provides limited information

• Key issue in designing sketching systems is 

“How to infer missing information (e.g. depth)”

• Algorithm: using domain knowledge

• Interface: disambiguation

The basic idea behind sketching systems is to simplify the interface by reducing the 
amount of explicit control by the user. As a result, the information provided by the 
user is not complete to perform a task, and it is necessary to complement missing 
information in various ways. Complementing missing information is the key issue in 
designing a sketching interface. For example, a typical problem in sketch-based 3D 
modeling is how to infer depth information. The user’s input is 2D, so the system 
needs to complement depth information in some way. 

Sketching interfaces solve this problem by combining algorithm and interface tricks. 
With algorithms, sketching systems heavily exploit domain knowledge to infer 
appropriate information from limited input. In other words, the interface achieves 
simplicity by limiting the target domain.  With the user interface, sketching systems 
need to handle ambiguity in the user input. Construction of multiple candidates are 
one of very useful method to do this.
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OutlineOutline

• Introduction 

• Application Systems (demo and videos)
–2D Drawing

–Shape Modeling

–Animation Control

–Special Purpose Editors
• Discussion

Now we discuss individual systems from different areas of interactive computer 
graphics.
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2D Drawing2D Drawing
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Interactive BeautificationInteractive Beautification

• Beautification and prediction in drawing
• Disambiguation by showing multiple candidates

[Igarashi 97]

Example Beautification

First, we introduce a sketching interface for drawing simple diagrams as shown in 
the slide. It is tedious to draw these diagrams using traditional drawing editors. The 
user needs to combine multiple commands such as copy, paste, flip, move, etc. The 
interactive beautification system simplifies the process by taking the user’s freeform 
sketching and beautifying them considering geometric relationships between line 
segments. If the user’s drawn stroke is almost perpendicular to an existing line 
segment, the system makes it perfectly perpendicular.

A user’s sketches can be very ambiguous. To address this problem, the system 
shows multiple candidates and let the user choose one. The system also predicts 
the user’s next drawing and shows the result to the user. If the user likes the 
predictions, he or she can continue drawing just by successive clicking.
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Shape ModelingShape Modeling



Sketch-Based Interfaces: Techniques and Applications

12Sketch-Based Interfaces for Interactive Computer Graphics

SKETCHSKETCH

• 3D scene construction using gestures.
• “Every object is on top of another object”

[Zeleznik 96]

.sketch.avi

SKETCH is a gestural interface for creating 3D scenes such as those shown here. 
The user draws a few 2D lines in the scene as a gesture, and the system creates a 
corresponding 3D primitive. For example, three lines create a box, two parallel lines 
create a cylinder, and two connected line creates a cone.

The question is how to determine the 3D position (depth) of each 3D primitive. The 
SKETCH system solved this ambiguity by assuming that every object is on top of 
another object in the scene. This strategy frees the user from manually specifying 
the depth of each primitive and it significantly simplifies the interface. The SKETCH 
system also introduces other interesting interaction techniques such as floating an 
object in the air by drawing its shadow.
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Suggestive InterfacesSuggestive Interfaces

• User provides hints, system shows suggestions
• Disambiguation by showing multiple candidates

[Igarashi 01]

The figures in the slide show a system that is a combination of the Pegasus system 
and the SKETCH system. The user draws a line by dragging and highlights a line 
by clicking. The system then shows the result of possible operations related to the 
highlighted line segments. If two perpendicular lines are highlighted, the system 
suggests to create a new drawing canvas, a triangle, and a box. The user can 
simply click on the desired suggestion and the scene is updated accordingly.
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TeddyTeddy

• Freeform models from sketching.
• “Sketches represent some rotund shapes”

[Igarashi 99]

Previous sketch-based modeling systems focus on rectiliniear models such as 
buildings. In contrast, Teddy is designed for freeform models such as animals. The 
user draws the silhouette of the desired geometry and the system automatically 
create a 3D model by inflating the region surrounded by the silhouette. Teddy also 
supports various editing operations such as cutting, extrusion, and transformation. 
All operations are performed by drawing freeform strokes on the screen and they 
and appropriately interpreted by the system considering the context information.
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Recent DevelopmentsRecent Developments

• Vteddy (voxel models) [Owada 2003]

• SmoothTeddy (subdivision) [Igarashi 2003]

• ShapeShop (implicit surfaces) [Schmidt 2005]

• And more…

There are several extensions to the original Teddy system. The original Teddy system 
used a very coarse mesh model and these extensions experiment with different 
representations.

Vteddy uses a voxel representation for 3D models to handle complicated internal 
structures. The original Teddy system was limited to models with topology identical to 
a sphere, but Vteddy can handle models with arbitrary topology. It provides a 
“temporary cutting” operation for editing internal structures. Vteddy temporarily reveals 
the cross section of a model and allows the user to edit internal structures. When it is 
done, the system automatically closes the cross section.

Smoothteddy beautifies the mesh generated by the original Teddy algorithms. It 
iteratively updates the mesh connectivity and vertex positions to yield equal-sized, 
near-regular triangles. The resulting mesh is suitable for creating a refined mesh by 
applying subdivision. 

ShapeShop uses a blob-tree representation. Blob-trees are hierarchically organized 
implicit surfaces and can naturally represent smooth surfaces. It is also possible to 
move added parts to different locations afterwards while preserving a smooth 
connection.
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AnimationAnimation
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Articulated AnimationsArticulated Animations

• The user sketches stick figures.
• Depth disambiguation by selection

[Davis 2003]

videos\Davis03.avi

The animation system shown in the slide takes a series of stick figure drawings as 
input and generates a character animation. The key issue is how to define the depth 
(direction) of the body parts. This system solves the problem by using pre-defined 
constraints and by asking the user to choose one from multiple candidates.
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Motion DoodlesMotion Doodles

• The user sketches a desired trajectory.
• “A character walks, runs, or jumps”

[Thorne 04]

Thorne04.mov

In the previous system, the user draws each pose. With Motion Doodles, the user 
draws a desired trajectory of a character. The shape and timing of the sketching is 
used to control the motion. The system supports a repertoire of 18 different types of 
motions and combines them according to the sketch.
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Animations by PerformanceAnimations by Performance

• The user directly performs a motion.
• Blending pre-defined poses

[Igarashi 05]

With Animations by Performance, the system records the user’s performance (direct 
manipulation process) and plays back the recorded motion as an animation. To 
allow the user to simultaneously control multiple degrees of freedom, the user 
specifies a set of key poses beforehand and the system blends them according to 
the user’s cursor movement during recording.
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Special Purpose 
Editors

Special Purpose 
Editors



Sketch-Based Interfaces: Techniques and Applications

21Sketch-Based Interfaces for Interactive Computer Graphics

Trees ModelingTrees Modeling

• The user sketches branches and leaves
• “A tree spreads branches to all directions”

[Okabe 2003]

The system shown in the slide takes a 2D sketch of a tree drawn by the user and 
generates a 3D tree. It computes the depth of branches so that the distance 
between branches become as large as possible. Since it is tedious to draw all 
branches manually, the system provides interfaces to generate many similar 
branches by using a limited number of manually drawn branches as examples.
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Flower ModelingFlower Modeling

• The user sketches stems, petals, etc.
• The system provides separate UI for each component.

[Ijiri 2005]

takaflower

This system models flowers. It combines geometry editing and structural editing to 
make the construction of complicated models possible. The geometry modeling part 
is a collection of special purpose sketching interfaces for individual floral 
components, such as receptacle, anther, sepal, and petal. The structural editing 
part provides a simple diagrammatic interface for specifying the arrangement of the 
geometric components.
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Garment DesignGarment Design

• The user sketches the outline of a garment
• “The garment covers the body surface”

[Turquin 04]

videos\Turquin04.avi

The system shown in the slide is a sketch-based approach for garment design. The 
user draws a 2D sketch of the desired garment around the given 2D human body. 
The system then constructs a 3D garment so that the garment surrounds the 3D 
body so that the silhouette of the 3D garment matches the original 2D sketch. Using 
the system, a designer can see various garments directly on the character body.
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Clothing ManipulationClothing Manipulation

• The user sketches marks on the body and clothing
• “The clothing covers the body surface”

[Igarashi 03]

The system shown in the slide provides an easy-to-use interface for putting clothing 
on a character and manipulating it on the character. To put clothing represented as 
a 2D pattern on a 3D character, the user draws marks on both the 2D pattern and 
the 3D character. The system then places the clothing on the character so that 
corresponding marks match. After putting the clothing on the character, the user 
can drag the clothing on the character’s body surface to experiment with many 
different styles.
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SummarySummary

• Sketching can simplify interfaces.
– “Accessible tool for novice users”

– “Quick exploration of various ideas”

• It requires careful consideration.
– Infer missing information using domain knowledge

– Provide a disambiguation interface

As shown in examples from this lecture, sketching can simplify the interfaces for 
graphics applications. It makes graphics tools accessible for novice users and also 
enables expert users to use advanced computational tools in the initial design 
phase.

To design successful sketching interfaces, it is very important to understand the 
incomplete and ambiguous nature of sketching. First, sketching contains very 
limited information and so the system needs to infer implicit information using 
domain knowledge. To do so, it is crucial to carefully limit the target domain. For 
example, the SKETCH system assumes that a scene consists of stacked primitives 
and the Teddy system assumes that everything is rotund. Second, sketching is very 
ambiguous and it is important to provide a means for disambiguation. One way to 
deal with ambiguity is to generate multiple candidates and ask the user to choose 
one, as seen in Pegasus and Chateau.

I hope you to try sketch-based interfaces in your work to give a different feel to your 
tool. It is a lot of fun. 
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“Sketching 3D shapes” Session at 
the Papers Program
“Sketching 3D shapes” Session at 
the Papers Program

• Tuesday, Aug 7, 15:45-18:00, Room 6AB

– FiberMesh: Designing Freeform Surfaces With 3D Curves

– Editing Topology of 3D Models by Sketching

– Interactive Topology-Aware Surface Reconstruction

– ShapePalettes: Interactive Normal Transfer via Sketching 

– Plushie An Interactive Design System for Plush Toys

Here is a little bit of an advertisement.
This year, the papers program features a “Sketching 3D Shapes” session!
It will be in room 6AB on Tuesday evening.
It shows the latest work in sketching 3D shapes, including 3D modeling, topology 
editing, normal map design, and plush toy design.

Please come and see them!
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Visual ThinkingVisual Thinking

“It is fascinating to watch how a designer, when given a design problem, instinctively 
reaches for a pencil and paper…”
So wrote Eugene Ferguson, a science historian, in his book “The Mind’s Eye”

Visual thinking is an integral part of any design process, and sketching is the 
informal hand written form of this thinking process.
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OutlineOutline

• Motivation: Visual vs. Verbal thinking 

• Application Systems (demo and videos)
– 3D sketching in 2D

– 3D sketching in 3D

– Sketching + analysis and fabrication

• Hardware

• Challenges and Opportunities

In this lecture, we will introduce various sketching interfaces for computer graphics 
applications. We first give a short introduction and then discuss several sketch-
based systems.
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The written form of visual thinkingThe written form of visual thinking

Text

Verbal Thinking

Geometry

Visual Thinking

Verbal thinking manifests itself in verbal language and speech, with handwriting 
being the informal written form of this language.

In contrast, visual thinking – the other half of the brain – has its own way of 
representing information, and sketching is the informal written form of this language.

While extensive effort has been spent on trying to get machines to understand 
speech and handwriting, relatively little has been spent trying to get machines to 
understand visual communication.

This is our goal here today.
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The importance of visual thinking is demonstrated well by a piece written by Richard 
Feynman’s memoir:

One time, we were discussing something – we must have been eleven or 
twelve at the time – and I said, “But thinking is nothing but talking to 
yourself.”
– “Oh, yeah?”, Bennie said, “Do you know the crazy shape of the crankshaft 
in a car?”
– “Yeah, what of it?”
– “Good. Now tell me: how did you describe it when you were talking to 
yourself?”

(Feynman, 1988) 
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3D6B3D6B

While handwriting has many forms, sketches transcend space and time. You can 
understand sketches made long ago by people from other cultures and who speak 
different languages.

While you probably have no clue as to what Leonardo Da Vinci wrote here, you can 
certainly understand the concept he drew out.

We’d like a computer to be able to understand us in the same way.
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The engineering whiteboardThe engineering whiteboard

Lets say I wanted to describe a particular shape –
A rectangle, with a notch, a chamfered corner, and a diagonal hole.
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I could do it in CAD, but it would take me some time. Why? 
Because I’d have to familiarize myself with the interface.
I’d have to provide accurate information, even though its not important.
But most importantly, it will force me to have broken my visual thinking into a 
sequential, verbal thinking – into a set of commands.
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Avoid the verbal translationAvoid the verbal translation

Text

Verbal/sequential Thinking

Geometry

Visual/parallel Thinking

Sketch understanding is really about skipping the forced translation from the 
parallel, visual thinking mode which characterizes design, into the verbal, sequential 
process that is typically needed to enter it into a computer.
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The NEW engineering whiteboardThe NEW engineering whiteboard

Lipson & Shpitalni, 1996

A better way to describe the shape would combine the freehand sketching, with a 
3D interpreter that would transform the 2D lines into a 3D shape.

The shape is not necessarily very accurate, but it conveys the concept. It is 
sufficient to allow for discussing the concept.



Sketch-Based Interfaces: Techniques and Applications

11Sketching for Mechanical Design and CAD

Sketches can become physicalSketches can become physical

Lipson & Shpitalni, 2000

Rapid prototyping technology provides means for physically realizing the sketch 
mode – again, bypassing a sequential construction sequence.
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Kiia Kallio
Media Lab of the University of Art and Design, Helsinki

3D6B3D6B

But why try to interpret the sketch? 
Perhaps a better way is just to keep the stroked in 3D, without trying to make 
“geometric sense” out of them
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3D6B3D6B

Kiia Kallio
Media Lab of the University of Art and Design, Helsinki
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…or sketch directly in 3D …or sketch directly in 3D 

Sketch Furniture, by FRONT

Ultimately, we can think of sketching directly in 3D.

Note how the creativity of the designers here is completely unhampered by menus 
and commands – the ideas just flow into space.

If course there is some acting in this movie – the designers can’t actually see what 
they are creating (which is a serious problem!), but one can see that should some 
technological hurdles be solved (e.g. using augmented reality). Interesting creative 
freedom can be unleashed.

Again, notice how rapid prototyping technology provides means for physically 
realizing the sketch model.
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…or sketch on 3D objects …or sketch on 3D objects 

Song, Guimbretière, Hu, Lipson (UIST 2006)

We can even sketch onto 3D models.
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…or sketch on objects …or sketch on objects 

Song, Guimbretière, Hu, Lipson (UIST 2006)
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Perform kinematic analysis Perform kinematic analysis 

Sketch kinematics, Lipson 2005

The sketches do not need to be static. They can be live sketches – which can be 
analyzed in various ways.
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Perform structural analysis Perform structural analysis 

Masry & Lipson, C&G 2006

The sketches do not need to be static. They can be live sketches – which can be 
analyzed in various ways.
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Sketch-Based Conceptual DesignSketch-Based Conceptual Design
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Combining sketching and analysis, we can close the loop between design and 
analysis, bringing CAE tool much sooner into the design cycle.
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Hardware: Sketching EnvironmentHardware: Sketching Environment

Hardware platforms have evolved, but many challenges remain:

Moving from light-pens to real natural paper texture; real-time sketching, and 3D?
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Hardware: Sketching EnvironmentHardware: Sketching Environment

Paper Pencil

Projector

Camera
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Sketch Input ContinuumSketch Input Continuum
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OpportunitiesOpportunities

• Maintain visual thinking 

• Exploit physical hand-eye coordination

• Accelerate the learning curve

• Qualitative conceptual analysis
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ChallengesChallenges

• Ambiguity: 2D 3D, Interface, analysis

• Methodology: Scaling in complexity

• Hardware: Make it intuitive

• Philosophical: Is sketching really natural?
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Talk OutlineTalk Outline

• Why education?
• Mathematics and Physics

– MathPad2 

• Chemistry
– ChemPad

• Electrical Circuits
– Circuit Sketch

• Conclusions

In this lecture, we will discuss how sketch-based interfaces and sketch-based 
applications can be used in an educational setting.  First, we will discuss why 
sketch-based interfaces are a good fit for several different application areas in 
education such as mathematics and physics, chemistry, and electrical circuit 
analysis.  Second, we will discuss three prototype applications, MathPad2, 
ChemPad, and Circuit Sketch, that are targeted toward helping teachers explain 
science and engineering concepts, and assisting students with learning these 
concepts.  Finally, we will provide some general guidelines for when sketch-based 
interfaces should be considered when building educational applications and learning 
tools.
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Why Education?Why Education?

• Students utilize 
– pencil and paper

– computers

• Problems with 
– entering 2D languages on the computer

– intuition about physical concepts

– understanding of inherent 3D concepts

• Sketch-based interfaces are one possible solution
• ENGAGE STUDENTS! 

In learning environments, students typically used pencil and paper to take notes and 
do homework problems.  They also use computers to write papers, explore the web 
for research,  and use a variety of educational software tools to assist in their 
instruction and learning.  However, there is a disconnect between these two 
mediums.  There is the notion of pencil and paper being a static medium but 
providing an easy to use tool for expressing ideas. In contrast, the computer 
provides a dynamic medium for student learning but makes expressing ideas less 
fluid and expressive; constrained by an application input model usually resorting to 
a keyboard and mouse.  Thus, it makes sense to combine the best qualities from 
these two mediums; the power of the computer with the expressive power of pencil 
and paper.  

More specifically, there are certain disciplines that require 2D notations for 
representing concepts in areas a such mathematics, chemical bonds, and circuit 
diagrams.   Entering these notations into a computer is much easier if users can 
simply write then down as if using pencil and paper. After these notations are written 
with traditional the traditional pencil-and-paper medium, they are static and only 
assist in initial concept and problem formulations.  Thus, going from static 
representations to dynamic visualizations is another reason to go utilize computing 
power in conjunction with a natural pencil -and-paper style interface. Sketch-based 
interfaces are one possible approach to dealing with these issues.   
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Mathematics and Physics Mathematics and Physics 
• Diagrams and illustrations 

useful for explaining 
mathematical concepts
– in textbooks

– in notebooks

– aid in problem solving

• Inherent limitation
– static

– assist only in initial problem 
formulation

Diagrams and illustrations are very useful for explaining mathematics and physics 
concepts and are found in textbooks and notebooks.  They are used as an aid in 
problem solving to give some intuition about the problem.  For example, consider 
the figures in the slide.  These illustrations would be used to help someone get 
started with solving a problem. The one on the top shows an illustration depicting 
two cars, one with constant velocity and the other with constant acceleration. The 
figure on the bottom shows an illustration of a block flying off of a table.  The 
inherent limitation with these illustrations is that they are static and assist only in the 
initial problem formulation.  Thus, it seems logical that if these illustrations could 
animate, they would help provide more physical intuition about a particular problem 
and act as an even greater guide in physics and mathematics problem solving.  
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MathPad2MathPad2

MathPad2 is a Tablet PC-based application prototype that lets users create dynamic 
illustrations of mathematics and physics concepts using mathematical sketching.  
Users write down mathematics, make drawings, and combine the two together 
using associations. The system then takes that information and processes it to 
create an animation. The picture in the slide shows a mathematical sketch 
illustrating damped harmonic motion.  MathPad2 also lets users graph functions, 
evaluate expressions and solve equations.  From an educational perspective, both 
students and teacher can use this tool to aid in the learning process by providing a 
dynamic context to abstract mathematical notation.  The details behind MathPad2

and mathematical sketching will be discussed in the Mathematical Sketching lecture 
in the course’s afternoon session.

References:

LaViola, J. and Zeleznik, R. MathPad2: A System for the Creation and Exploration of 
Mathematical Sketches, ACM Transactions on Graphics (Proceedings of 
SIGGRAPH 2004), 23(3):432-440, August 2004.
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ChemistryChemistry
• Organic chemistry

– requires complex 3D visualization, even at  intro 
level

– physical models are clunky

– hand-drawn notation is lingua franca, but error-
prone, messy, & slow

• Traditional chemistry software exists but
– slower than handwriting

– used for papers and presentations, not for notes

– 3D programs geared towards experts

In chemistry, chemical bonds and molecules are often represented using a 2D 
notation that indicates connections between elements and molecules.  In organic 
chemistry, 3D visualization is also important to understanding the nature of 
molecules since they may have different 3D representations given very similar 2D 
representations. Although, there are traditional chemistry software applications that 
provide 3D molecule visualization, their interfaces use cumbersome methods of 
input for molecule creation (e.g., selecting atoms and bonds from toolbars and 
menus).  Therefore, a system that lets students enter a handwritten 2D molecular 
structure with the computer interpreting it and subsequently creating a 3D 
visualization of the molecule has the potential to be a powerful tool for learning 
concepts in chemistry. 
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ChemPadChemPad

• molecules to be sketched quickly

• 3D model generation from hand-drawn elements

• visualizations of chemistry concepts

ChemPad is a pen-based application developed by Dana Tenneson at Brown 
University, where users can draw molecules on the computer (left figure) and 
observe its 3D structure (right figure).  Using a Tablet PC or interactive whiteboard, 
users can sketch these molecules quickly so they can be converted to 3D models 
that will help them visualize chemistry concepts. The sketches look very similar to 
the drawing they would make in their notebooks or on exams or homework 
problems.

The ChemPad application is freely downloadable at www.chempad.org.
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ChemPad FeaturesChemPad Features

• Molecule Sketching
– uses fast, unistroke

characters and symbols
– can be learned quickly 

(about 5 minutes)
• 3D Model Generation

– based on molecular 
mechanics

– gives feedback on common 
beginner errors

– more reliable than plastic 
ball-and-stick kits

ChemPad provides molecule sketching using fast, unistroke characters and 
symbols that can be learned fairly quickly.  For example, a student drawing Ethanol 
would draw two C’s and an O to represent two carbon atoms and one oxygen atom 
in the molecule.  The atoms are connected using covalent bonds by drawing straight 
lines between the letters.  As the atoms and bonds are being drawn, the balls and 
sticks of the atoms and bonds are being recognized, with the student’s handwriting 
incrementally prettified. The student then clicks on the “Interpret” button and 
ChemPad presents the student with a 3D scene showing the Ethanol molecule with 
implicit hydrogens attached and the molecule oriented in a configuration 
approximated by the student’s drawing. The application also provides tools for 
stereochemistry and different 3D rendering styles.

A video of ChemPad is included in the videos directory in the course notes.
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Electrical CircuitsElectrical Circuits

• 2D notation that combines
– drawings

– mathematical symbols

• Unnatural to enter with 
keyboard and mouse

• Static drawings 
– don’t provide dynamic 

visualizations of flow

– can’t check answers

There is a common notation for representing electrical circuits that is used in a 
variety of engineering courses.  This notation is 2D in nature and combines both 
drawings and mathematical symbols to label different circuit components.  The 
inherent 2D structure of these circuit diagrams makes entering them into a 
computer a very unnatural task when using the keyboard and mouse.  Additionally, 
when students work with these diagrams using pencil and paper, their static nature 
makes it difficult to visualize current and voltage flow through the circuit and they 
only assist in the initial formulation of the problem (much like physics diagrams).  
Therefore, letting users enter electrical circuit diagrams using the standard 2D 
notation will provide a number of benefits since they will not have to learn a new 
language and, once the computer interprets the sketch, they can ask “what if”
questions about the diagram, visualize flow, and check their answers to certain 
questions.  
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Circuit SketchCircuit Sketch

Circuit Sketch, developed by Tom Stahovich and his colleagues at UC Riverside, is 
a prototype pen-based tutoring system used to help students learn to analyze 
electrical circuits.  Circuit Sketch is build upon the AC-SPARC system, a tool that 
transforms hand drawn circuits into analysis models for the SPICE circuit simulator.  
With Circuit Sketch, students can learn the fundamental principles of circuit analysis 
by helping them learn to apply Kirchhoff’s current and voltage laws.  To use the 
system, the student sketches a circuit and annotates it to indicate the component 
labels, mesh currents, and nodal voltages. The student then selects either mesh 
analysis (Kirchhoff’s voltage law) or nodal analysis (Kirchhoff’s current law) and 
writes the appropriate equation in the equation window as shown in the figure in the 
slide.  The system  then interprets the equation, compares them to the circuit, and 
provides feedback if there are errors. Future plans for Circuit Sketch include circuit 
simplification by identifying parallel and series components and by transforming 
sources.

A video of Circuit Sketch is included in the videos directory in the course notes.

References:

Gennari, L., L. B. Kara, and T. F. Stahovich, Combining Geometry and Domain 
Knowledge to Interpret Hand-Drawn Diagrams. Computers & Graphics 29(4): 547-
562 2005.
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ConclusionsConclusions

• Sketching and education
– 2D languages

– static to dynamic

– 2D to 3D 

– visualization is key 

• MathPad2

• ChemPad – www.chempad.org

• Circuit Sketch

In this lecture, we have seen three examples, MathPad2, ChemPad, and Circuit 
Sketch, of sketch-based interface that are targeted toward education.  The common 
theme with all of these applications is that each application identified a 2D notational 
language used to convey information in a particular domain.  In each case, entering 
this 2D language requires an unnatural mapping to a equivalent but cumbersome 
1D language when using a keyboard and mouse-based interface. However, with a 
sketch-based interface, users can utilize these 2D notations and enter them directly 
into a computer with a pen or stylus as if they where writing with pencil and paper.  
Each of these applications also go beyond just entering the notations. Once the 
computer interprets them, the diagrams can be visualized in a variety of ways 
including 3D renderings, dynamic illustrations, and answer checking. 

More details on these types of interfaces can be found in

van Dam, A.  S. Becker, and R. M. Simpson, Next-Generation Educational 
Software: Why We Need It and a Research Agenda for Getting It,  Educause
Review, 40(2):26-43, March/April 2005.

which is included in the course notes.
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Sketch Input ContinuumSketch Input Continuum
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In this session we will again discuss the task of complete sketch understanding, 
focusing in particular on diagram recognition.  This time, however, we will discuss 
how to build domain-flexible recognition systems.
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Building Recognition SystemsBuilding Recognition Systems

Mechanical Engineering

UML

Electrical Engineering

Strokes

Strokes

Strokes

• Building each system requires:
– Sketch recognition expertise
– A lot of time (2-5 person years!)
– Built in domain assumptions to improve recognition

Domain Shapes

Domain Shapes

Domain Shapes

Sketch recognition systems will be extremely useful in many domains.  As you have 
seen, researchers are actively working on building recognition systems in domains 
such as electrical engineering, software design, chemistry, mechanical engineering, 
among others.  

Unfortunately, building a recognition system is a huge undertaking requiring sketch 
recognition expertise, a lot of time and a lot of hand-coded recognition routines to 
encode specific domain information.
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A Multi-Domain 
Sketch Recognition Engine
A Multi-Domain 
Sketch Recognition Engine

Mechanical Engineering

UML

Electrical Engineering

Strokes

Strokes

Strokes

Domain Shapes

Domain Shapes

Domain Shapes

General Recognition Engine

Shape descriptions

Strokes Domain Shapes

Instead, I will present a general recognition engine that may be adapted to 
recognize diagrams in a number of domains.  This engine takes as input shape 
descriptions for a particular domain and can then recognize hand-drawn diagrams in 
that domain without any hand-tuning.
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Enabling Natural InteractionEnabling Natural Interaction

• Goal: 
– Recognition engines for multiple domains

• Core challenge: 
– Multi-domain recognition 

The core challenge in constructing a multi-domain recognition system is to develop 
recognition techniques that work across multiple domains.  
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Sketch Recognition SubtasksSketch Recognition Subtasks

Stroke Fragmentation

Stroke grouping

Symbol recognitionNOR

• Need a multi-domain solution!

Recall that we identified three sketch recognition subtasks: stroke fragmentation, 
stroke grouping and symbol recognition.  Our challenge now is to develop a general 
technique for each of these tasks that does not depend directly on any particular 
domain.  Of course, we said this morning that domain information is essential to 
recognition.  The approach I describe disaggregates domain information from the 
recognition algorithm, allowing the core recognition system to be adapted to many 
domains simply by inputting a small amount of domain-specific information.
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Shape Descriptions Generalized Matching 
Engine

Post Processor

Primitive 
Recognizer/Fragmenter

Strokes

Recognized Objects

Line, Ellipse, 
Arc, Polyline

Multi-Domain Sketch Recognition 
Architecture
Multi-Domain Sketch Recognition 
Architecture

This slide shows an overview of the multi-domain recognition architecture I will 
discuss.  As the user draws, her strokes are first sent to a primitive recognizer that 
breaks the strokes at the corners and then recognizes generic low level shapes 
such as lines and arcs.  Next, the primitive shapes are passed to a generic shape 
matching engine that groups the primitives into individual symbols and then 
recognizes them by matching them against domain-specific shape descriptions, 
input to the engine.  Finally the recognized symbols are passed to a post-processor 
and the sketch is output as a recognized diagram. 

This session will focus on the stroke fragmentation algorithms, the shape 
descriptions and the generalized matching algorithms.
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Shape Descriptions Generalized Matching 
Engine

Post Processor

Primitive 
Recognizer/Fragmenter

Strokes

Recognized Objects

Line, Ellipse, 
Arc, Polyline

Multi-Domain Sketch Recognition 
Architecture
Multi-Domain Sketch Recognition 
Architecture
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Early Processing: Vertex detectionEarly Processing: Vertex detection
[Sezgin01, Sezgin04]

The first stage in our multi-domain recognition process is to break the user's stroke into primitive 
shapes such as lines and arcs.  We use a domain-independent approach, although we will see later 
how domain-specific information can help correct errors in stroke fragmentation and primitive 
recognition.

Breaking a user's stroke into primitive shapes involves detecting the corners, or vertices, in the 
stroke.  In this section I will give an overview of the algorithms presented in

Tevfik Metin Sezgin, Thomas Stahovich, and Randall Davis. Sketch Based Interfaces: Early 
Processing for Sketch Understanding. Workshop on Perceptive User Interfaces, Orlando FL . 
2001. 
Tevfik Metin Sezgin and Randall Davis. Scale-space Based Feature Point Detection for Digital 
Ink. In Making Pen-Based Interaction Intelligent and Natural . 2004. 

A similar approach is described in

Thomas F. Stahovich "Segmentation of Pen Strokes Using Pen Speed. "
AAAI Fall Symposium Series 2004: Making Pen-Based Interaction Intelligent and Natural.

The key to all of these approaches is to combine curvature and stroke speed information to detect 
corners in the stroke.
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Curvature

Vertex detectionVertex detection

Of course, curvature is high at the corners…
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SpeedCurvature

Vertex detectionVertex detection

… but people also tend to slow down when they change direction, so pen speed is 
also low at the corners.

Thus, corner detection is simply a matter of detecting points that are both local 
maxima on the curvature graph and local minima on the speed graph. 

Unfortunately, you can see that these graphs are quite noisy.  How exactly do we 
detect local maxima/minima that we care about?  Clearly, we must set a threshold, 
but then the question becomes, what threshold should we choose? How do we 
know which peaks are noise and which are real corners?
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Scale-space filteringScale-space filtering

• Real world data has features at several 
scales

• Signal and noise may lie at different scales

• Represent the data at different scales and 
select an appropriate scale

Scale-space filtering is a technique that helps us separate the noise from the true 
corners.  The fundamental idea is that noise and signal (corners) lie at different 
scales in our input.  Basically, our plan is to smooth our data more and more.  As 
we do this, more and more of the local minima, the minima that correspond to the 
noise, will drop out.  If we smooth too much, we will lose the corners as well.  The 
goal is to find the scale at which we filter all of the noise but none of the signal.



Sketch-Based Interfaces: Techniques and Applications

Multi-Domain Sketch Understanding 13

Deriving the scale spaceDeriving the scale space

Convolve the original signal with Gaussian 
signals of increasing width
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We smooth our data by convolving it with Gaussian signals of increasing width.
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Deriving the scale spaceDeriving the scale space
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As we smooth the data, more and more local minima drop out.  
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But how do we know when we are no longer filtering noise and have started to filter 
corners instead?  Corners, fortunately, tend to be much more "robust" to smoothing 
than noise.  Therefore as we increase the smoothing, the noise drops out quickly, 
but the corners do not drop out until the width of the Gaussian is relatively large.  
When we plot the standard deviation against the number of local maxima in the 
curvature graph (or minima in the speed graph) we see that the slope of the curve is 
very steep at first, but flattens out relatively quickly.  The point at which the curve 
flattens is (roughly) the point at which we start filtering corners instead of noise.
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To find this point, we fit one line to the first part of the curve and one line to the last 
part of the curve.  The point at which these lines intersect is the optimal scale at 
which to filter.
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Results on noisy strokesResults on noisy strokes

Curvature fit using SSF Speed fit using SSF

Scale space filtering works well on extremely noisy data.  Here we see the corners 
detected using scale space filtering on the speed graph and the curvature graph.
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Combining information sourcesCombining information sources

• Individual detection methods may miss points

Speed fit missing a point

Curvature fit missing a point

• Generate a series of hybrid fits and pick the best

Speed and curvature each provide an important piece of information that helps us 
locate corners, but either one alone is not sufficient.  To find the best set of corners 
we must combine the two sources of information.  We generate a set of corners 
from both the curvature and the speed data and then measure the quality of each 
corner by fitting primitive shapes (lines and spline curves) to the portions of the 
strokes between the proposed corners.  If the primitive shape fit is unaffected when 
a corner is removed, then the system removes that corner.  If the fit gets much 
worse, then the corner is kept.



Sketch-Based Interfaces: Techniques and Applications

Multi-Domain Sketch Understanding 19

ResultsResults
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ResultsResults
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Shape Descriptions Generalized Matching 
Engine

Post Processor

Primitive 
Recognizer/Fragmenter

Strokes

Recognized Objects

Line, Ellipse, 
Arc, Polyline

Multi-Domain Sketch Recognition 
Architecture
Multi-Domain Sketch Recognition 
Architecture

The next piece of our multi-domain system is the shape descriptions that will be fed 
into the generalized matching engine.  Our goals for shape description are (1) that 
they are easy for the human to specify (or for the computer to learn) and (2) that 
they are useful for recognition.  To be useful for recognition, a description must be a 
general representation of a symbol and it must be easy to match the description to 
the user's strokes to determine if the strokes match the description.
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• Compound: 

• Domain:

• Domain Patterns:

Family Tree DomainFamily Tree Domain

Divorce-linkMarriage-linkChild-link
MaleFemale

Divorce

Parent-Child
PartnershipMarriage

Quadrilateral
Arrow

We use the family tree domain to illustrate our shape representation.  Our shape 
descriptions are hierarchical.  At the lowest level we have general compound 
shapes (built from lines) including quadrilaterals and arrows.  The domain specific 
shapes include ellipses to represent females, quadrilaterals to represent males, 
arrows to represent links between a parent and a child, lines to represent marriages 
marriage, and jagged lines to represent  divorces.  Finally, as we saw this morning, 
a robust recognition system must not only know about the symbols in the domain 
but also the context in which those symbols are likely to appear.  The contexts in 
the family tree domain are given here.  Although these contexts are input to the 
recognition system, recognition takes place at the domain shape level (i.e., the 
output of the system is a set of domain shapes).
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Subshapes

Knowledge Representation 
(LADDER [Hammond03])
Knowledge Representation 
(LADDER [Hammond03])

(Define Arrow
(Subshapes (Line shaft) 

(Line head1) 
(Line head2))

(Constraints
(coincident shaft.p1 head1.p1)
(coincident shaft.p1 head2.p1)
(equalLength head1 head2)
(smaller head1 shaft)
(acuteAngle head1 shaft)
(acuteAngle head2 shaft)))

shaft

head1
head2

Shape defined by

Constraints

We use a hierarchical shape description language called LADDER to represent 
compound shapes, domain shapes and domain contexts.  In LADDER, a shape is 
defined by a set of subshapes (e.g., the three lines in an arrow) and a set of 
constraints that must hold between those subshapes (e.g., the two lines in the head 
of the arrow must be the same length and shorter than the shaft of the arrow).

References:
Tracy Hammond and Randall Davis. LADDER, a sketching language for user 
interface developers. Elsevier, Computers and Graphics 28, pp.518-532. 2005. 
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Knowledge RepresentationKnowledge Representation

(Define Current-Source
(Subshapes (Arrow a)

(Ellipse e))
(Constraints
(contains e a)))

(Define Child-link
(Subshapes (Arrow a)))

Once we have defined a shape, we can then use it in one or more higher level 
shape descriptions.  In this example, we define a child-link, a domain shape (in the 
family tree domain), as simply an arrow.  However, because we defined the arrow 
separately, we can also use it in the definition of a current source (in the analog 
circuit domain).
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Post Processor
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Our goal now is to develop a domain-independent algorithm to match these shape 
descriptions against the users strokes in order to recognize the sketch.
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Recognition overviewRecognition overview

• Task: Simultaneous fragmentation, grouping 
and symbol identification

• Constraint-based approach

• Generate and test

Here we give an overview of our approach to recognition.  Again, "recognition" in 
this case means more than isolated shape recognition.  We must simultaneously 
group the strokes into individual symbols and then recognize those symbols using 
the shape descriptions we just described.  Building on our shape descriptions, we 
use a constraint-based approach to symbol identification where we first identify a 
symbol's subshapes and then verify that the necessary constraints between the 
subshapes hold.  We deal with stroke grouping using a generate and test 
approach—we generate a number of plausible groups and test each by matching it 
against a particular shape description.
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DefinitionDefinition

• Hypothesis: A shape description with associated 
mapping from subshapes to user’s strokes.

Arrow hypothesis 1

shaft
head1

head2

Arrow hypothesis 2

shaft

head1

head2

The core piece of our generate-and-test recognition algorithm is the hypothesis.  A 
hypothesis is a group of strokes with an associated mapping from subshapes to 
strokes.  This slide shows two arrow hypotheses. Note that the process of 
generating hypotheses is a more constrained version of stroke grouping in that we 
must not only group the strokes but we must also assign each stroke a subshape in 
a shape description.
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Hypothesis-based recognitionHypothesis-based recognition

• Given a hypothesis, determine if it matches a 
shape description by testing constraints

shaft
head1

head2

(Define Arrow
(Subshapes (Line shaft) 

(Line head1) 
(Line head2))

(Constraints
(coincident shaft.p1 head1.p1)
(coincident shaft.p1 head2.p1)
(equalLength head1 head2)
(smaller head1 shaft)
(acuteAngle head1 shaft)
(acuteAngle head2 shaft)))

Given a hypothesis, our goal is to determine how well it matches the shape 
description.  We do this by verifying that the strokes match the subshape they have 
been assigned and that all of the constraints hold between the subshapes.  In the 
example above we see that all three strokes look like lines and all of the constraints 
appear to hold.  

I am being intentionally vague about what we mean by "a stroke matches a 
subshape" and "a constraint appears to hold".  There are many possible ways we 
can verify that the shapes match and the constraints hold. LADDER's associated 
recognition system uses the least squared error to determine whether or not a 
stroke matches a primitive shape.  If the error is below a threshold, the stroke 
matches the shape.  Constraints are also measured using threshold values for 
corresponding features.  For example, two points are considered coincident if they 
are below some distances away from one another, otherwise they are not.  Shortly 
we will describe a problem with this approach and describe a way to address it.
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Hypothesis-based recognitionHypothesis-based recognition

• Given a hypothesis, determine if it matches a 
shape description by testing constraints

(Define Arrow
(Subshapes (Line shaft) 

(Line head1) 
(Line head2))

(Constraints
(coincident shaft.p1 head1.p1)
(coincident shaft.p1 head2.p1)
(equalLength head1 head2)
(smaller head1 shaft)
(acuteAngle head1 shaft)
(acuteAngle head2 shaft)))

shaft

head1

head2

This hypothesis does not match because a number of the necessary constraints do 
not hold.  For example, head1 is not smaller than the shaft.
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LADDER videoLADDER video

Hammond has developed a suite of tools to support the LADDER sketch description language, 
including a constraint-based recognition engine of the type I just described.  LADDER is a complete 
multi-domain sketch recognition system, although it places some restrictions on the way users can 
drawn shapes.  LADDER uses stroke order to assist in stroke grouping and hypothesis generation 
(i.e., shapes must consist of consecutive strokes).  

The following papers provide more information on all of the components associated with LADDER:

Hammond, Tracy and Davis, Randall (2005). LADDER, a sketching language for user interface 
developers Elsevier, Computers and Graphics 29 (2005) 518-532, 

Hammond, Tracy and Davis, Randall (2004). Automatically Transforming Symbolic Shape 
Descriptions for Use in Sketch Recognition The Nineteenth National Conference on Artifical
Intelligence (AAAI-04), July 2004 

Hammond, Tracy and Davis, Randall (2004). Shady: A Shape Description Debugger for Use in 
Sketch Recognition Proceedings of the 2004 AAAI Fall Symposium on Making Pen-Based 
Interaction Intelligent and Natural, October, 2004. 
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• Too many hypotheses to try them all

• Constraints depend on context

Hypothesis-based recognition: 
Issues
Hypothesis-based recognition: 
Issues
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!
n = number of strokes; 
S = set of shapes; 
ki = subcomponents in shape Si

And this only considers shapes independently!

One of the challenges in hypothesis-based recognition is that there are simply too 
many hypotheses to try them all, so we risk missing the correct hypothesis because 
we did not have time to generate it.  Considering each shape independently, we 
need to try all combinations of strokes (n choose k), and then for each combination, 
we need to consider all possible mapping of strokes to subcomponents (k!). Many 
systems, including LADDER place restrictions on the way the user may draw (e.g., 
strokes in a single shape must be temporally contiguous), but we have found that 
these constraints often do not match the way users actually draw.  

A second problem with the approach as we have described it so far is that often we 
cannot tell whether or not a constraint holds until we see the context in which it 
appears.  For example, the user may have intended for the two lines at the bottom 
of the slide to touch (as when they are part of a single box, on the left) or not to 
touch (as when they are part of two separate boxes, on the right).

The approach I will now present addresses both of these problems.
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Reducing the Search SpaceReducing the Search Space

Domain-specific 
assumptions

HHReco
[Hse05]

Temporally 
contiguous 
strokes

Pause between 
symbols

Restricted # of 
strokes

SketchREAD
[Alvarado04]

AC Sparc
[Kara04]

Palm Graffiti 
and [Long99]

Many systems, place restrictions on the way the user may draw in order to reduce the number of stroke groups a the 
recognition system must consider.  Four common assumptions are:

1. A shape can be drawn only with a fixed number of strokes (often one).  This restriction is made by many graffiti-like 
systems.  

2. The user must draw shapes with temporally contiguous strokes, and she must pause between symbols.  With this 
restriction, the system can reliably detect groups using a simple temporal threshold.

3. The user must draw shapes with temporally contiguous strokes, but need not pause between shapes. This restriction 
reduces the grouping task to a one-dimensional search problem (forward and backward in time).

4. The system relies on domain specific assumptions.  For example, the SimuSketch system for recognizing network 
flow diagrams we looked at this morning exploited the fact that arrows separated other components in space.

While these restrictions aid recognition, we find that they often do not match the way users draw in practice.  The 
approach I will discuss, used in the SketchREAD system, places none of the standard constraints on the user's 
drawing style.

References:

Christine Alvarado and Michael Lazzareschi.  Properties of Real World Digital Logic Diagrams.  1st International 
Workshop on Pen-based Learning Technologies (PLT) 2007.

Alvarado, Christine; and Davis, Randall. SketchREAD: A Multi-domain Sketch Recognition Engine. Proceedings of 
UIST 2004.

Leslie Gennari, Levent Burak Kara, Thomas F. Stahovich (2005) Combining Geometry and Domain Knowledge to 
Interpret Hand-Drawn Diagrams.
Computers & Graphics 29(4): 547-562 2005. 

H. Hse and A. R. Newton. Recognition and beautification of multi-stroke symbols in digital ink. Computers and Graphics, 
2005.

Allan Christian Long, Jr., James A. Landay, Lawrence A. Rowe. "Implications for a Gesture Design Tool." CHI 99 
Proceedings, May 15-20, 1999. 
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DefinitionDefinition

• Partial Hypothesis: A hypothesis with 
unbound subshapes

Quadrilateral partial hypothesis

L2
L1 L3

L4 is unbound

The key to our approach is that we will use promising partially recognized shapes to 
guide the search for correct stroke groupings.  A partial hypothesis is simply a 
hypothesis with unbound subshapes.
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• Generating Hypotheses (rule-based)
– Generate partial hypotheses (PHs) based on easily 

recognizable low-level shapes

– Fill in strong PHs with unrecognized strokes

– Prune weak PHs

• Evaluating Hypotheses (probabilistic)
– How well do user’s strokes fit low level shapes?

– How well are constraints satisfied?

Recognition Using 
Partial Hypotheses
Recognition Using 
Partial Hypotheses

The problem with stroke grouping is the there are too many possible groupings to try them all, but 
most symbol recognition algorithms are not capable of matching part of a shape.  If symbol 
recognition fails, the system has gained no information about how it should modify the set of 
strokes—was the symbol almost recognized?  Did any part of the symbol look about right?  The 
stroke grouping process has no choice but to blindly try another group of strokes.  If instead we could 
recognize part of a symbol, we could use that information to narrow the set of stroke groups to try.  If 
symbol recognition fails, instead of throwing away the whole group of strokes we could swap out only 
those strokes that we knew did not match the symbol and keep those strokes that did.

We call this process Recognition Using Partial Hypotheses.  It is a two-stage generate and test 
approach that uses the probabilistic evaluation of partial hypotheses (PHs) to guide the search for 
correct hypotheses.  In the hypothesis generation step, the system generates a number of PHs 
based on easily recognizable low-level shapes.  It fills in strokes PHs with unrecognized strokes and 
discards weak PHs.  

Of course, to determine which hypotheses to keep and which to discard we need to be able to 
evaluate them.  We used a probabilistic model that measures how well a user's strokes fit low level 
shapes and how well constraints are satisfied in the context of the shape being considered.  I will 
begin by discussing hypothesis evaluation and then discuss hypothesis generation.
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Bayesian Networks [Pearl88]Bayesian Networks [Pearl88]

• Reason about events/entities

• Two parts

– Directed Acyclic Graph:

• Assign meaning to nodes

• Specify which variables 
influence one another

– Conditional Probability Tables

• Specify how variables influence 
one another

Earthquake (E)

Alarm (A)

Burglar (B)

Use Bayes Rule to reason 
about the certainty of each variable

We use a Bayesian network framework to evaluate partial hypotheses.  Briefly, a Bayesian 
network (or Bayes net) is a probabilistic model for reasoning about events or entities in the 
world.  This slide shows a Bayesian network for reasoning about whether or not a burglar 
broke into your home from [Pearl88].  Imagine that you live in Southern California, where 
earthquakes and crime both occur on occasion.  Hoping to avoid the latter, you install an 
alarm system in your home.  Unfortunately, while a burglar is likely to trigger the alarm, so 
is an earthquake.  You receive a phone call telling you with absolute certainty that your 
alarm is going off.  You want to know how likely it is that you have been robbed.

We can model this problem using a Bayesian network.  A Bayes net consists of two parts: a 
directed acyclic graph (DAG) and a set of conditional probability tables (CPTs).  In the 
DAG, nodes represent random variables corresponding to entities in the world, and edges 
represent direct (causal) relationships between the variables.  In this example, because 
both the earthquake and the burglar might set off the alarm, both of these nodes are directly 
connected to the Alarm node in the network.  There is one CPT for each node, specifying 
how it is influenced (probabilistically) by its parents.  I have not given the CPTs for this 
example.

References:

Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible 
Inference.  San Mateo, CA: Morgan Kaufman Publishers. 
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Bayesian Networks [Pearl88]Bayesian Networks [Pearl88]

• Observations give evidence 
for other variables

Say we observe A=t, then

P(E|A)=0.0056

P(B|A)=0.49

Earthquake (E)

Alarm (A)

Burglar (B)

When we observe the values for some of the variables in the network, we can use 
Bayes rule to reason about other variables.  For example, in this case, when 
observe that the alarm is sounding (or receive the phone call assuring us that it is), 
our belief that there was a burglary becomes 0.49, while our belief that there was an 
earthquake becomes 0.0056.
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Bayesian Networks [Pearl88]Bayesian Networks [Pearl88]

• Observations give evidence 
for other variables

Say we observe A=t, then

P(E|A)=0.0056

P(B|A)=0.49

• Important Phenomenon: 
Explaining away

If we also hear there has been an 
earthquake (i.e., E=t), then

P(B|A,E) = 0.001

Earthquake (E)

Alarm (A)

Burglar (B)

One important phenomenon that occurs in Bayes nets is that certain information 
explains away other information.  For example, if we now hear on the radio that 
there was a very small earthquake near our home, our belief that we were robbed 
drops to 0.001.  The earthquake provides a plausible explanation for why the alarm 
was sounding and there is no need for us to believe that a burglar broke in.  
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Shape FragmentsShape Fragments

A1

L3L2L1

O1 O2 O3

C1

O4

C2

O5

C3

O6

C4

O7

C5

O8

C6

O9

shaft = s2
head1 = s3
head2 = s4

s1

s3

s4

s2

s2 s3 s4

(Define Arrow
(Subshapes
L1:   (Line shaft) 
L2:   (Line head1) 
L3:   (Line head2))
(Constraints
C1:  (coincident shaft.p1 head1.p1)
C2:  (coincident shaft.p1 head2.p1)
C3:  (equalLength head1 head2)
C4:  (smaller head1 shaft)
C5:  (acuteAngle head1 shaft)
C6:  (acuteAngle head2 shaft)))

Arrow Hypothesis

User’s intention to draw an Arrow [t , f]

User’s intention to draw needed 
lines and constraints [t, f]

With this background, we can now explain how we use Bayes nets to evaluate shape hypotheses 
and partial hypotheses.  For each hypothesis, we automatically construct a Bayes net the encodes a 
the structural description of the symbol.  The network has one node for the symbol to be recognized 
and one node for each of the subshapes and constraints in that symbol.  These nodes represent 
Boolean variables reflecting the user's intention to draw a particular shape on constraint.  For 
example, the value A1=true means that the user was trying to draw an arrow with strokes s2, s3, and 
s4.  

There are directed edges between the node representing the high-level symbol and the nodes for 
each subshape and constraint that comprise that symbol.  The edges represent the causal 
connection between the user's intention to draw the high level shape and her intention to draw the 
subshapes and constraints: if the user intends to draw an arrow, then she also likely intends to draw 
three lines, two of which are about the same length and one that is longer, etc, i.e. the lines that 
make up the arrow.  

Note that given the user's intention to draw the high-level shape, her intentions to draw the low-level 
shapes and constraints are conditionally independent.  For example, if we know the user is drawing 
an arrow, then being told that she intends for s3 and s4 to be the same length does not change our 
belief that she intends for s2 to be longer than s3.  

As we noted earlier, we cannot observe even the low-level shapes and constraints directly.  Stroke 
data is noisy; the low-level interpretation of a stroke and whether or not a constraint holds between 
two strokes depend on the context in which those strokes appear. What we can observe are stroke 
features that provide strong clues about the low-level interpretation or whether or not a constraint 
holds.
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Shape Fragments:
Measurement Nodes
Shape Fragments:
Measurement Nodes

A1

L3L2L1

O1 O2 O3

C1

O4

C2

O5

C3

O6

C4

O7

C5

O8

C6

O9

(Define Arrow
(Subshapes
L1:   (Line shaft) 
L2:   (Line head1) 
L3:   (Line head2))
(Constraints
C1:  (coincident shaft.p1 head1.p1)
C2:  (coincident shaft.p1 head2.p1)
C3:  (equalLength head1 head2)
C4:  (smaller head1 shaft)
C5:  (acuteAngle head1 shaft)
C6:  (acuteAngle head2 shaft)))

Squared error between stroke and best fit line

Distance between shaft.p1 head.p1

Each node in the bottom layer of the network (called an observation or feature
node) represents a continuous-valued variable (which we discretize in practice) 
representing a specific stroke feature (or set of features) that provides information 
about its parent shape or constraint.  For example, node O1 is a variable whose 
value is the squared error between the stroke corresponding to the shaft of the 
arrow (stroke s2 in this hypothesis) and the best fit line to this stroke.  Note that the 
value of this variable is strongly influenced by whether or not the user actually 
intended for s2 to be a line: if she did, we expect this error to be low (but probably 
not zero), if she did not, we expect the error to be higher.  Similarly, O4 is a variable 
whose value is the distance between point p1 in the stroke mapped to the shaft of 
the arrow (stroke s2) and point p1 in the stroke mapped to head1 (stroke s3).  The 
value of this variable is influenced by whether or not the user intended for these two 
strokes to connect.

We can now see how this network allows us to evaluate primitive shapes and 
constraints using the surrounding context.  For example, the value of C1 (the 
hypothesis that the user intended for strokes s2 and s3 to connect) depends both 
on how close together the strokes' endpoints are (the data) and one how strongly 
we believe that the user intends to draw an arrow (the context), which in turn is 
influenced by how well the primitive shapes fit and the other constraints hold.  There 
is no need to define a threshold for each constraint.  The network seamlessly 
blends data and context information.
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Shape FragmentsShape Fragments

A1

L3L2L1

O1 O2 O3

C1

O4

C2

O5

C3

O6

C4

O7

C5

O8

C6

O9

s2 s3 s4

(Define Arrow
(Subshapes
L1:   (Line shaft) 
L2:   (Line head1) 
L3:   (Line head2))
(Constraints
C1:  (coincident shaft.p1 head1.p1)
C2:  (coincident shaft.p1 head2.p1)
C3:  (equalLength head1 head2)
C4:  (smaller head1 shaft)
C5:  (acuteAngle head1 shaft)
C6:  (acuteAngle head2 shaft)))

shaft = s2
head1 = s3
head2 = s4

s1

s3

s4

s2

Arrow Hypothesis

It is important to realize that this network evaluates exactly one hypothesis because 
each observation node corresponds to exactly one stroke or set of strokes.  The 
colored boxes at the bottom of the slide are not part of the network, but visually 
indicate which strokes correspond to which observation nodes.  For example, O1
represents a feature of stroke s2, while O4 represents a feature of strokes s2 and 
s3.
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Shape Fragments:
Another Hypothesis
Shape Fragments:
Another Hypothesis

A2

L3L2L1

O1 O2 O3

C1

O4

C2

O5

C3

O6

C4

O7

C5

O8

C6

O9

shaft = s3
head1 = s1
head2 = s2

s1

s3

s4

s2

s3 s1 s2

(Define Arrow
(Subshapes
L1:   (Line shaft) 
L2:   (Line head1) 
L3:   (Line head2))
(Constraints
C1:  (coincident shaft.p1 head1.p1)
C2:  (coincident shaft.p1 head2.p1)
C3:  (equalLength head1 head2)
C4:  (smaller head1 shaft)
C5:  (acuteAngle head1 shaft)
C6:  (acuteAngle head2 shaft)))

Arrow Hypothesis #2

With this framework, it is simple to evaluate other arrow hypotheses.  We simply 
create an identical network with a different mapping between observation nodes and 
strokes.  

Note, too, that we can automatically construct networks for any shape described 
using the LADDER description language, so this framework is entirely domain-
flexible.
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Shape Fragments:
Partial Hypothesis
Shape Fragments:
Partial Hypothesis

A3

L3L2L1

O1 O2 O3

C1

O4

C2

O5

C3

O6

C4

O7

C5

O8

C6

O9

(Define Arrow
(Subshapes
L1:   (Line shaft) 
L2:   (Line head1) 
L3:   (Line head2))
(Constraints
C1:  (coincident shaft.p1 head1.p1)
C2:  (coincident shaft.p1 head2.p1)
C3:  (equalLength head1 head2)
C4:  (smaller head1 shaft)
C5:  (acuteAngle head1 shaft)
C6:  (acuteAngle head2 shaft)))

shaft = s1
head1 = s2
head2 = ??

s1

s2

Arrow Hypothesis #3
s1 s2

Evaluating partial hypotheses is also straightforward using this framework.  To 
evaluate a partial hypothesis we create the same network, but we will be unable to 
observe values for one or more of the observation nodes.  

All this means is that we will have less data to support the hypothesis that the user 
intended to draw a particular arrow, but the missing data will not significantly detract 
from our belief if all of the other data supports the hypothesis.  In essence, this 
network encodes how likely it is that the user intends to draw the arrow (and all of 
the pieces involved) but just hasn't gotten around to drawing the last piece.  We still 
may believe, based on the context of the other strokes, that the user intends for that 
final piece of the arrow to exist, even though we don't see it. This idea will be 
critical in helping us guide our search through the hypothesis space. 
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Composing Shape 
Fragments
Composing Shape 
Fragments

L1 L2 L3 L4L5

Stroke1

O1 O2

Q1A1

Constraints
for Q1

Observations

Constraints
for A1

Observations O3 O4

Stroke2

A2

Constraints
for A2

Observations

L6

Each node represents a hypothesis

Stroke1

Stroke2

So far, we have looked at how to evaluate a single hypothesis, but our goal during sketch recognition 
is to evaluate multiple, competing hypotheses.  In this very simple example we examine how to 
automatically construct a network to evaluate multiple hypotheses.  Throughout this example we 
assume the existence of a separate hypothesis generation process (which we will examine shortly).  
Here we are concerned only with how to evaluate these hypotheses.

The user begins by drawing stroke 1 (in the upper left corner of the slide).  The low-level recognizer 
recognizes this stroke as two lines and generates two line hypotheses.  The system detects that 
these lines might be part of an arrow or they might be part of a quadrilateral, and it generates two 
competing partial hypotheses.  These hypotheses share the same primitive shape nodes in the 
network; i.e., they are competing explanations for why the user is drawing two connected lines.

When the user draws stroke 2, the low level recognizer again detects two possible lines, and the 
system adds these two new line hypotheses to the network.  The hypothesis generator notes that 
these new strokes appear to fit into the existing quadrilateral hypothesis, and the updated hypothesis 
is reflected by connecting stroke 2 to observation nodes for L3 and L4 in the Bayes net.  However, L3 
and L4 do not immediately appear to fit into the existing arrow hypothesis, so the system creates a 
new arrow hypothesis for these two strokes (A2).  

Now, determining the strength of each hypothesis is a simple matter of Bayesian inference.  Note, 
too, that the arrow and quadrilateral hypotheses are not independent—the more we believe the in 
Q1, the less we will believe in A1 and A2 (and vice versa) because of the explaining away 
phenomenon we observed earlier.  This behavior is desirable for a sketch recognition system 
(because, usually, strokes do not represent two separate shapes simultaneously) and is a natural 
consequence of the Bayesian network model.
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Hypothesis GenerationHypothesis Generation

• Bottom Up
– Partial hypotheses generated based on rough 

classification for objects and constraints

• Top Down
– Strokes possibly reclassified to fit into PHs

• Pruning
– Keep number of hypotheses manageable

Now that we have a method for evaluating hypotheses, let's look at how to generate 
them.  After the user draws each stroke, we generate and prune hypotheses using a 
three stage iterative process.  Each stage is guided by the relative strength of the 
partial hypotheses generated in previous stages.  First, we use rough classification 
and constraint thresholds to generate partial hypotheses.  Then we refine these 
hypotheses by searching for strokes that may have been misrecognized that could 
complete probable partial hypotheses.  Finally, we prune weak hypotheses to keep 
the search space manageable.  We repeat these steps until no new hypotheses are 
generated (taking care not to regenerate pruned hypotheses).

In this talk I will focus only on hypothesis generation.
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An IllustrationAn Illustration

Ellipse(e2)

Stroke(s3)Stroke(s1) Stroke(s4) Stroke(s5)

s1

s2

s3

s5

Parent-child

Ellipse(e1) Line(l1)

Child-link

Connects(l1, l2)

Arrow

Same-length(l3, l2)
Connects(l1, l3)

Female(f2)

Line(l2)

s4

Stroke(s2)

Female(f1)

Line(l3) primitive
shapes

compound
shapes

domain
shapes

domain
patterns

I will illustrate how the bottom-up and top-down phases of hypotheses generation work by considering a simple example, again from the 
family tree domain.  Additionally, to simplify the example, we will ignore marriages and divorces and consider only parent-child 
relationships.

First, the user draws stroke s1, which the primitive recognizer identifies as an ellipse.  The bottom up step matches the ellipse against the 
shape descriptions it knows about and it sees that females are represented by ellipses so it generates a female hypothesis (f1).  The 
bottom-up process stops at this point because, although the system could fit the female into a parent-child partial hypothesis, the system 
will not generate partial hypotheses containing only a single subshape if the shape consists of more than two subshapes.  Because no 
partial hypotheses exist yet, there is nothing for the top-down step to do at this point.

Next, the user draws s2, which is recognized as a line.  The bottom-up processing stops at this point and again there is nothing for the top-
down step to do.  Then, the user draws s3, which is too messy, and the primitive recognizer fails to recognize it as a line so nothing more 
happens.   Next the user draws stroke s4, which is recognized as a line.  The system then detects that s2 and s4 match many of the 
constraints in the arrow shape description and it generates an arrow partial hypothesis.  Again, to control the search space, the system will 
not generate higher-level partial hypotheses using other partial hypotheses, so the bottom-up step finishes.

At this point, the top-down process sees that there is a partial arrow hypothesis (that looks quite likely) and it attempts to find a stroke to fill 
the missing subshape.  It detects stroke s3 and adds it to the existing arrow hypothesis.  Even though s3 does not look perfectly like a line, 
the other constraints between s3, s2 and s4 strongly support the arrow hypothesis and the system accepts this modification, reinterpreting 
s3 as a line.  

Now that the arrow hypothesis is complete, the system proposes a Child-link hypothesis for the arrow and then combines that hypothesis 
with f1 to create a parent-child relationship hypothesis.  Finally, the user draws s5, which the system recognizes as an ellipse and proposes 
a female hypothesis which is added to the existing parent-child hypothesis.  s5 strongly supports the parent-child hypothesis, which gains 
strength, in turn strengthening the system's belief that s3 is indeed a line.

I have given a very brief introduction to both hypothesis management and hypothesis generation.  More information on each is provided in 
the following sources:

Christine Alvarado and Randall Davis, Dynamically Constructed Bayes Nets for Multi-Domain Sketch Understanding. Proceedings of the 
International Joint Conference on Artificial Intelligence, 2005.

Christine Alvarado and Randall Davis. SketchREAD: A Multi-domain Sketch Recognition Engine. Proceedings of UIST 2004. 

Christine Alvarado. Multi-domain Sketch Understanding. PhD Thesis. Massachusetts Institute of Technology. September, 2004. 

All are available online here: http://www.cs.hmc.edu/~alvarado/research/publications.html
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Results:
Trees
Results:
Trees

Overall: SketchREAD:  77% Precision (F=0.83)
Baseline:          50% Precision (F=0.65)

Now that we have examined how this approach works, let's look at how it performs.  
We collected data using a tablet PC using a data collection program that allows the 
user to sketch freely and displays the user’s strokes exactly as she draws them, 
without performing any type of recognition.  We asked users to draw their family 
tree and to design simple analog circuits.  We compared our system's performance 
with a constraint-based approach that used thresholds and only bottom up 
processing.

We found that our system performed reasonably well on even complex sketches, 
outperforming the baseline system significantly.  It was able to recover from low-
level recognition errors using the context provided by the surrounding strokes.
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Results:
Circuits
Results:
Circuits

Overall: SketchREAD: 62% Precision (F=0.65)   
Baseline:         54% Precision (F=0.57)

Performance on the circuit diagrams was slightly lower, but our system still 
outperformed the baseline system.  One reason for the lower performance is that 
the circuit diagrams were generally quite a bit messier than the family tree 
diagrams.
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Can we do better?Can we do better?

• Hardest problem: Stroke grouping

• Other domain-flexible grouping approaches:
– Perceptual organization

– Ink-density

– Recognition before grouping

While this approach outperforms the baseline system, 38% error is far from 
acceptable in a real application.  Despite our context-driven search for possible 
interpretation, the biggest problem this approach faces is that it sometimes fails to 
generate the correct hypothesis.  In particular, the initial set of partial hypotheses 
still relies on a blind search through combinations of strokes close together in space 
and time.  Often this search was not able to explore a large enough set of 
combinations and failed to generate a partial hypothesis corresponding to the 
correct interpretation.

I will briefly discuss three domain independent or domain-flexible, approaches that 
can help us generate a better initial set of partial hypotheses: an approach based on 
perceptual organization, and approach based on "ink density" and an approach that 
(roughly) recognizes what objects individual strokes are part of before trying to 
group them.
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Perceptual OrganizationPerceptual Organization

• Group strokes according to Gestalt laws of 
perception

[Saund03]

Closure

Good continuation

Proximity

Saund has developed a domain-independent grouping algorithm based on the 
Gestalt laws of perception.  A key insight to this approach is that it distinguishes 
between two different types of primitive type of ink—"strokes" (essentially, long line 
or arc segments) and "blobs" (relatively dense ink, usually corresponding to text)—
and then uses different Gestalt laws to group each type.  After the algorithm 
identifies the strokes and blobs in a sketch, groups strokes using the laws of closure 
and good continuation and groups blobs using the law of proximity. 

More information about this approach can be found in:

Saund, E., Fleet, D., Larner, D., and Mahoney, J.; "Perceptually-Supported Image Editing of Text and 
Graphics," Proc. UIST '03 (ACM Symposium on User Interface Software and Technology), pp. 183-
192. 
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Ink DensityInk Density

Non-wires correspond
to regions of high
ink density

[Gennari05]

Gennari et al. developed an approach to stroke grouping that relies on ink density of 
find stroke groups.  Their insight was that in some domains (such as analog circuit 
design) diagrams consist of shapes with relatively high density (such as resistors 
and ground symbols) separated by shapes with relatively low density (such as 
wires).  They detect shape groups by measuring the amount of ink relative to the 
square bounding box of a stroke. 

Unfortunately, this approach requires that shapes be drawn with consecutive 
strokes as the stroke density search algorithm only considers groups of temporally 
contiguous strokes.  Still, the algorithm may provide a good starting point for a more 
general recognition engine.

More details about this approach can be found in

Leslie Gennari, Levent Burak Kara, Thomas F. Stahovich (2005) Combining Geometry and 
Domain Knowledge to Interpret Hand-Drawn Diagrams.
Computers & Graphics 29(4): 547-562 2005. 
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Recognition before groupingRecognition before grouping [Alvarado07,
Szummer05]

Stroke Grouping

Symbol Recognition

Stroke Fragmentation

Single-Stroke
Recognition

A final approach to improving stroke grouping is to attempt to recognize the domain 
level shape each stroke is part of before attempting to group the strokes.  The idea 
is once strokes are labeled as according to their high-level symbols, strokes with the 
same label will be far away in time and space and it will be easy to detect the 
boundaries between strokes.
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Single-Stroke Recognition using 
Conditional Random Fields
Single-Stroke Recognition using 
Conditional Random Fields
• Goal: Label each stroke with a general label (e.g., wire, gate or 

text)

gate
gategate wire

gate

wire

wire

text

For example, in this example the goal is to label each individual stroke as part of a 
wire, a gate or text.  While this task seems virtually impossible (how can you tell if a 
stroke is part of a gate unless you see the whole gate?), a technique that uses 
conditional random fields is surprisingly effective.  Conditional random fields allow 
the system to model the its belief in the interpretation of a single stroke in terms of 
the stroke data and the context of its neighbors (i.e., the strokes close to it in time 
and space).  

Unfortunately, conditional random fields must be trained for a particular domain.  
Fortunately, they require relatively few training sketches (10-20) to be quite effective 
at recognizing single strokes.

More information on this approach can be found in:

Yuan Qi, Martin Szummer, Thomas P. Minka. Diagram Structure Recognition by 
Bayesian Conditional Random Fields 2005 Proc Comp. Vision Pattern Recogn. 
(CVPR) C. Schmid and S. Soatto and C. Tomasi 191--196 

Alvarado, Christine. Sketch Recognition for Digital Circuit Design in the Classroom.  
In 2007 Invited Workshop on Pen-Centric Computing Research, Brown University, 
March 2007. 
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SummarySummary

• Sketch recognition subtasks can be done in a 
domain-flexible way
– reduce the overhead of building new recognition systems

• Biggest challenge: Stroke Grouping
– Must be done in conjunction with symbol recognition

• LADDER and SketchREAD
– Multi-domain recognition proofs of concept

– We're not there yet… but we're getting closer!  

Today we have examined a number of techniques for building multi-domain sketch 
recognition systems that allow the user to sketch freely and do not place unnatural 
restrictions on her drawing style.   We have seen two proof of concept systems that 
accomplish this goal, and there certainly have been and will be other systems 
designed for the same task.  Stroke grouping remains the biggest challenge in this 
process, but new methods reveal promising directions for exploration.  By 
continuing to explore these areas we will move closer to the dream of natural, 
seamless sketch-based interaction with the computer.
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OutlineOutline

• Introduction 

• Surface construction techniques

• Surface deformation techniques

In the morning session, we reviewed sketching systems in general including 
freeform modeling, animation, and other special purpose modeling systems. This 
session focuses on freeform modeling and discusses their implementation details.
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IntroductionIntroduction
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MotivationMotivation

• Freeform surfaces are difficult to design
– Traditional Interface expose underlying definition to the users 

(parametric surfaces, subdivision surfaces, etc.)

Traditional modeling interfaces expose the underlying definition of the surface to the 
user. This is good for detailed design, but not accessible for novice users.
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ApproachApproach

• Use Sketching as Interface
– Accessible for novices

– Useful for initial design process

The goal of sketching interfaces is to solve the problem of accessibility by 
dramatically simplifying the user interface. Instead of requiring the user to work with 
traditional buttons, menus, and dragging operations, sketching allows them to 
directly express their thoughts in the form of freehand sketching. It can make 3D 
graphics authoring accessible to novice users, even children. In addition, simple 
interfaces make it possible for experts to use them in the initial design process.
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Sketch Input ContinuumSketch Input Continuum

Number of 
Strokes per 
Operation

Ambiguity Level

Ambiguity level refers to sketch interpretation difficulty 
and domain generality
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OutlineOutline

• Surface construction techniques
– How to construct a shape from scratch?

– 3D surface construction from 2D contour

• Surface deformation techniques
– How to deform an existing shape?

– 3D surface deformation by 2D sketching

I will describe surface construction techniques and surface deformation techniques. 
Surface construction methods generate 3D surfaces from user’s 2D sketch. Surface 
deformation methods deform an existing 3D shape according to the user’s sketch.
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Surface Construction 
Techniques

Surface Construction 
Techniques
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ProblemProblem

• How to construct 3D surface from 2D sketch?
– Infer the missing depth information.

– What rule to use?

The problem here is how to construct a 3D surface from a 2D sketch. Depth 
information is missing in a 2D sketch, so the system must infer the depth of the 
surface using some rule.
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BackgroundBackground

• Study on Human perception of 3D shape from 2D 
drawings [Hoffman 2004]

The basis of sketch-based 3D surface construction is human perception of 3D 
shape from 2D drawings.
According to a book titled “Visual intelligence”, 

“human vision assumes a convex surface when seeing a convex silhouette 
and assumes a saddle-shaped surface when seeing a concave silhouette.
These kinds of rules drive the design of surface construction algorithms.”
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Specific AlgorithmsSpecific Algorithms

• Level-set method [Williams 91]
• Heuristic mesh construction [Igarashi 99]
• Volumetric construction [Owada 03]
• Convolution surface [Alexe 05]
• Blob tree (Implicit surface) [Schmidt 05]
• Mass-spring system [Karpenko 06]
• Optimization [Nealen 07]

I will introduce several different approaches.



Sketch-Based Interfaces: Techniques and Applications

Designing Freeform Surfaces by Sketching 12

Level-set MethodLevel-set Method

• Compute implicit representation of the contour

[Williams 91]

Williams inflated a 2D image by using a level-set method. The shape is first 
represented  implicitly as signed pseudometric functions of the surface boundaries 
and inflated according to the result.
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Heuristic Mesh Construction
(Teddy)
Heuristic Mesh Construction
(Teddy) [Igarashi 99]

Teddy generates a mesh directly from a stroke (2D polyline).
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1. Find axes 2. Elevate axes
3. Wrap polygon and axes

Heuristic Mesh Construction
(Teddy)
Heuristic Mesh Construction
(Teddy) [Igarashi 99]

The input is a closed 2D polygonal region. The system first computes the skeleton 
or axis of the polygon. The system then elevates the skeleton. The amount of 
elevation is proportional to the distance between the skeleton and boundary. The 
system generates a surface by wrapping the elevated skeleton and the boundary.
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Input 2D polygon

Heuristic Mesh Construction
(Teddy)
Heuristic Mesh Construction
(Teddy) [Igarashi 99]
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Constrained Delaunay Triangulation

Heuristic Mesh Construction
(Teddy)
Heuristic Mesh Construction
(Teddy) [Igarashi 99]
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Discrete chordal axis [Prasad 97]

Heuristic Mesh Construction
(Teddy)
Heuristic Mesh Construction
(Teddy) [Igarashi 99]

You can obtain the axis by connecting the mid points of internal triangles.
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Before trimming After trimming

Heuristic Mesh Construction
(Teddy)
Heuristic Mesh Construction
(Teddy) [Igarashi 99]

The system needs to trim insignificant branches.
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Lift the axes, put quarter ovals on the
internal edges, and generate mesh.

Heuristic Mesh Construction
(Teddy)
Heuristic Mesh Construction
(Teddy) [Igarashi 99]

The system elevates the axes, puts quarter ovals on the internal edges, and 
generates a mesh.
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Voxel-based Method
(Vteddy)
Voxel-based Method
(Vteddy) [Owada 03]

• Approximate the shape with circles along the axis.

• Replace the circles with spheres, and take union.

• Straightforward implementation

Owada proposed a voxel based method to generate 3D model from 2D contour. 
The system first obtains a medial axis by computing the distance field and tracing 
the local maximum. The system then places circles along the medial axis, the 
radius of each circle is the distance between the axis and the contour. The system 
then replaces the circles with spheres with the same radius and takes their union.
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Convolution SurfaceConvolution Surface [Alexe 05]

• g(r) is a skeleton function (thick=large)

• h(p-r) is a kernel function (away=small)

∫ =−=
s

TdrrphrgpF )()()(

Alexe used convolution to construct implicit surfaces.

g(r) is a skeleton function. It become large at thick areas and small at thin areas.  
h(p-r) is a kernel function, which decays as it goes farther away from the center. 
This can generate a smooth surface.
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Distance Field Method
(Shapeshop)
Distance Field Method
(Shapeshop) [Schmidt 05]

• Compute C2 distance field in 2D (=fxy) 

• Evaluate implicit function as f(p)=fz(|p-F(p)|) fxy(F(p)) 
F(p) is projection of p onto the plane

F(p)

p 0

0 fxy0

0
1

fz

ShapeShop uses a distance field method. It first construct a C2 smooth distance 
field approximation on the input image plane. For any given point in the 3D space, 
the system evaluates the implicit function by multiplying the component 
perpendicular and parallel to the plane. The parallel component is the distance field 
approximation and, the perpendicular component is a decay function that gradually 
drops to 0 as it moves away from the plane.
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Inflation by Mass-spring system
(SmoothSketch)
Inflation by Mass-spring system
(SmoothSketch) [Karpenko 06]

• Push vertexes outwards with pressure

• Pull them back with edge length constraint

• Takes several seconds

The SmootSketch system by Karpenko et. al generates a surface by using an ad-
hoc mass-spring method. It pushes each vertex outwards mimicking pressure and 
pulls it back to keep the edge length, constraining the vertices along the input stroke. 
Their technical contribution is in the treatment of self-occluding contours, but we do 
not discuss it here.
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Optimization Method
(FiberMesh)
Optimization Method
(FiberMesh) [Nealen 07]

• Solve a global system minimizing the variation of 
mean curvature, fixing the boundary.

• Less than a second

The latest system, FiberMesh, generates smooth surfaces via optimization. The 
system solves a global system that minimizes the variation of mean curvature at all 
free vertices.
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DiscussionDiscussion

• Heuristic mesh construction [Igarashi 1999]

+ Very fast, crease      - Artifacts, no editing

• Voxel Sweep, Convolution [Owada 03, Alexe 05]

+ Simple to implement - Artifacts, no crease

• Distance field [Schmit 05]

+ Smooth, added control - no crease

• Mesh optimization [Nealen 2007]

+ Smooth, editing, crease - expensive

Each method has its own strength and weakness. Teddy’s method is very fast, but 
shows visible artifacts and does not support subsequent editing. Voxel sweep is easy 
to implement, but smoothness is limited by the voxel resolution. Implicit surfaces 
obtained via convolution or distance field computation are globally smooth, but it is 
difficult to represent sharp features such as crease. Finally, the surface optimization 
method supports both smooth and sharp features, but it is relatively expensive to 
compute.
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Deformation 
Techniques
Deformation 
Techniques
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ProblemProblem

• How to deform a 3D model by 2D sketching?
– Sketching skeleton

– Sketching silhouette

Deformation techniques modify the existing geometry according to the user’s sketch.
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= Resulting Vertex : Target stroke.
Original Vertex : Reference stroke.

Sketching reference and target
(Teddy)
Sketching reference and target
(Teddy) [Igarashi 99]

• It moves vertices in 2D using the algorithm used in 
2D morphing [Beier and Neely 92]

The original Teddy system supported “bending”, taking a reference stroke and a 
target stroke. It deforms the shape so that the relation between the original shape 
and reference stroke is similar to the relation between the resulting shape and 
target stroke.  It uses the algorithm used in 2D morphing.
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Reference Target

Create a local coord system for each edge.
Weighed integration of these results.

Sketching reference and target
(Teddy)
Sketching reference and target
(Teddy) [Igarashi 99]
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Sketching SkeletonSketching Skeleton

• The user draws reference and target skeleton
– Automatic identification of target area

– Twisting

[Kho 05]

Kho’s system focuses on skeleton-based deformation.
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Silhouette SketchingSilhouette Sketching

• Vertices on the silhouette is moved to the sketch.

• The surface is updated preserving vertex Laplacians.

[Nealen 05]

Nealen’s system allow the user to directly specify the desired shape of the 
silhouette. The system deforms the surface by minimizing the distance between the 
deformed silhouette and the user drawn stroke, while preserving the surface details 
in the form of laplacians.
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DiscussionDiscussion

• Skeleton based deformation [Igarashi 99][Kho 05]

+  good for articulated model

• Silhouette based deformation [Nealen 05]

+ good for shapes with clear silhouette

Skeleton-based methods are good for articulate models while silhouette-based 
methods are good for shapes with clear, smooth silhouettes.



Sketch-Based Interfaces: Techniques and Applications

Designing Freeform Surfaces by Sketching 33

SummarySummary

• Surface construction techniques
– Heuristic mesh construction

– Sweep (convolution) along the axis 

– Distance field

– Mesh optimization

• Surface deformation techniques

– Skeleton sketching

– Silhouette sketching
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Sketch Input ContinuumSketch Input Continuum
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Earlier today we outlined a number of concepts for using sketch-based interfaces 
for modeling and  design. I’d like to return to talk about one particular application 
and the challenges and opportunities involved in this application area. 

Sketching to produce 3D geometry is particularly challenging because it involves 
several levels of ambiguity: Ambiguity inherent in any sketch based application due 
to inaccuracy of the sketch strokes and lack of a direct interface, but then also 
ambiguity related to the 2D to 3D mapping. Compounded to this, we have a scaling 
problem due to the relatively complexity of objects to be inferred. And so we end up 
being at the upper-right corner of the complexity-ambiguity space.
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Avoid the verbal translationAvoid the verbal translation

Text

Verbal/sequential Thinking

Geometry

Visual/parallel Thinking

Let’s recall that sketch understanding is really about skipping the “forced” translation 
from the parallel, visual thinking mode which characterizes design, into the verbal, 
sequential process that is typically needed to enter it into a computer.
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OpportunitiesOpportunities

• Maintain visual thinking 

• Exploit physical hand-eye coordination

• Accelerate the learning process

• Qualitative conceptual analysis

Done well, staying at the “visual side” of the brain could have several profound 
advantages, such as exploiting the rich-hand-eye coordination, thereby flattening 
the learning curve. Takeo Igarashi showed how even untrained children can design 
relatively complex 3D shapes.

In engineering, this has an additional advantage: We can bring computer aided 
engineering (CAE) tools to bear at the initial stages of design – where most of the 
critical decisions are made. Today most, of these types of analyses are done at a 
fairly late stage of the design when a considerable amount of effort has already 
been invested in creating detailed models.
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ChallengesChallenges

• Ambiguity: 2D 3D, Interface, analysis

• Methodology: Scaling in complexity

• Hardware

• Philosophical: Is sketching natural?

The two main challenges are those outlined on the first slide: Dealing with ambiguity 
and dealing with complexity.
These are compounded by fundamental hardware issues and deeper questions 
about the naturalness of sketching – is it really natural, or is it an artifact of the way 
technology evolved.
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Conceptual AnalysisConceptual Analysis

Sketch

Examine Sketch More

Conceptual Analysis

5

4

Final Dimension CAD Model Manufacture

So lets go back to the ideal sketch-based design. We’d like a CAD system to act 
like an “expert colleague” at a whiteboard. We’d like to get feedback on our design 
before investing much into it. For example, imagine you can sketch an object, and 
you asked an expert to look at your sketch and provide feedback on potential 
manufacturing and stress issues before you invested in details. If a colleague expert 
could do it, why can’t a computer do it? That’s not the case now for a number of 
issues: Sketch interpretation is one, and another is how to analyze “rough” models: 
How to provide reliable analysis from an unreliable model.
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Sketch-Based Conceptual DesignSketch-Based Conceptual Design

 

45cm

 

Input 
2D 

Sketch

Input 
2D 

Sketch
Reconstructed 

3D Model
Reconstructed 

3D Model

Optimal 
Components

Optimal 
Components

Predicted 
Product 

Properties

Predicted 
Product 

Properties

Output with 
Bend 

Assignments

Output with 
Bend 

Assignments

Lipson, & Shpitalni AIEDAM 2001

Here is an example…
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Perform structural analysis Perform structural analysis 

Masry & Lipson, C&G 2006

And another one…



Sketch-Based Interfaces: Techniques and Applications

9Creating Geometry from Sketch-based Input

Analyzing StrokesAnalyzing Strokes

Shpitalni, M. and Lipson, H., 1996, "Classification of Sketch Strokes and Corner Detection Using Conic Sections 
and Adaptive Clustering," Trans. of ASME J. of Mechanical Design

Conic sections use for classification

Lets look at the way it works.

First, there is an issue of stroke recording and classification. These issues are 
addressed by many systems, but here we have a particular interest in straight lines 
and conic sections.
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Analyzing StrokesAnalyzing Strokes

Adaptive tolerance used to join edges into a graph

Evan linking the strokes at their ends is a challenge, as several other speakers have 
alluded to. There are multi-resolution decisions that need to be made adaptively…
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Interpretation is context dependentInterpretation is context dependent

And possibly based on context.
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Problem StatementProblem Statement

Given is a 2D sketch

The sketch is flat

Many 3D objects 
correspond to that 
sketch

Find the most plausible object

Once the basic classification and joining of strokes is complete, we end up having a 
graph embedded in 2D, the real problem begins:
The sketch is flat, and it represents, in theory, and infinite set of 3D objects. Yet we 
can easily reach a consensus about the most plausible object it represents. How do 
we do this? There are clearly som interesting issues here that have to do with the 
human visual system. We make some assumptions.
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ApproachesApproaches

• Line labeling is a form of interpretation through junction constraints 
(Huffman, 1971; Clowes, 1971).

• The gradient space constrains line slopes to face gradients (Mackworth, 
1973; Wei 1987).

• The linear System forms linear (in)equalities in terms of the vertex 
coordinates and plane equations (Sugihara, 1986; Grimstead and Martin, 
1995).

• Interactive methods gradually build up the 3D structure (Fukui, 1988; Lamb 
and Bandopadhay, 1990).

• The primitive identification approach assumes  known shape instances, 
CSG  (e.g. Wang and Grinstein, 1989).

• The minimum standard deviation approach focuses on simple “inflating”
(Marill, 1991; Leclerc and Fiscler, 1992).

• Analytical Heuristics (Kanade, 1980; Lipson and Shpitalni, 1996).
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Quantifying the solutionQuantifying the solution

• Each vertex has an 
unknown depth (z) with 
respect to the sketch 
plane (x-y).

• Each vertex has one 
degree of freedom.

• Find the z-values and a 
reconstruction is 
obtained.

x y 

z? 
{Z1} 

{Z3}
{Z2}

x y

z?

{Z1}
{Z3} {Z2}

We can quantify the question as an optimization/search problem.
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Tolerating sketching errorsTolerating sketching errors
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The first source: Geometric correlations The first source: Geometric correlations 

Statistical correlations provide soft constraints 
between z coordinates of vertices

Isometry 1st order
Colinearity
Verticality
Corner span 2nd order
Skewed symmetry
Skewed orthogonality High order
Planarity 
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The first source: Geometric correlations The first source: Geometric correlations 

 

We interpret drawings 
by known correlations. 

Images not conforming 
with the correlations 
confuse us.

M. C. Escher, Belvedere, 1958
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The first source: Geometric correlations The first source: Geometric correlations 

We interpret 
drawings by known 
correlations.

Images not 
conforming with the 
correlations 
confuse us.

M. C. Escher



Sketch-Based Interfaces: Techniques and Applications

19Creating Geometry from Sketch-based Input

The second source: TopologyThe second source: Topology

Identify edge circuits corresponding to faces of the depicted objects

For polyhedral objects, constrain planarity among vertices of each circuit

How to identify circuits?



Sketch-Based Interfaces: Techniques and Applications

20Creating Geometry from Sketch-based Input

For Manifold Objects with Genus 0For Manifold Objects with Genus 0
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Non-manifold use local analysisNon-manifold use local analysis
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Geometric correlationsGeometric correlations

• Learn to correlate 2D with 3D
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Higher order correlationsHigher order correlations

• Learn patterns in all permutations of lengths 
and angles of segment groups of various 
sizes

 

A

B

a

b
C
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Measuring 2D-3D second order 
correlations
Measuring 2D-3D second order 
correlations

 

 0°                2D Angle           180° 

18 0 °    3D
 A

ngle          0 ° 

 

 0.0         2D Length Ratio       1.0 

 1.0   3D
 Length R

atio 0.0 

 

 0°                2D Angle           180°

 1.0   3D
 Length R

atio 0.0 

 

  0.0            2D Cone Span       1.0 

 1.0    3D
 C

one Span   0.0 

Dark areas show high correlation. Strips on right and 
bottom of each table show marginal probabilities. Note 
dark top-left corner of bottom-left plot.
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To reconstruct:To reconstruct:

• Optimize z’s so that they comply as much of 
the soft constraints,
– Gradient Methods

– Stochastic Methods (Genetic, Annealing)

• Select a consistent subset with highest 
certainty, and solve, by Variational Geometry
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3D Sketching
Lipson & Shpitalni

1996
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Interactive InterfaceInteractive Interface

• Incremental “real-time” reconstruction
– When the user tries to “spin” the object

• De-clutter the scene
– Hidden stroke removal
– Draw on faces

• Interpretation cues
– Snap-to edges and vertices are highlighted
– Tolerances dependent on pen

• Undo, Pen-Tip Erase, Edit
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Adding PhysicsAdding Physics
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Real Physics
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http://ccsl.mae.cornell.edu
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ConclusionsConclusions

• 3D sketching + physics would be very 
useful in engineering
– Incremental “sketch & spin”

• Main (unique) challenges are
– 2D to 3D reconstruction

– Spatial navigation

• Next Steps
– Less ambiguity

– More Physics
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Lecture OutlineLecture Outline

• Mathematical Sketching

• MathPad2 Prototype Demo

• Mathematical Sketching Components

• Interface Evaluation

• Conclusions

In this lecture, we will discuss mathematical sketching and its components.  First, 
we will provide some motivation for why mathematical sketching is important. 
Second, we will explore the definition of mathematical sketching.  Third, we will give 
a demo of MathPad2, an application prototype that implements mathematical 
sketching. Fourth, we will look at the various components that make up 
mathematical sketching.  Finally, we will present some conclusions. 
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A Sketch Input ContinuumA Sketch Input Continuum

Number of 
Strokes per 
Operation

Ambiguity Level

Ambiguity level refers to sketch interpretation difficulty 
and domain generality

Domain Specific 
Gestural

Commands 

Complete Sketch
Understanding

Systems

1

N

Mathematical
Sketching

2D/3D
Gestural Shape 

Recognition
And 

Modeling

Low High

Real-Time 
Mathematical 
Expression 
recognition

Sketching
3D Geometry

Mathematical sketching as an interaction paradigm has many different parts.  As 
such, it falls somewhere in the middle of the sketch-input continuum.
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Mathematical Sketching Mathematical Sketching 

• Make dynamic illustrations from handwritten 
mathematics and drawings
– personalized visualizations

– illustrations come “alive”

• “Math Sketch” features
– small-scale, disposable, approximate 

– familiar mathematical notation

– free-form hand drawn diagrams

– linking diagram components to mathematics (i.e., 
associations

We want to be able to create these illustrations and make them dynamic with users 
constructing them as if they were using pencil and paper.  Mathematical sketching is 
an approach to solving this problem. It is a sketch-based interaction paradigm that 
lets users make dynamic illustrations by associating handwritten mathematics and 
drawings together.  These dynamic illustrations become personalized visualizations 
of the concept in question since the user creates them with a sketch-based 
interface.  

What makes a mathematical sketch?  Mathematical sketches are small-scale, 
disposable, and approximate.  They are not meant to solve complex problems but 
rather to help illustrate fundamental concepts in physics and mathematics.  They 
utilize familiar mathematical notation and free-form hand drawn diagrams where 
diagram components are linked to the mathematics with associations.

References:

LaViola, J. Advances in Mathematical Sketching: Moving Toward the Paradigm's 
Full Potential, IEEE Computer Graphics and Applications, 27(1):38-48, 
January/February 2007.
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Design GoalsDesign Goals

• Augment pencil-and-paper

• Fluidity 
– gestural UI (e.g., meaningful ink strokes)

• Mathematics specifies drawing element 
behavior
– utilize inference

• Keep generality

One of the major principles behind mathematical sketching is that it should augment 
pencil and paper.  Thus, users should be able to create mathematical sketches 
using a pencil-and-paper style interface and leverage the power of a computer to 
take their input and produce visualizations and dynamic illustrations. As part of this 
design approach, the interface must be fluid and a gestural user interface that 
combine handwriting, drawing, and issuing commands provides mathematical 
sketching with a natural interaction mechanism.  

The other major principle behind mathematical sketching is that the recognized 
handwritten mathematics be the driving force behind any drawing element behavior.  
This approach exposes the user to the mathematics behind an illustration so 
connections between the two can be observed and understood.  Making the 
recognized handwritten mathematics the driving force behind mathematical 
sketching also provides a level of generality since no specific domain knowledge is 
required. 
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The MathPad2 PrototypeThe MathPad2 Prototype

The idea of mathematical sketching is very broad and should support many different 
dynamic illustrations.  To evaluate some of these illustration possibilities, MathPad2, 
a Tablet PC application prototype, was developed.  A video of the MathPad2

prototype is included in the videos directory.  

References:

LaViola, J. and Zeleznik, R. MathPad2: A System for the Creation and Exploration of 
Mathematical Sketches, ACM Transactions on Graphics (Proceedings of 
SIGGRAPH 2004), 23(3):432-440, August 2004.
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More MathPad2 FeaturesMore MathPad2 Features

Integrals and 
Derivatives

Simultaneous Equations

Summations

In addition to making mathematical sketches, MathPad2 also supports the 
evaluation of integrals, derivatives, and summations.  It also can solve simple and 
simultaneous equations and graph functions.
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Mathematical Sketching ComponentsMathematical Sketching Components

Gesture 
Analyzer

Symbol
Classification

2D Parsing

User Interface

Math Recognition

Association 
Inferencing

Dimension
Analysis

Rectification

Sketch 
Preparation

Matlab Code
Generation

&
Computation

Animation
Subsystem
and OutputData Entry

Mathematical sketching, as implemented in MathPad2, has several different 
components, as shown in the slide.  We will go though some of the interesting 
aspects of these components as they pertain to sketch-based interfaces.
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Mathematical Sketching ComponentsMathematical Sketching Components

Gesture 
Analyzer

Symbol
Classification

2D Parsing

User Interface

Math Recognition

Association 
Inferencing

Dimension
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Rectification

Sketch 
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Matlab Code
Generation

&
Computation

Animation
Subsystem
and OutputData Entry

First, we will examine some of the issues with the gestural command system.
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GesturesGestures
• Key issue – support operations fluidly

– “simple” gestures

– avoid modes

• Use compound gestures
– combine simple primitive gestures

– avoids conflicts

• Context sensitivity
– re-usability of gestures 

– gesture location

One of the key issues with mathematical sketching is that users must be able to 
write down mathematics, make drawings and issue commands without conflict.  
Thus, a key issue is to support operations fluidly.  Since one of the goals of 
mathematical sketching is to have a sketch-based interface as fluid as pencil and 
paper, gestural commands were needed, making mathematical sketching require 
both gesture recognition and sketch understanding. To support fluid operations, 
these gestures needed to be simple and modeless.  Two strategies for dealing with 
this requirement are to use compound gestures and context sensitivity.  Compound 
gestures combine simple primitive gestures together as a way to avoid conflicts 
between making gestural commands, making drawings, and writing mathematics.  
For example, consider the figure in the slide.  To erase a stroke, the user scribbles 
over it and makes a tap.  This compound gesture helps to delineate scribble erase 
from simply making a scribble as part of a drawing.   Context sensitivity allows for 
the reusability of gestures for different operations.  Making a gesture and looking at 
its location to determine the appropriate action to take is one way to take advantage 
of context sensitivity. An example of how context sensitivity is used  is shown in the 
next slide.
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Lasso and Tap ExampleLasso and Tap Example

The lasso and tap gesture provides a nice example of how one gesture can be used 
for several different commands using context sensitivity.  The figures in the slide 
show that lasso and tap can be used for recognizing a mathematical expression, 
making a composite ink object, making an association, and nailing two strokes 
together. The gesture’s location in each case is the distinguishing characteristic.
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Mathematical Sketching ComponentsMathematical Sketching Components

Gesture 
Analyzer

Symbol
Classification

2D Parsing

User Interface

Math Recognition

Association 
Inferencing

Dimension
Analysis

Rectification

Sketch 
Preparation

Matlab Code
Generation

&
Computation

Animation
Subsystem
and OutputData Entry

A critical part of mathematical sketching is writing mathematical expressions.  Thus, 
a mathematical expression recognizer is needed. 
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Mathematical Symbol RecognitionMathematical Symbol Recognition

• Writer independence vs. dependence
• Built our own custom recognizer

– writer dependent
– large lexicon
– use Microsoft/pairwise AdaBoost classifier

Mathematical expression recognition consists of two parts.  First, the individual 
symbols must be recognized. Second, the spatial relationships between these 
recognized symbols must be understood to give syntactic and semantic meaning to 
the expressions. For mathematical symbol recognition, a choice of a writer-
independent or writer-dependent system must be made. Writer independent 
systems have the advantage that a user can start using the system with little, if any, 
training but its recognition accuracy is not optimized to any one user. In contrast, a 
writer-dependent system requires training for each user, but typically has much 
higher accuracy than a writer-independent approach.  To achieve the highest 
possible accuracy, we chose a writer-dependent solution using a combination of the 
Microsoft handwriting recognizer and a pairwise AdaBoost classifier.  
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AdaBoost Algorithm (Schapire 1999)AdaBoost Algorithm (Schapire 1999)
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The AdaBoost algorithm was invented by Robert Schapire in mid 1990s.  It is 
designed to take a group of weak learning algorithms (accuracy not equal to 50%)  
and combine them using weights, based on the training data.  A pseudocode
description of the general AdaBoost algorithm is shown in the slide.  

References:

www.cs.princeton.edu/~schapire/boost.html

Schapire, R..  A Brief Introduction to Boosting, Proceedings of the 16th International 
Joint Conference on Artificial Intelligence, 1401-1406, 1999.
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Microsoft /Pairwise AdaBoost
Classifier
Microsoft /Pairwise AdaBoost
Classifier
• Weak learners: distance to average 

– over 80 statistical and geometric features

• Problem: n symbols : n(n-1)/2 pairs 
• Solution: use Microsoft recognizer as preprocessing step
• Basic algorithm

– collect alternates from Microsoft Recognizer
– prune symbol pairs
– extract small symbols
– for each unique symbol pair 

• perform AdaBoost classification

– majority vote wins

We made the observation that it seems simpler for a recognizer to only have to 
make a binary decision instead of choosing from many different possibilities. Thus, 
we chose to use a pairwise approach to AdaBoost classification where our weak 
learners are based on a distance to average metric for each feature (over 80 in all).  
One of the issues with constructing a classifier in this way is with the number of 
pairwise classifiers that are needed. If we have 40 symbols in our lexicon, a total of 
780 unique pairs must be checked.  We found empirically that the Microsoft 
handwriting recognizer recognizes the correct character or has the character in its 
n-best list over 99% of the time.  Thus, we use the Microsoft recognizer as a 
preprocessing step to help prune down the number of possible pairs that need to be 
examined.  This is a very effective technique for speeding up the algorithm and 
increasing accuracy.  The basic algorithm is shown in the slide.

References:

LaViola, J., and Zeleznik, R. A Practical Approach to Writer-Dependent Symbol 
Recognition Using a Writer-Independent Recognizer, To appear IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 2007.



Sketch-Based Interfaces: Techniques and Applications

Mathematical Sketching 16

Issues with Parsing Mathematical 
Expressions 
Issues with Parsing Mathematical 
Expressions 

• More difficult than 1D parsing
– 2D spatial relationships between 

symbols are critical
– implicit operators
– symbol ambiguities
– relative placement

• Writer dependence vs. 
independence

Once the mathematical symbols have been recognized, they need to be parsed.  
Parsing mathematical expressions is more difficult than traditional 1D parsing 
because the 2D spatial relationships between symbols are critical.  Additionally, 
dealing with implicit operators (subscripts, superscripts and implicit multiplication), 
symbol ambiguities and the variability of symbol placement cause a multitude of 
problems. As with symbol recognition, expression parsing systems can be writer-
dependent or writer-independent. Making a mathematical expression parser writer-
dependent is more difficult than having writer-dependent symbol recognition 
because of the many more possible parses and spatial relationships that can occur 
with mathematical expressions.  The alternative to this is to use a writer-
independent approach, making spatial relationship rules flexible enough for the 
general user. In this case, we chose a writer-independent parsing system.
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Parsing ApproachParsing Approach

• Use top-down parser with geometric rules
– context free grammar
– flexible with bounding box information
– make use of ascenders and descenders
– results stored in parse trees

• Use coded syntax rules
– reduce parsing decisions for implicit operators
– function name replacement

We use a top-down parsing strategy with embedded geometric rules.  The parser
uses a context-free grammar and takes the bounding boxes for each recognized 
symbol to determine the relationships between them.  The parser also makes use of 
some underlying knowledge about how letters are written, whether they are 
ascenders (e.g., b,f,t) or descenders (e.g., p,y,g), for dealing with implicit operators.  
The results of the parse are stored in parse trees for further processing.   The 
parser also makes use of procedurally coded syntax rules.   These rules are used to 
help reduce the number of parsing decisions that need to be made.  For example, 
with mathematical sketching,  a number with a subscript has no meaning. Thus it is 
not a valid parse and can be ignored. Other procedurally coded rules include 
function name replacement. For example, if the user is writing cos and the 
recognizer comes back with co5, then the parser will assume the user meant cos. 
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Mathematical Sketching ComponentsMathematical Sketching Components
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With the mathematical expressions recognized, the mathematical sketch has to be 
prepared so it can be executed.
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Association InferencingAssociation Inferencing

• Find mathematics 
based on label
– use label families

– find expressions 
and sort them

)(,),(, taataa xo

When users make illustrations to help them understand mathematics and physics 
problems, they often label individual parts of the illustration to give them names.  
Mathematical sketching uses this strategy for making associations.  Users can label 
a drawing element and that label will act as a guide to finding all of the necessary 
mathematics that is needed to animate that element.  We use the notion of label 
families to infer which mathematical expressions should be included as part a 
drawing element’s behavior.  In the figure in the slide, a user labels the angle
between the pendulum and vertical line with a0.  MathPad2 uses this label to find all 
of the mathematical expressions which contain an a on their left hand sides. Then, 
using these expressions, the right hand sides are analyzed for variables, function 
names, and constants, which are then used to find other mathematical expressions, 
and so on until all of the required mathematics has been found. Once all of the 
expressions have been found, they are sorted, constants first, then variables 
defined by other variables, and finally functions. 
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Drawing Dimension AnalysisDrawing Dimension Analysis

• Coordinate directions defined, scale is not

• Infer from: 

– labeled components

– initial conditions

– simulation range

• Computes simulation to animation transform

The coordinate system in MathPad2 is predefined with the +x axis pointing to the 
right and the +y axis pointing up.  However, what is not defined is the scale of the 
coordinate system (i.e., how much one unit is in either the x or y direction in screen 
space).  What is needed is a drawing dimension analysis to give us a mapping 
between simulation space and animation space.  The system attempts to infer what 
this mapping is by looking at the sketch.  There are several ways of finding this 
mapping, including examining labeled components, initial conditions, and the 
simulation range.  The figure in the slide shows two example sketches.  In the first 
one, on the left side of the figure, the road is labeled with a 10.  This label tells us 
that the value 10 in simulation space is equal to the length of the line in screen 
space.  This provides a mapping for the x direction (it could also be used for the y
direction as well).  The sketch on the right of the figure does not have the road 
labeled. However, if we look at the initial values of the functions sx(t) and hx(t), we 
see that they are 10 and 0 respectively.  This gives us a length to use between the 
two cars that will provide an appropriate mapping.  If no mapping can be inferred, 
then a default one is used.  
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Sketch RectificationSketch Rectification

• Have to deal with imprecise drawings and 
precise math specifications

• Rectification – fix correspondence between 
drawings and mathematics

• Support
– angles

– position

– scale

The nature of mathematical sketching implies that precise mathematical 
specifications must interact with approximate, free-form drawings.  Thus, there will 
be mismatches between the two that need to be rectified.  Rectification is the 
process of fixing the correspondence between precise mathematical specifications 
and imprecise drawings.  Currently MathPad2 supports rudimentary rectification for 
angles, position and scale. 
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Sketch Rectification - AnglesSketch Rectification - Angles

• Use angle gesture

• Algorithm
– detect angle gesture

– compute rotation point

– rotate terminal side 

• Limitations (triangles, constraint issues)

When a users makes a drawing that has an angle that they know needs to be a 
certain value.  They make the drawing but the angle value may not be correct.  In 
the figure, the user wants to make an angle between a pendulum and a vertical line. 
The value of this angle should be 0.5 radians.  Angle rectification occurs when the 
user labels the angle.  The system detects an angle gesture and finds the enclosed 
symbol (in this case the letter a).  Using the angle gesture, a point of rotation is 
computed (the green dot on the right side of the figure).  This rotation point is used 
to rotate the angle’s terminal side (the pendulum) so that it is 0.5 radians from the 
vertical line.  This approach breaks down when dealing with over-constrained 
problems, such as dealing with triangles. Rectifying one of the three angle’s that 
make up a the triangle will potentially affect not only the other two angles but also 
the lengths of the sides of the triangle.  This type of problem is typical in constraint 
satisfaction systems.
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Sketch Rectification – PositionSketch Rectification – Position

• Need to place drawing 
element properly

• Algorithm
– find initial conditions

– relocate based on drawing 
dimension analysis

• Issues
– x or y is dimensioned

– multiple labels

Fixing the position of a drawing element is also an important rectification problem, 
since they need to be placed properly give the origin and dimensions of the 
coordinate system.  MathPad2 finds any initial conditions in the mathematical 
specifications for drawing elements and then relocates them based on the 
information in the drawing analysis step.  The origin of the coordinate system is also 
found during the drawing dimension analysis step and is located at the left most 
point of the drawing element used in the analysis step.  In the figure in the slide, the 
origin is the leftmost point of the line labeled as 100 units long. Ambiguities can 
occur when there is more than one numerically labeled drawing element.  In these 
cases, there is no clear cut answer to the problem. However, making suggestions to 
the user is a viable approach. 
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Sketch Rectification – ScaleSketch Rectification – Scale

• Need to have drawing element’s size 
coincide with mathematics

– important for collisions

– more complicated

• Algorithm

– find drawing elements with size 
information

– Resize based on drawing 
dimension analysis

• Issues

– multiple labels

– imperfections

As with position, scale rectification is important when the size of a drawing element 
has relevance to the mathematical sketch. One simple way to rectify scale is to use 
mathematics to specify the size of the drawing element.  In the figure in the slide, 
the ball, labeled as x, has a size value of 16, which is denoted with xu.  The 
subscript u stands for uniform scaling.  If w or h was used, it would indicate the 
width or height of the drawing element was 16. With this information, resizing of the 
drawing element can be done using the mapping from the dimension analysis step.   
As with position rectification, multiple numerically labeled drawing elements can be 
problematic. Additionally, imperfections in how the drawing element was made can 
also cause problems. In these cases, further rectification of the stroke geometry is 
required. 
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Mathematical Sketching ComponentsMathematical Sketching Components

Gesture 
Analyzer

Symbol
Classification

2D Parsing

User Interface

Math Recognition

Association 
Inferencing

Dimension
Analysis

Rectification

Sketch 
Preparation

Matlab Code
Generation

&
Computation

Animation
Subsystem
and OutputData Entry

Given recognized mathematical expressions and a prepared mathematical sketch, 
executable code needs to be generated for the purposes of getting animation data.  



Sketch-Based Interfaces: Techniques and Applications

Mathematical Sketching 26

Generating Executable CodeGenerating Executable Code

• Support closed and open form solutions

• Use Matlab syntax
h = 0.1
x_u = 1.6
v = 2
r = x_u/2
l = 12
x(1) = 5
for i = 2:200
if (x(i-1)<r | x(i-1)>(l-r))
v = -v;

end
if (x(i-1)>(l-r))
x(i) = l-r;

elseif (x(i-1)<r)
x(i) = r;

else
x(i) = x(i-1)+v*h;

end
end   

MathPad2 currently supports open and closed form solutions and requires 
executable code to be in Matlab syntax, given we use Matlab as our computational 
engine.  Our goal is then to transform the mathematics in the figure on the left of the 
slide to the code on the right.
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Open Form SolutionsOpen Form Solutions

• Preprocessing
– for each drawing element

• extract user defined functions and 
parameters 

• look for iteration constructs

• convert expressions to Matlab strings

• find initial conditions

• Computation
– compute iteration maximum

– sort expressions

– execute code

– extract data

Closed-form solutions are fairly straightforward.  However, open-form solutions are 
slightly more complicated. There are two important steps to converting a 
mathematical sketch into executable code, a preprocessing step and the 
computation step.  In the preprocessing step, for each drawing element, user 
defined functions and parameters need to be extracted. Next, any iteration 
constructs are found.  Third, all the necessary mathematical expressions are 
converted to Matlab strings. Finally, initial conditions need to be found. With this 
information, the computation step can proceed  by first finding the iteration 
maximum based on the iteration construct and the delta value (in the figure, the 
delta value is h).  The mathematical expressions need to be sorted so they will 
execute in a logical order.  The expressions are then executed and the appropriate 
data is extracted from Matlab.  
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Mathematical Sketching ComponentsMathematical Sketching Components

Gesture 
Analyzer

Symbol
Classification

2D Parsing

User Interface

Math Recognition

Association 
Inferencing

Dimension
Analysis

Rectification

Sketch 
Preparation

Matlab Code
Generation

&
Computation

Animation
Subsystem
and OutputData Entry

Once we have the data from Matlab, the sketch can be animated.
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Sketch Animation and OutputSketch Animation and Output

• Animation subsystem finds animatable drawing 
elements
– associated with functions of time

• Currently supports 
– x and y translational movement

– rotation about a given point

– changing arc value

– stretching (a side effect of nailing)

The animation system finds all drawing elements that are animatable (i.e., 
associated with functions of time). The animation system then takes the data and 
animates the sketch appropriately.  Animations include x and y translational motion, 
rotation about a point, changing of an arc value, and the stretching of objects.  
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MathPad2 Usability Study – MethodologyMathPad2 Usability Study – Methodology

• 7 Subjects (4 male, 3 female)

• Subjects complete 6 tasks (only visual training)
– graphing

– equation solving

– expression evaluation

– 1 sketch from scratch

– 2 using pre-recognized mathematics

• Complete post-questionnaire



Sketch-Based Interfaces: Techniques and Applications

Mathematical Sketching 31

Results SummaryResults Summary

• Subjects found user interface easy to use and 
remember

• Would help beginning physics and mathematics 
students

• Better recognition accuracy required
– 3 out of 7 unable to complete 4th task without help

• Subjects with recognition trouble still would use 
MathPad2

– power in mathematical sketching

• More features needed

References:

LaViola, J. An Initial Evaluation of a Pen-Based Tool for Creating Dynamic 
Mathematical Illustrations, Proceedings of the Eurographics Workshop on Sketch-
Based Interfaces and Modeling 2006, 157-164, September 2006.
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ConclusionsConclusions

• Mathematical sketching – interaction 
paradigm for creating dynamic illustrations

• MathPad2

– prototype application

– fluid gestural UI

• Just the tip of the iceberg

Mathematical sketching is an interaction paradigm that uses a sketch-based 
interface for creating dynamic illustrations with the combination of handwritten 
mathematics and free-form drawings.  MathPad2 is a prototype application for 
exploring ideas in mathematical sketching.  Mathematical sketching is in its very 
early stages and there is a significant amount of work to do before the ultimate goal 
of mathematical sketching is realized.  However, MathPad2 shows that 
mathematical sketching is viable and is an good example of a sketch-based 
interface.

Note that this lecture only gave a cursory overview of the ideas and details behind 
mathematical sketching.   A more thorough discussion can be found in

LaViola, J. Mathematical Sketching: A New Approach to Creating and Exploring
Dynamic Illustrations, Ph.D. Dissertation, Brown University, Department of 
Computer Science, May 2005.
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ABSTRACT
Because of its promise of natural interaction, recognition is
coming into its own as a mainstream technology for use
with computers.  Both commercial and research applica-
tions are beginning to use it extensively.  However the er-
rors made by recognizers can be quite costly, and this is
increasingly becoming a focus for researchers.  We present
a survey of existing error correction techniques in the user
interface.  These mediation techniques most commonly fall
into one of two strategies, repetition and choice.  Based on
the needs uncovered by this survey, we have developed
OOPS, a toolkit that supports resolution of input ambiguity
through mediation.  This paper describes four new inter-
action techniques built using OOPS, and the toolkit
mechanisms required to build them.  These interaction
techniques each address problems not directly handled by
standard approaches to mediation, and can all be re-used
in a variety of settings.

INTRODUCTION
Because of its promise of natural interaction, recognition is
coming into its own as a mainstream technology for use
with computers.  Recognition is being used in personal
assistants such as the PalmPilot™, as well as on the desk-
top (e.g. IBM’s ViaVoice™).  Research initiatives in areas
such as multimodal computing are investigating how to
build effective, usable applications involving recognizers.

However, the errors made by recognizers can be quite
costly and annoying for users to correct, and this is in-
creasingly becoming a focus of research [7,11,23,28,30]
For example, when studying a speech dictation system,
Halverson et al. found that input speeds decrease from the
120 words per minute (wpm) of conversational speech to
25 wpm due in large part to time spent correcting recogni-
tion errors [11].  These errors are corrected through ex-
pli cit user interaction.  For example, a user can delete mis-
recognized words and then repeat them.

This repetition of input is one of the two common classes
of interaction techniques for correcting recognition errors.

The other common class gives the user a choice of differ-
ent possible interpretations of her input.  We call repetition
and choice mediation techniques because they are mediat-
ing between the user and the computer to specify the cor-
rect interpretation of the user’s input.  Tables 1 and 2 show
some of the variations of both repetition and choice tech-
niques that we found in the literature.  Figure 1 shows an
example of a hybrid mediator from IBM’s ViaVoice™
system.  It provides a choice technique (an n-best list) with
an escape path to a repetition technique.  Other commer-
cial systems such as the Apple MessagePad™ and
DragonDictate™ provide similar hybrids. Choice and
repetition strategies have a fairly wide range of possible
instantiations, making mediation techniques ripe for reus-
able toolkit-level support.

In general, the goal of perfect recognition is diff icult to
achieve because correct recognition is best defined as what
the user intends.  Since a system cannot know this a priori,
we model possible interpretations of user input internall y
as ambiguous input.  Mediation techniques then serve to
resolve this ambiguity, helping to determine which of
those potential interpretations is the correct one, the one
the user intended.  In order to do this properly, integrated
architectural support for ambiguity at the input-handling
level is required.  This makes it possible to track which
interactors use ambiguous information and will need to be

Submitted to UIST’2000
Figure 1: An n-best list from the ViaVoice™ speech
system [3]. Note that it provides a text entry area for me-
diation by repetiti on. Ill ustration reprinted with permis-
sion from IBM Corporation.



notified when interpretations are accepted or rejected.
With such integrated support, we can treat all events the
same way whether they are generated by a recognizer, sen-
sor, mouse, or keyboard.  We have developed a toolkit,
called the Organized Option Pruning System (OOPS) that
provides these features, introduced in [19,20].

The important contribution of OOPS is the separation of
recognition and mediation from application development.
The separation of recognition leads to the abilit y to adapt
mediation to situations which do not seem to be recogni-
tion-based, but where some problem in interaction causes
the system to do something other than what the user in-
tended (our ultimate definition of error).  The separation of
mediation allows us to develop complex mediation inter-
actions independent of both the source of ambiguity and
the application.  It also allows us to defer mediation for
arbitrary periods when appropriate.  OOPS also provides
hooks that facilit ate application-specific mediation in
situations that benefit from specific knowledge to do the
right thing, such as dealing with errors of omission.

In addition to an architecture, OOPS includes a library of
mediators that fill out the design space ill ustrated in Ta-
bles 1 and 2, described in the next section.  In particular,
we have built re-usable, generic choice and repetition me-
diators that can be easil y modified along the dimensions
shown.

The focus of the work presented here is on expanding the
repertoire of mediation techniques into settings where
standard techniques, such as the n-best list in Figure 1,
face problems.  The work described in this paper involves
the design and implementation of re-usable mediation
techniques that address some of the deficiencies or prob-
lems not handled well by the standard set of techniques
found in the literature.  We begin by describing the design
space in more detail i n the next section.  After introducing
the toolkit concepts necessary to understand our solutions

to these problems in the following section, we will discuss
each problem in detail .  The first problem involves adding
alternatives to choice mediators, as the correct answer (as
defined by the user) may not appear in the li st of choices.
The second problem, occlusion, occurs because choice
mediators may cover important information when they
appear.  The third problem we address is mediation for
target ambiguity, which can arise when there are multiple
possible targets of a user action (such as selecting part of a
drawing).  Finall y, our fourth mediator ill ustrates one way
to deal with errors of omission, where the user’s input is
completely missed by the recognizer.

DESIGN SPACE
Mediation is the process of selecting the correct interpre-
tation of the user's input (as defined by the user).  Because
of this, mediation often involves the user in determining
the correct interpretation of her input.  Automatic media-
tion, which does not involve the user, is also full y sup-
ported by OOPS, although not a focus of this paper.  Good
mediators (components or interactors representing specific
mediation strategies) minimize the effort required of the
user to correct recognition errors or select interpretations.
This section presents a survey of existing interfaces to rec-
ognition systems, including speech recognition, handwrit-
ing recognition, gesture recognition, word prediction, and
others (expanded from [19]).

The survey led us to identify two basic categories of inter-
active mediation techniques.  The first, and most common
mediation strategy, is repetition.  In this mediation strat-
egy, the user repeats her input until the system correctly
interprets it.  In the second strategy, choice, the system
displays several alternatives and the user selects the correct
answer from among them.

Repetition
When the user specifies the correct interpretation of her
input by explicitl y repeating some or all of it, we refer to

I/O System Repair Modality Undo Repair Granularity

Handwriting
/ Words

MessagePad™[1], Microsoft
Pen for Windows™

Soft keyboard, or individual
letter writi ng

Automatic Letters

ViaVoice™[3] Speech, letter spelli ng, typing Automatic Letters or wordsSpeech
/ Words,
 Phrases Suhm speech dictation [30] Voice, pen User must select

area to replace
 Letters or words

Speech
/ Names
(non GUI)

Chatter [22] Speech, letter spelli ng, milit ary
spelli ng, with escape to choice

Automatic Letters

Word Prediction [2,10,25]Typing
/ Words

POBox [21]

Letters (as user enters addi-
tional characters, new choices
are generated)

Unnecessary (user
has to expli citl y
accept a choice)

Letters

Table 1: A representative set of systems (as defined by their input and output modaliti es) that vary along the dimensions of repetiti on
mediators. All of these systems provide additionall y unmediated repetiti on, in which the user deletes an entry and repeats it using the
original system modalit y.  In contrast, a system which does not provide mediated repetiti on is the PalmPilot™. I/O gives input/output
of recognizer. Systems are representative examples. Milit ary spelli ng uses “alpha” for ‘a’ , “bravo” for ‘b’ , etc.



this as repetition.  For example, when a recognizer makes
an error of omission (and thus generates no alternatives at
all ), this option is available to the user.  Specific examples
are given in Table 1.  See [28] for a discussion of how such
variations may affect input speeds.  Below are the three
dimensions of repetition:

Modality: The user often has the option of repeating her
input in a different (perhaps less error-prone) modalit y.
However, research in speech systems shows that users
may choose the same modalit y for at least one repair be-
fore switching [11], despite the fact that the repair will
have lower recognition accuracy [7].

Undo: In order to repeat her input, the user may first have
to undo some or all of it.  This is most often required of
systems without expli cit support for mediation (e.g. the
PalmPilot™).

Repair granularity: Repair granularity may differ from
input granularity.  For example, the user may speak
words or phrases, yet repair individual letters [30].

Choice
When the user selects the correct interpretation of her in-

put from a set of choices presented by the system, we refer
to this as choice mediation.  The n-best list in Figure 1 is
an example of this.  Like repetition, choice mediators vary
along a set of common dimensions.  We ill ustrate the di-
mensions below by comparing two examples, the n-best
li st used in ViaVoice™ (Figure 1) and the Pegasus draw-
ing beautification system (Figure 2).  Pegasus recognizes
user input as lines and supports rapid sketching of geomet-
ric designs [14]. Additional examples are given in Table 2.

Layout: The n-best list uses a menu layout.  In contrast,
Pegasus does layout “ in place” .  Possible lines are simply
displayed in the location they will eventually appear if
selected (Figure 2(c&e)).

Instantiation time: The n-best list can be instantiated by a
speech command, or can be always visible (even when no
ambiguity is present).  Pegasus shows the alternative
lines as soon as they are generated.

Contextual information: Pegasus also shows contextual
information about the lines by indicating the constraints
that were used to generate them (Figure 2(c&e)).  The n-
best list, which is more generic, shows no additional in-
formation.

I/O       System Layout Instantiation Context Interaction Feedback

Handwriting
/ Words

MessagePadTM

[1]
Linear menu Double cli ck Original ink Cli ck on choice ASCII words

Speech
/ Words

ViaVoiceTM [3] Linear menu Speech command
/ Continuous

None Speech command ASCII words

Speech/Comma
nds (non GUI)

Brennan and
Hulteen [4]

Spoken
phrases

On
completion

System state
(audio icons)

Natural language Pos.&neg.
evid.-nat. lang.

Handwriting
/ Characters

Goldberg et Al.
[9]

Below
top choice

On
completion

None Click on choice ASCII letters

Assistive Tech.
[2, 10]

Bottom of
screen (grid)

Continuously None Click on choice ASCII wordsTyping
/ Words (Word
prediction)

Netscape™
[25]

In place Continuously None Returns to select,
arrow for more

ASCII words

Gesture
/ Commands

Marking Menu
[15]

Pie menu On pause None Fli ck at choice Commands,
ASCII letters

Gesture
/ Lines

Beautification
[14]

In place On prediction
/ completion

Constraints Cli ck on choice Lines

Context
/ Text

Remembrance
Agent [27]

Bottom of
screen,
linear menu

Continuously Certainty, result
excerpts

Keystroke com-
mand

ASCII sen-
tences

UI description /
Interface spec.

UIDE [29] Grid On command None Click on choice Thumbnail s
of results

Multimodal
/ Commands

Quickset [23] Linear menu On
completion

Output from mul-
tiple recognizers

Cli ck on choice ASCII words

Email / Ap-
pointment

Lookout [12] Pop up agent,
speech, dia-
logue box

On
completion

None Click OK ASCII words

Table 2: The layout, instantiation mode, context, selection, and representation used by commercial and research choice mediators. Note
that feedback in the mediator may differ from the final output result of recognition. I/O gives input/output of recognizer. Systems are
representative examples.



Interaction: In both examples, interaction is quite
straightforward.  In ViaVoice™, the user says “Pick
[#].” In Pegasus, the user can select a choice by cli cking
on it (Figure 2(e)).  Drawing a new line will automati-
call y accept the currently selected choice in Pegasus
(Figure 2(d&f)).  The n-best list is only used to correct
errors, the top choice is always sent to the current docu-
ment as soon as recognition is complete.

Feedback: As stated earlier, feedback in Pegasus is in the
form of lines on screen.  Contrast this to the ASCII
words used in the n-best list.

In summary
We have identified a rich design space of mediators which
fall i nto two major classes of techniques.  Each system we
reference implemented their solutions from scratch, but as
Tables 1 and 2 make clear, the same design decisions show
up again and again.  The space of mediation techniques is,
therefore, amenable to toolkit-level support, and that is
why we built OOPS.  OOPS includes both an architecture
and a library of mediators, including a generic repetition
and a generic choice mediator that can be varied along the
dimensions described above in a pluggable fashion
[19,20].  We expand upon that work in this paper by iden-
tifying some significant gaps in the design space.  We were
able to use OOPS to create new mediators which address
the problems responsible for those gaps.

TOOLKIT-LEVEL SUPPORT FOR AMBIGUITY
OOPS is an extension of the subArctic toolkit [6].  Here we
will review the basic features of OOPS discussed in [20],

and describe additional features that facilit ated the devel-
opment of the mediators described in this paper.

In the past, GUI toolkits have separated recognized input
from mouse and keyboard input.  Even when a recognizer
generates the same data type as a device (such as text), the
application writer has to take responsibilit y for informing
interface widgets about information received from the rec-
ognizer.  Both the Amulet [17] and the Artkit [13] toolkits
go beyond this model for pen gesture recognition by al-
lowing interactors to receive gesture results through the
same API as mouse and keyboard events.

OOPS takes a step further by allowing recognizers to pro-
duce arbitrary input events that are dispatched through the
same input handling system as any raw events produced by
mouse or keyboard.  Thus, they may be consumed by the
same things that consume raw events including, possibly,
other recognizers.  Here we use the term “event” in the
traditional GUI toolkit sense, to mean a single discrete
piece of input (e.g. “mouse down” or “key press (a)” ).

A recognizer produces events that are interpretations of
other events or raw data (such as audio received from a
microphone).  This is a very broad definition of  recogni-
tion.  Essentiall y, a recognizer is a function that takes
events or raw data as input and produces interpretations
(also events) as output.  For example, a recognizer might
produce text from mouse events (which, as described
above, is dispatched and might then be consumed by a
standard text entry widget such as the one in Figure 4).  It
could start with text and produce more text.  Or it could
start with audio and produce mouse events (which might
cause a button to depress).  It might also produce a new
event type such as a “command” or “ interaction” event.

As mentioned in the previous section, a recognition error
is defined by the user's intent and neither the recognizer
nor OOPS necessaril y knows what the correct interpreta-
tion is.  It is through automatic or interactive mediation
that this is determined.  Until mediation is completed,
OOPS stores information about all known possible inter-
pretations.  We refer to the input as ambiguous at this
point.  Information about ambiguity is kept in a hierarchi-
cal ambiguous event graph in OOPS (which can be seen as
an extension of the command objects described in [24]).
Raw input such as mouse down, drag, and up events make
up the root nodes of that graph.  Whenever input is inter-
preted, a node representing the new interpretation is added
to the graph.  For example, the graph shown in Figure 3(b)
represents a series of mouse events that have been inter-
preted as a stroke, and then recognized as either a 'c' or an
's'.  The 'c' and 's' are ambiguous (only one of them is
correct).  A graph node is considered ambiguous when it is
one of multiple interpretations.

OOPS provides infrastructure for tracking ambiguity and
for resolving ambiguity (mediation).  By providing a con-
sistent, recognizer-independent internal model of ambigu-

Figure 2: A choice mediator in the Pegasus drawing beautifica-
tion system (Figure 7 in [14]). The user can cli ck on a li ne to
select it (e). © ACM (reprinted with permission).



ity, OOPS is able to provide re-usable support for media-
tion.  For example, when the stroke in Figure 3(a) is inter-
preted as a ‘c’ or an ‘s’ , OOPS automaticall y sends the
event hierarchy to the mediation subsystem because part of
it is ambiguous.  The default choice mediator (Figure 3(a))
simply displays the leaf nodes of the hierarchy.  When the
user selects his intended input, it is accepted, and the other
interpretation is rejected, resolving the ambiguity.

Most interpretations in OOPS are generated and dis-
patched during an initial input cycle before the start of
mediation.  When a new interpretation is created after me-
diation has begun, it is dispatched as well , and the event
hierarchy being mediated is updated, along with any cur-
rent mediators.  Any events that have already been ac-
cepted or rejected remain that way.

OOPS supports both automatic mediation and a variety of
interactive choice and repetition techniques.  Mediation in
OOPS may occur immediately or at any later time deter-
mined by the current mediator.  Thus, a mediator may
choose to wait for further input, or simply defer mediation
until an appropriate time in the interaction.

When separation is too separate
As stated, we provide a recognizer-independent internal
model of ambiguous input in OOPS which allows the sepa-
ration of recognition, mediation, and application develop-
ment.  However, there are times when two or more of these
pieces may need to communicate.  For example, recogniz-
ers may wish to know which interpretations are accepted
or rejected by mediators in order to facilit ate learning.
OOPS stores information about who created each event in
order to inform those recognizers about which of their in-
terpretations are accepted or rejected by the user.

In addition to creating events and receiving accept/reject
messages, recognizers in OOPS may support guided re-
recognition.  Guided re-recognition allows a recognizer to
receive more detailed information than a simple reject.
This information may be domain specific, and includes an
event that should be re-recognized. The intent is to allow a

recognizer to make a better guess as to how to interpret the
user's input.  Recognizers supporting guided re-recognition
must implement the rerecognize(event, Object) method,
where event is an event that the recognizer interpreted at
some time in the past and Object may contain additional
domain-specific information.

For example, a choice mediator could have a “none of the
above” option.  If the user selects it, that mediator could
ask the recognizer(s) that generated the current set of
choices to rerecognize() each of their source events.  If
there is more than one source event for a given interpreta-
tion, the mediator may call the resegment(Set, Object)
method instead.  This tell s the recognizer that a mediator
has determined that the events in Set should be treated as
one segment and re-interpreted.

Thus far, we have described the minimal architectural
support required by all of our example mediators.  In addi-
tion to this architecture, we provide a library of standard
mediators in OOPS.  Since OOPS allows separation of
mediation from recognition and from the application, it is
possible to swap between different mediation strategies
without redesigning any recognizers or the application.

The next four sections consider four new mediation tech-
niques.  Each of these techniques is designed to ill ustrate a
method for overcoming a problem with existing mediation
techniques.  In each section, after discussing the identified
problem area (adding alternatives, occlusion, target ambi-
guity, and omission), and a new interaction technique that
addresses it, specific toolkit mechanisms necessary to sup-
port these solutions will be considered.

ADDING ALTERNATIVES TO CHOICE MEDIATORS
One problem with choice mediators is that they only let the
user select from a fixed set of choices.  If none of those
choices is right, the choice mediator is effectively useless.
For example, as Figure 1 ill ustrates, if the user intended to
say ‘for’ , the choice mediator cannot help her—she must
escape to a repetition technique (spelli ng the word).

Our goal is to support a smooth transition from selection of
an existing choice to specification of a new one.  Our solu-
tion is to extend an n-best list to include some support for
repetition.  We allow the user to specify new interpreta-
tions as well as to select from existing ones using the same
mediator.

For example, in the application shown in Figure 4, the
user can sketch Graff iti™ letters, which are recognized as
characters (by [18]).  A word predictor then recognizes the
characters as words, generating many more choices than
can be displayed by the mediator.  When the graff iti l etters
are ambiguous, the word-predictor returns words starting
with each possible letter.  Once mediation is completed,
the text edit window updates to show the correct choice.
Our goals in this mediator are:
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Figure 3: (a) A sketched letter and associated mediator.
(b) Our internal representation of the events making up the
sketched, recognized stroke.



Provide choice at the word level: The user can select
from among choices as he did in a standard choice me-
diator, by cli cking on the gray button to the right of a
word.

Allow users to control filtering: By cli cking on a charac-
ter, the user specifies a prefix.  The mediator reflects this
by displaying only words starting with the same prefix.
Although word-predictors support dynamic filtering, in
most cases, a prefix can only be specified by entering
each letter in the prefix in turn.  If the user filters repeat-
edly on the same prefix, the mediator will display a new
set of words each time.

Allow users to specify length: by cli cking on the space at
the end of a word, the user causes the mediator to add a
character to that word.

Allow users to specify individual characters: The user
can right-cli ck on a character to cycle through other pos-
sible characters.  This can be used to generate words not
returned by the word-predictor.

Allow users an escape: if the user sketches a new letter,
only the current prefix will be accepted.

Suppose the user enters an       (for which the graff iti rec-

ognizer returns ‘m’ and ‘w’) .  The word predictor returns
words starting with ‘m’ and ‘w’ (derived from a frequency
analysis of a corpus of email messages), of which the me-
diator displays the top choices:  was, wed, mon, …
(Figure 4(a)).  The user, who intended ‘messages’ , fil-
ters for words starting with ‘me’ by cli cking on the ‘e’ in
‘me.’ The resulting li st (Figure 4(b)) includes ‘message’ ,
but not ‘messages.’ The user indicates that a word one
character longer than ‘messages’ is needed by cli cking
on the space at the end of the word, and ‘messages’ ap-
pears as the top choice (Figure 4(c)).  The user selects this
choice by cli cking on the gray button to its right.

Was this mediator reall y useful? Without word prediction,
the user would have had to sketch 8 characters.  Given an
85% accuracy rate (typical for many recognizers), she
would have to correct at least one letter (with a total of at
least 9 strokes).  Here, the user has sketched one letter and
cli cked 3 times.  While this is only one data point, it
should be noted that the mediator is built with appropriate
defaults so that if the user simply ignores it and sketches
the 8 characters, the result will be identical to a situation
without word-prediction.

(a) (b) (c)

Figure 4: A choice mediator which supports specification. The user is writi ng ‘messages’ . (a) The user sketches a
letter       which is interpreted as either a ‘m’ or a ‘w’ by a character recognizer. A word predictor then generates options for
both letters. The user cli cks on the ‘e’ in ‘me.’ (b) This causes the mediator to filt er out all words that do not begin with ‘me.’
The word ‘message’ is now the top choice, but it needs to be plurali zed. The user cli cks on the space after ‘message’ indi-
cating that the mediator should generate a word beginning with ‘message’ but one character longer. (c) The resulting word.
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Figure 5: (a) The original event hierarchy in Figure 4 (a-c) and (b) the final hierarchy after mediation.



Toolkit support for adding alternatives
This example dynamically generates new interpretations
during mediation.  In the example of Figure 4, a new in-
terpretation (‘messages’) is created.  All other interpre-
tations are rejected.  Figure 5 shows the original and
changed hierarchy.  The new event is accepted immedi-
ately since the user just specified that it was correct using
the mediator.  It is then dispatched, with the result that it
is consumed by the text edit window.  No further media-
tion is necessary since neither the new event nor the event
hierarchy it is added to is ambiguous.

Reusability
This mediator can be used with any recognizer that returns
text, including speech recognition or handwriting recogni-
tion, since the alternatives generated by these recognizers
tend to have some similarities to the intended word.  For
example, some of the characters in a written word may be
recognized correctly while others are not.  The general
idea, to add interactivity supporting repetition to a selec-
tion task, can be applied to other domains as well .  For
example, the automatic beautifier, Pegasus, uses a choice
mediator to display multiple lines [14].  Repetition could
be added to this by allowing the user to drag the end point
of a line around.  This would also allow Pegasus to display
fewer alternatives in cases where too many are generated,
in which case the line could snap to hidden interpretations.

OCCLUSION IN CHOICE MEDIATORS
Choice mediators generall y display several possible inter-
pretations on the screen for the user to select from.  They
are fairly large, and may obscure important information
needed by the user to select the correct choice.  Since they
are also temporary, it doesn't make sense to leave screen
space open just for them.  An alternative is to dynamically
make space for them.

For example, consider Burlap, the application shown in
Figure 6 [20].  Burlap is a drawing program for sketching
user interface elements, based on SILK [16].  The user can
sketch buttons, scrollbars, and so-on.  These interactors are
recognized and become interactive.  However, recognition
is error-prone.  For example, checkboxes are easil y con-
fused with radiobuttons.

The n-best list in Figure 6(b) is obscuring two buttons.  Is
the leftmost sketch a checkbox or a radiobutton? This type
of ambiguity is not mediated in Burlap until the user tries
to interact with a button.  So he may have drawn the hid-
den buttons some time ago.  In order to be consistent, the
user may need to see the buttons now in order to determine
their status.

Our solution moves the sketches occluded by the mediator
into a more visible location (Figure 6(c)).  This approach
is based on one of the interface techniques used in fluid
negotiation, a concept that Chang et al. developed for
handling temporary displays of information [5].  Some of
the possible approaches they suggested include shrinking,
fading, and call -outs.  In [5], the temporary display negoti-
ated the best approach with the underlying document.
Because our mediator is used for input as well as output,
and is the focus of the interaction, we have chosen a tech-
nique that only changes the underlying document (the
sketched interface), not the size or shape of the mediator.

Toolkit support for dealing with occlusion
This is accomplished in a way that requires no changes to
the underlying application.  The only difference between
the application shown in Figure 6(b) and (c) is which me-
diator is installed.  The new mediator is based on a lens
that uses the subArctic interactor tree to pick out all of the
interactors that intersect its bounding box.  It then uses the
techniques described in [6] to modify the way they are
drawn (without changing the interactors themselves).  This

(a) (b) (c)

Figure 6: An example of fluid negotiation to position a mediator in the Burlap appli cation. (a) The user needs to mediate whether
the object on the bottom left edge is a checkbox or radiobutton. (b) This mediator (an n-best list) occludes some of the sketched
interactors. (c)  This mediator repositions all i nteractors that intersect with it so as to remove any occlusion.



mediator is modal, the user is required to resolve the am-
biguity before continuing his interaction.

Reusability
This mediator can be used anywhere an n-best list might
be used.  For example, considering the mediators described
in Table 1, this includes word-prediction, speech and
handwriting recognition in GUI settings, and the Remem-
brance Agent [27].  More generall y, similarly to the fluid
negotiation work, the lens responsible for moving screen
elements out from under the mediator could be combined
with any mediator that is displayed on screen in a GUI.  Of
course, there are some situations where occlusion is appro-
priate, such as in the next example.

TARGET AMBIGUITY
We have encountered three major classes of ambiguity in
our work.  These are recognition ambiguity (which word
did she write?); segmentation ambiguity (was that "sew
age" or "sewage"?) and target ambiguity.  In [20], we
described these classes of ambiguity in more detail , and
introduced a mediator of segmentation ambiguity.  In al-
most all previous systems, mediation has only addressed
recognition ambiguity.  Here we demonstrate mediation of
target ambiguity.

Target ambiguity arises when the target of the user's input
is uncertain.  For example, it is unclear if the circle around
the word circle is intended to include "is" or not.

We are interested in using target ambiguity to model
situations that, although they may seem ambiguous to the
user, are commonly treated as straightforward by the com-
puter.  In particular, we are interested in situations where
mouse motion becomes diff icult.  For example, people use
the term “fat finger syndrome” to refer to situations in
which the user's finger is larger than the button they want
to press (very small cell phones, touch screens).  In addi-
tion, misalignment on something li ke a digital white board
can cause a mouse cli ck to go to the wrong interactor.

Also, certain disabiliti es may make it diff icult to control a
mouse, as can age.  For example, research shows that older
users have trouble selecting common GUI targets [31] as
do people with disabiliti es such as cerebral palsy.

These problems can be addressed by treating the mouse as
an area instead of a point [31].  However, the resulting
area may overlap more than one interactor (an example of
target ambiguity).  We mediate this target ambiguity using
a magnifier (Figure 7(b&c)).  This magnifier only appears
when there is a need due to ambiguity.  For context, we
include an area four times the size of the area mouse.  The
magnified area is interactive and users can cli ck on inter-
actors inside it just as they would on an unmagnified por-
tion of the screen.  As soon as the user completes his
action, or the mouse leaves the magnifier, it goes away.

Toolkit support for target ambiguity
First, target ambiguity is generated by a recognizer that
checks for multiple mouse targets.  If only one target ex-
ists, the input is processed normally.  If several targets
exist, the results are passed to the mediator.

It is because of our extremely general support of recogni-
tion that this is possible.  For example, when the extended
mouse area (but not the mouse itself) intersects a single
interactor, this recognizer creates a new mouse event over
that interactor as an interpretation of the raw mouse event
it gets as input.  This interpretation is dispatched and con-
sumed by the interactor, which does not even know that a
recognizer was involved.  As far as the interactor is con-
cerned, the user cli cked on it.

Our mediator makes use of a lens that magnifies the area
under the input [6].  In addition, the lens is responsible for
adjusting any positional input it gets based on the new size
and position of the pixels it is magnifying.

Reusability
The magnification mediator works with any interface built
in OOPS.  This includes animated (moving) interactors;

(a) (b) (c)

Figure 7: (a) The user is trying to cli ck on a button. Which one? (b) A mediator magnifies the area in order to let the user specify
this (The ambiguous choices are displayed in darker colors). (c) An example of the same mediator being used in Burlap.



Burlap; and any other interface which uses mouse cli cks.
Although it is currently limited to mouse input, in theory it
could be generali zed to any positional input.

ERRORS OF OMISSION
The last problem area addressed in this paper is errors of
omission.  An error of omission occurs when some or all of
the user's input is not interpreted at all by the recognizer.
For example, in Figure 8, the user has sketched a radio
button in the lower right, but those strokes were not recog-
nized.  An error of omission has occurred.

The rules used for recognition in Burlap are taken from
[16] and are based upon the shape and size of individual
strokes drawn by the user and the graphical relationships
between sets of strokes (such as distance, orientation, etc.).
When the user draws something too big, too far apart, or
so on, it is not recognized.  In general, the causes of errors
of omission are very recognizer-dependent.  For example,
an error of omission may occur in speech recognition be-
cause the user speaks too quietly.

One solution to this problem is repetition.  The user can
simply try the sketch again.  However, research in both
pen [8], and speech [7], recognition has found that re-
recognition accuracy rates are no better than recognition
rates

We address this with guided re-recognition.  The user can
initiate re-recognition by selecting the strokes that should
have been recognized using the right mouse button.  By
doing this, the user is giving the system important new
information.  In Burlap’s case, the new information is that
the selected strokes should be interpreted as an interactor.
We can use this information to eliminate options, such as
interactors that have a different number of strokes.

Toolkit support for guided re-recognition
Essentiall y what the user is doing in this example is pro-
viding segmentation information to the recognizer.  Al-
though the unistroke gesture recognizer used in Burlap (a

third party recognizer [18]) does not support guided re-
recognition, the interactor recognizer does.  We pass the
selected strokes to the interactor recognizer using reseg-
ment(Set, Object) method described in the toolkit section
of this paper.  The recognizer generates a new set of inter-
pretations based on those strokes.  Because the recognizer
now knows the number of strokes, it can quickly narrow
the possible interactors and generate alternatives.

Since the recognizer generates new events during media-
tion, those events must be dispatched, potentiall y resulting
in further interpretations.  The new events are ambiguous
and OOPS will mediate them (Figure 8(c)), and tell any
currently visible mediators to update themselves to show
the new interpretations.  Any events that were already ac-
cepted or rejected in the hierarchy remain that way.

Reusability
The same mediator could be applied in other graphical
settings with segmentation issues such as handwriting rec-
ognition.  This mediator must be told which recognizer it
should work with (in the case of Figure 8, the interactor
recognizer).  It will automaticall y cache any events gener-
ated by that recognizer.  Alternatively, it may be given a
filter that knows enough about the domain to cache the
correct events.  In either case, once the user specifies an
area, any cached events inside that area are sent to appro-
priate recognizer to be re-recognized.

CONCLUSIONS AND FUTURE WORK
Recognition today is used in many applications and these
applications make use of some common user-interface
techniques, called mediators, for handling the recognition
errors and ambiguity.  However, there are problems with
existing techniques.  Some recognition errors, such as
those caused by target ambiguity and errors of omissions,
are harder to deal with.  Also, there are limitations to how
choice interfaces are commonly handled.

(a) (b) (c)

Figure 8: (a) An interface sketched in Burlap. In the lower right is an unrecognized radiobutton. (b) The user has selected the
radiobutton in order to indicate that re-recognition should occur. (c) Re-recognition is completed, and the result is further ambigu-
ity. One of the possible interpretations generated was a radiobutton. If that is correct, should the new button be in sequence with
the old one, or should it be separate?



The work described in this paper addresses these problems.
All of the mediators presented in this paper were enabled
by the OOPS toolkit.  They were built with the intent to be
re-used in many situations.

We have shown that it is possible to build a variety of
techniques that go beyond the current state of the art in
correction strategies.  Beyond our exploration of the previ-
ously known classes of mediation techniques, we have
shown how principled handling of ambiguity at the input
level allows for mediation in other important settings.

In the future, we wish to explore mediation strategies ap-
pli cable to segmentation errors, non-GUI applications, and
command recognition.  All are diff icult to mediate because
they have no obvious representation (unli ke, for example,
the text generated in handwriting recognition).

We also plan to use the OOPS toolkit to support empirical
work comparing the effectiveness of different mediation
techniques.  OOPS can allow us to build a framework for
evaluating existing and new mediation technologies in a
more controlled setting.  Because we can build a variety of
mediators and easil y apply them to the same application,
controlled studies to compare the effectiveness of the me-
diation strategies is now made much simpler.
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ABSTRACT 
Software support for making effective pen-based 
applications is currently rudimentary. To facilitate the 
creation of such applications, we have developed SATIN, a 
Java-based toolkit designed to support the creation of 
applications that leverage the informal nature of pens. This 
support includes a scenegraph for manipulating and 
rendering objects; support for zooming and rotating objects, 
switching between multiple views of an object, integration 
of pen input with interpreters, libraries for manipulating ink 
strokes, widgets optimized for pens, and compatibility with 
Java’s Swing toolkit. SATIN includes a generalized 
architecture for handling pen input, consisting of 
recognizers, interpreters, and multi-interpreters. In this 
paper, we describe the functionality and architecture of 
SATIN, using two applications built with SATIN as 
examples. 

Keywords 
toolkits, pen, ink, informal, sketching, gesture, recognition, 
interpreter, recognizer, SATIN 

INTRODUCTION 
Sketching and writing are natural activities in many 
settings. Using pen and paper, a person can quickly write 
down ideas, as well as draw rough pictures and diagrams, 
deferring details until later. The informal nature of pens 
allows people to focus on their task without having to worry 
about precision.  

However, although more and more computing devices are 
coming equipped with pens, there are few useful pen-based 
applications out there that take advantage of the fact that 
pens are good for sketching1. Most applications use pens 
only for selecting, tapping, and dragging. These 
applications simply treat the pen as another pointing device, 
ignoring its unique affordances.  

Furthermore, the few compelling applications that do exist 
are built from scratch, despite the fact that many of them 
share the same kinds of functionality. This is because of the 
rudimentary software support for creating pen-based 
applications. Despite the fact that many new and useful pen-

based interaction techniques have been developed, such as 
gesturing1 and pie menus [5], these techniques have not yet 
been widely adopted because they are difficult and time-
consuming to implement.  

With respect to input and output for pens, we are at a stage 
similar to that of windowing toolkits in the early 1980s. 
Many example applications and many novel techniques 
exist, but there are no cohesive frameworks to support the 
creation of effective pen-based applications. As a first step 
towards such a framework, we have developed SATIN2, a 
toolkit for supporting the creation of informal ink-based 
applications [15]. From a high-level perspective, there were 
three research goals for SATIN: 

• Design a generalized software architecture for 
informal pen-based applications, focusing on how to 
handle sketching and gesturing in a reusable manner 

• Develop an extensible toolkit that simplifies the 
creation of such informal pen-based apps 

• Distribute this toolkit for general use by researchers 

As a first step, we surveyed existing pen-based applications 
(both commercial and research) in order to determine what 
shared functionality would be most useful. Afterwards, we 
implemented the first iteration of the toolkit in Java, and 
built our first significant application with it, DENIM [26] 
(see Fig. 1). From the lessons learned, we developed the 
second iteration of SATIN, and built another application, 
SketchySPICE.  

In this paper, we first outline functionality common in 
existing pen-based applications, and take a look at current 
software support for pen-based interfaces. We continue by 
describing the high-level and then detailed design of the 
SATIN toolkit. Specifically, we focus on a generalized 
architecture for handling pen input, consisting of three 
components: recognizers, interpreters, and multi-
interpreters. We describe how pen input is handled in terms 
of the two applications, DENIM and SketchySPICE. We 
conclude with an evaluation of the toolkit, as well as our 
plans for future work and a discussion of lessons learned. 

                                                           
1 By sketching, we mean the process of drawing roughly and 

quickly. We use the term ink for the strokes that appear. By 
gesturing, we mean a pen-drawn stroke that issues a command 

2 The SATIN project page and software download is at: 
http://guir.berkeley.edu/projects/satin 
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PEN APPLICATION SPACE 
Recently, there have been many applications developed that 
use sketching and gesturing. We performed a survey of 
these applications, looking specifically for examples of 
informal ink-based interaction, ones that step away from 
rigid structure and precise computation, instead supporting 
ambiguity, creativity, and communication [15]. Many pen-
based research systems have headed in the direction of 
informal interfaces in recent years, either by not processing 
the ink [11, 41, 43] or by processing the ink internally while 
displaying the unprocessed ink [14, 24, 32, 40]. 

The applications we examined include design tools [9, 12, 
14, 20-22, 24, 43, 47]; whiteboard applications [1, 32, 33, 
37]; annotation tools [41, 44-46]; note-taking applications 
[10, 11, 42]; and applications demonstrating new 
interaction techniques [19, 28, 40]. These applications 
share much functionality with each other, including: 

• Pen input as ink 
• Pen input as gestures 
• Pen input for selecting and moving 
• Interpreters that act on ink input 
• Manipulation of other kinds of objects besides ink 
• Grouping of objects 
• Layering of objects 
• Time indexing of ink input 
• Transformation of ink to other cleaned-up objects 
• Immediate and deferred processing of ink 

Later, in the process of developing DENIM, our first 
application, we discovered we needed techniques for 
managing information, and turned to using zooming and 
semantic zooming, as demonstrated in Pad++ [3] and Jazz 
[4]. We decided that this functionality was useful enough to 
developers that it should be included in the toolkit. 

EXISTING PEN FRAMEWORKS 
In this section, we outline existing frameworks for 
developing pen-based applications, and describe where 
SATIN builds on their ideas.  

Commercial Software Support for Pens 
PalmOS [8] offers some very simple pen input processing. 
The default behavior is to process strokes and taps in the 
silk screen area as key events, with all other strokes passed 
on to the application for processing. PalmOS also provides 
some APIs for getting individual stroke points, enabling 
and disabling the Graffiti shorthand recognizer, and for 
getting the last known location of the pen. 

Microsoft Windows for Pen Computing [29] provides 
minimal support for pens. Text entry areas were replaced 
either by handwriting edit controls (hedit) or by boxed 
edit controls (bedit), in which individual characters can 
be written. Simple gesture recognition was also supported. 
These extensions give the developer very little support for 
building informal ink-based applications.  

In Windows CE [30], pen input is treated as a subset of 
mouse input. Applications can receive messages when the 
pen is moved, goes down, comes up, and is double-tapped. 
Windows CE also provides simple handwriting recognition. 

NewtonOS [2] uses sheets of paper as its input metaphor. 
Users can write on these sheets without having to explicitly 
save. Furthermore, users can specify several ink modes in 
which strokes are processed as text, as shapes, or left 
unprocessed as raw ink. Recognition errors can be 
corrected by choosing from an n-best list. Gestures are also 
integrated into the system. Drawing a zig-zag shape over a 
word or shape, known as scrubbing, deletes that object. 
Holding down the pen for a second activates select mode. 
After select is enabled, the user can drag the pen and either 
highlight or circle the objects to select. Lastly, NewtonOS 
provides an extensive widget set for pens, designed to 
minimize the amount of end-user writing necessary.  

Perhaps the most sophisticated commercial support for pens 
was in GO Corporation’s PenPoint [6]. PenPoint is an 
operating system built from the ground up to support pens. 
Besides providing many of the services described above, 
such as gestures and pen widgets, PenPoint also has such 
features as live embedding of documents within documents, 
and extensive integration of gesture recognition and 
handwriting recognition.  

There are two main differences between SATIN and the 
systems described above. First, all of the systems listed 
above are designed to build formal user interfaces, and are 
thus focused on handwriting recognition and form entry 
tasks. In contrast, SATIN is targeted towards the 
development of informal ink-based applications. The 
second difference is extensibility. Aside from handwriting 
recognition, the systems listed above provide minimal 
support for manipulating and processing ink. In contrast, 
one of our primary goals with SATIN was to give 
developers flexibility in how ink is processed and to make it 
simple to do so. For example, new gestures cannot be added 
in the systems described above. 

Figure 1 – A screenshot of DENIM, a sketch-based web 
site design tool created on top of SATIN 



Research Software Support for Pens 
Simple ink and gesture support is provided in Artkit [16]. 
Artkit uses the notion of sensitive regions, invisible 
rectangles that can be placed on top of screen objects. The 
sensitive region intercepts stroke input, and processes the 
input in a recognition object, which possibly forwards a 
higher-level event to the screen object underneath.  

Mankoff et al., extended the subArctic toolkit [17] to 
support inking, gesturing, and recognition, specifically for 
exploring techniques in resolving ambiguity [28].  

Garnet [23, 34] and Amulet [36] also have support for 
gestures. A gesture interactor was added to these toolkits to 
support recognizing pen gestures using Rubine’s algorithm 
[39]. The recognizer simply calls the registered callback 
procedure with the result as a parameter. No other pen and 
ink-based support is provided. 

Flatland [18, 37] is a lightweight electronic whiteboard 
system that has much in common with SATIN. Flatland 
uses the notion of segments to divide up screen space, and 
uses strokes both as input and as output. Furthermore, 
behaviors can be dynamically plugged into segments, 
changing how stroke input is processed and displayed. This 
architecture is very similar to SATIN.  

One clear difference between Flatland and SATIN is 
Flatland combines mechanism and policy in several cases, 
mixing how something is done with when it is done. For 
example, in Flatland, all strokes belong to a segment, and 
new segments are automatically created if a stroke is not 
drawn in an existing segment, whether or not an application 
designer wants a new segment. Our goal with SATIN was 
to focus on fine-grained mechanisms that can be used for a 
range of ink-based applications. Another difference is that 
Flatland only allows one application behavior to be active 
in a segment at any time. We introduce the notion of multi-
interpreters to manage multiple interpreters. 

Kramer’s work in translucent patches and dynamic 
interpretations [21, 22] significantly influenced the design 
and implementation of SATIN. We use Kramer’s notions of 
patches and dynamic interpretation, but again, our focus is 
at the toolkit level. 

The chief characteristics that differentiate SATIN from all 
of the work above are flexibility and fine granularity. We 
are focused on developing an extensible toolkit. We 
provide a set of mechanisms for manipulating, handling, 
and interpreting strokes, as well as a library of simple 
manipulations on strokes, with which developers can build 
a variety of informal pen-based applications. 

HIGH LEVEL DESIGN OF SATIN 
SATIN is intended to support the development of 2D pen-
based applications. We chose to support 2D instead of 3D 
since most of the applications surveyed utilize two 
dimensions only. The current implementation of SATIN 
does not support multiple users, as that introduces another 
level of complexity beyond the scope of this project. 

SATIN is built in Java, using JDK1.33. SATIN uses Java2D 
for rendering, and makes extensive use of the Java core 
classes as well as the Swing windowing toolkit [31].  

Fig. 2 shows how a pen-based application would be built 
using SATIN, Swing, and Java. Roughly speaking, SATIN 
can be partitioned into twelve interrelated concepts (See 
Table 1). Each of these concepts is briefly summarized in 
the next section. Some of these concepts are very loosely 
coupled to one another, and can be used independently of 
the rest of the toolkit. In other words, a developer can use 
some portions of the SATIN toolkit without a complete 
buy-in of the entire system.  

 
Figure 2 – This diagram shows the relationship between 
Java, Swing, SATIN, and pen-based applications. 
 

Concept Can use outside SATIN? For pens only? 

Scenegraph No No 

Rendering No No 

Views No No 

Transitions No No 

Strokes Some portions Yes 

Events No Yes 

Recognizers Some portions Yes 

Interpreters No Yes 

Clipboard No No 

Notifications Yes No 

Commands Yes No 

Widgets Yes Yes 
 

Table 1 – The twelve major components in SATIN. Some 
portions of SATIN have been designed to be independent 
of the rest of the system and can be used outside of SATIN. 

Design Overview 
We call objects that can be displayed and manipulated 
graphical objects. Like most 3D modeling systems (such as 
Java3D and OpenGL) we use the notion of a scenegraph, a 
tree-like data structure that holds graphical objects and 
groups of graphical objects. The simplest graphical object 
that the user can create is a stroke, which is automatically 
created in SATIN by the path drawn by a pen or mouse. 
Another primitive graphical object is a patch, an arbitrarily 
shaped region of space that can contain other graphical 

                                                           
3 We began SATIN in JDK1.2, and transitioned to each early 

access version of the JDK as they were released.  



objects. Patches interpret strokes either as gestures or as 
ink. Our notion of patches is derived from the work by 
Kramer [21, 22]. SATIN also provides a sheet, which is a 
Java Swing component as well as a graphical object. A 
Sheet serves as the root of a scenegraph, and is essentially a 
drawing canvas that can contain SATIN objects. 

Graphical objects have x-, y-, and layer-coordinates. The x-
axis and y-axis coordinates are Cartesian coordinates. The 
layer-coordinate is used to denote the relative position of 
one graphical object to another along the z-axis. That is, 
SATIN simply keeps track of which objects are on top of 
others, but does not store exact z-axis coordinates. 

Graphical objects also have styles. Styles take many of the 
graphics concepts in Java, such as line style, color, and 
font, and translucency, abstracting them out into a single 
object. Styles are automatically applied by the rendering 
subsystem when rendering. 

When rendering, SATIN uses the same damage-redraw 
cycle that is standard in windowing systems. The system 
never repaints a region unless it is marked damaged. If an 
area is damaged, then only the graphical objects in the 
damaged area are traversed. For common operations, such 
as translation and rotation, graphical objects automatically 
damage the region they are in. For application-specific 
operations, however, the developer may need to explicitly 
call the damage method.  

SATIN also automatically changes the rendering quality 
depending on the current context. For example, when the 
user is drawing strokes, the damaged areas are rendered in 
low quality in order to speed up performance. However, 
when the stroke is completed, SATIN reverts to the highest 
quality rendering level. 

Graphical objects have one or more view objects, which 
dictate how a graphical object is drawn. If a graphical 
object has more than one view, then it must also have a 
MultiView, an object that specifies the policy of which view 
objects are rendered and when. An example multi-view we 
have included is a Semantic Zoom Multi View, which uses 
the current zoom scale to choose the view to be displayed, 
as in Pad++ [3] and Jazz [4].  

SATIN provides support for simple transitions on graphical 
objects, such as zooming and rotation. Given a graphical 
object and a transform, the system can automatically 
generate and render the intermediate steps, providing a 
smooth animation. The default transition type is Slow-In / 
Slow-Out [7, 25], a transition that spends the majority of 
time in the beginning and in the end of the animation. 

There are also several classes for manipulating strokes. The 
stroke assembler aggregates user input into strokes and 
dispatches them as events to graphical objects. Each 
graphical object knows how to handle stroke events, and 
can choose how the stroke events are handled. This process 
is described in more detail in the Detailed Design section. 
There are also utility classes for manipulating strokes, such 

as splitting strokes, merging strokes, turning strokes into 
straight lines, and for simplifying strokes. 

We use the term recognizers to mean subsystems used to 
classify ambiguous input, such as ink strokes. In SATIN, 
we have defined recognizers as objects that take some kind 
of ambiguous input and return a well-defined n-best list of 
classifications and probabilities ordered by probability. 
This definition allows us to plug in other stroke recognizers 
into the system. Examples of stroke recognizers include 
Rubine’s recognizer [38, 39] and neural net recognizers. 
Currently, SATIN only contains the gdt [27] 
implementation of Rubine’s recognizer. Recognizers may 
or may not retain state across classifications. However, 
recognizers do not take any kind of action based on the act 
of classification. Instead, this is left to interpreters.  

Interpreters take action based on user-generated strokes. 
For example, one interpreter could take a stroke and 
transform it into a straight line. A different interpreter could 
issue a command if the stroke resembled a gesture in the 
system. Interpreters can use recognizers to classify strokes, 
but are not required to do so.  

We distinguish between gesture interpreters and ink 
interpreters. A gesture interpreter tries to process a stroke 
as a command (e.g., cut), while an ink interpreter processes 
a stroke and displays the result as ink (e.g., straightens it 
out). We also make the distinction between progressive-
stroke interpreters and single-stroke interpreters. A 
progressive-stroke interpreter tries to perform actions as a 
stroke is being drawn, while a single-stroke interpreter only 
takes action after a stroke is completed. SATIN currently 
does not support multi-stroke interpreters. 

A graphical object can have one or more gesture 
interpreters, as well as one or more ink interpreters. Like 
views, a MultiInterpreter specifies the policy for which 
interpreters are used when more than one is present. Multi-
interpreters are a new concept introduced in SATIN, and 
are discussed in the Detailed Design section. 

The clipboard acts the same as in modern GUIs, supporting 
cut, copy, and paste for graphical objects.  

Notifications are messages generated and sent internally 
within the system in order to maintain consistency. These 
messages are often used to maintain constraints between 
graphical objects or to notify objects that a graphical object 
has been deleted. 

Commands are a common design pattern used for 
supporting macros, as well as undo and redo [13, 35]. 
Commands reify operations by encapsulating a transaction 
into an object that knows how to do, undo, and redo itself. 
SATIN’s command subsystem extends the one provided in 
Java Swing (javax.swing.undo), by adding in the 
notion of executing a command (instead of simply undoing 
an operation). The command subsystem also has a notion of 
time, tracking when commands were executed, as well as 
allowing classes of commands to be enabled and disabled. 



Application developers are not required to use the 
command subsystem in order to use SATIN. The Command 
subsystem can also be used outside of SATIN. 

SATIN also provides some widgets optimized for pens. 
Currently, the only new widget we provide is a pie menu [5] 
that can be used as a normal Java Swing widget. The pie 
menu implements javax.swing.MenuElement, 
Swing’s menu interface, and in many cases can be used in 
lieu of normal pop up menus with few changes to the code.  

We also provide a Pen Pluggable Look and Feel 
(PenPLAF). The PenPLAF uses Java Swing’s pluggable 
look and feel [31] to modify the standard file opener and 
slider widgets to make them easier to use for pens. The file 
opener was modified to accept single mouse clicks to open 
folders (instead of double clicks). The slider was modified 
to have a larger elevator, as well as the ability to have the 
slider value changed by tapping anywhere on the slider. The 
pie menu and the PenPLAF are not tied to SATIN, and can 
be used in Java applications outside of the toolkit. 

Bridging the Gap between Java Swing and SATIN 
We also provide some classes to help bridge the gap 
between SATIN and Java Swing (See Fig. 3). Currently, 
SATIN support for Swing consists of two classes. The first, 
GObJComponent4, wraps up Swing widgets in a SATIN 
graphical object. Thus, Swing widgets can be displayed in 
SATIN, though full interaction (e.g., keyboard input), has 
not yet been completed. The second, GObImage, allows 
Java Image objects to be displayed in SATIN. This 
enables SATIN to be able to display any image file format 
that Java understands. 

Conversely, SATIN can be used in Swing applications. As 
stated before, the Sheet is both the root of a scenegraph in 
SATIN and is a fully compatible Swing widget. A 
JSatinComponent is a Swing widget that wraps around 
a SATIN graphical object, letting SATIN graphical objects 
be displayed in Swing applications. Lastly, 
SatinImageLib provides some utilities for turning 
SATIN graphical objects into Java Image objects. This 
enables SATIN to be able to write out to any image file 
format that Java understands. 

DETAILED DESIGN OF SATIN INK HANDLING 
In this section, we describe strokes, recognizers, and 
interpreters in more detail, as well as how they interact with 
each other at runtime. 

Strokes 
In SATIN, strokes are simply a list of (x, y, t) tuples, 
where x is the x-coordinate, y is the y-coordinate, and t is 
the time the point was generated (since the Unix epoch). 

SATIN also provides some utilities and interpreters for 
manipulating strokes, including splitting a stroke into 
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Figure 3 – Classes bridging the gap between SATIN and Java 
Swing. Swing widgets can be displayed in SATIN, and SATIN 
graphical objects can be embedded in Swing applications. 
 

 
Figure 4 – Two example policies of splitting strokes. The thicker 
line is a gesture created by pressing the right button. 
 

 
Figure 5 – At the top, two separate strokes near each other are 
combined into a single stroke. In the middle, two separate 
strokes that intersect near their endpoints are merged into a 
single stroke. At the bottom, two separate strokes that intersect 
near both of their endpoints are merged into a closed shape. 
 

 
Figure 6 – Two examples of straightening strokes. 



smaller substrokes, merging strokes together, straightening 
strokes into straight lines, and simplifying strokes. 

Strokes can be split by specifying a rectangle in which all 
substrokes will be removed. Fig. 4 shows a sample 
interpreter that removes substrokes that lie in the bounding 
box of the gesture stroke. 

Fig. 5 shows some examples of merging strokes. To see if 
two strokes can be merged, the algorithm first checks if the 
two strokes are near each other. If they are, then the 
algorithm checks if either extremity of one stroke is near an 
extremity of the other. If a successful match is made, then 
the two extremities are joined together in a new stroke, with 
short trailing ends discarded. 

SATIN straightens strokes by changing strokes to lines that 
go up, down, left, or right (See Fig. 6). To straighten a 
stroke, we first examine each pair of adjacent points and 
classify each pair as going up, down, left, or right. For each 
subsequence of points that is going the same direction, we 
create a line that goes through the average value of that 
subsequence. After this is done, all of the lines created are 
joined together and returned as a new stroke. 

 
Figure 7 – Two examples of stroke simplification. The 
algorithm generates a stroke similar to the original stroke, 
but has fewer points and can thus be rendered faster. 

SATIN also provides utilities for simplifying strokes (See 
Fig. 7). This technique is automatically used to help speed 
up animated transitions. The following approach is used to 
simplify a stroke: 

• For each point, calculate the absolute angle relative 
to the stroke’s top-left corner using atan2() 

• Calculate the angle delta between each adjacent pair 
of points 

• Add the starting and ending point of the original 
stroke to the simplified stroke 

• Go through the deltas and add each local minima to 
the simplified stroke 

Once a stroke is simplified, it is cached in the system. On a 
sample set of fifty strokes, the number of points reduced 
ranged from 20% to 50%, averaging a 32% reduction. 
Using a battery of performance regression tests using 100 to 
1000 strokes, the performance speedup5 for animating the 
simplified strokes ranged from 1.02 to 1.34, with an 
average speedup 1.11. Speedup improves somewhat 
linearly as the number of strokes is increased, as expected. 
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Recognizers 
In SATIN, a recognizer is a subsystem that classifies 
ambiguous input, which in our case are strokes. SATIN 
defines a standard interface for two types of recognizers: 
progressive stroke and single stroke recognizers. These 
definitions are not mutually exclusive, so a recognizer could 
be both a progressive and a single stroke recognizer. 
SATIN also defines a Classification object, which 
recognizers are defined to return when passed a stroke to 
classify. The classification is simply an n-best list of beliefs, 
ordered by probability. This definition for recognizers 
means that new recognizers can be plugged into the system 
simply by implementing the defined interface.  

Interpreters 
The class diagram in Fig. 8 illustrates the relationship 
between the classes used for interpretation, and shows some 
of the interpreters built in SATIN.  

Besides processing strokes, interpreters are also stroke 
event filters, meaning they can specify what kinds of strokes 
they will accept. The simplest filter accepts or rejects 
strokes depending on which pen button was held when 
creating the stroke. Another kind of filter rejects strokes 
that are too long. In addition to filtering, individual 
interpreters can also be disabled, meaning that they will not 
process any strokes at all. 

Some of the interpreters, on the right side of Fig. 8, have 
already been discussed (see above), or will be discussed 
with DENIM and SketchySPICE (next section). The more 
interesting part is the left portion of Fig. 8, which shows the 
multi-interpreters. Multi-interpreters are collections of 
interpreters combined with a policy that controls which 
interpreters are used and when they are used.  

The default multi-interpreter is the Default Multi 
Interpreter, which simply calls all of the interpreters it 
contains, stopping when one of the interpreters says that it 
has successfully handled the stroke. The Multiplexed Multi 
Interpreter lets the developer specify one interpreter as 
active, which can be changed at runtime. The Semantic 
Zoom Multi Interpreter enables and disables interpreters 
depending on the current zoom level. 

Runtime Handling of Strokes 
Strokes are dispatched to graphical objects in a top-down 
manner: strokes are sent first to the parent before being re-
dispatched to any of the parent’s children. A stroke is re-
dispatched to a child only if the child contains the stroke 
entirely (within a certain tolerance). By default, graphical 
objects handle strokes in a four-step process, as follows: 

• Process the stroke with the gesture interpreters 
• Re-dispatch the stroke to the appropriate children 
• Process the stroke with the ink interpreters 
• Handle the stroke in the graphical object 



At any point in this process, an interpreter or a graphical 
object can mark the stroke as being handled, which 
immediately stops the dispatching process. We give some 
examples of how strokes are handled in the DENIM and 
SketchySPICE sections below. 
We chose this four-step approach as the default in order to 
separate handling of gestures from handling of ink. 
Processing gestures first lets gestures be global on the 
Sheet, or within a patch. This default approach can also be 
overridden in user code. 
 

APPLICATIONS BUILT WITH SATIN 
In this section, we describe two applications built using the 
SATIN toolkit, their high-level architectures, as well as 
how strokes are processed and interpreted in each. 

First Application – DENIM 
DENIM [26] is a web site design tool aimed at the early 
stages of information, navigation, and interaction design 
(See Figs. 1 and 9). An informal pen-based system [15], it 
allows designers to quickly sketch web pages, create links 
among them, and interact with them in a run mode. 
Zooming is used to integrate the different ways of viewing a 
web site, from site map to storyboard to individual page. 

Although there are many gesture and ink interpreters in 
DENIM, from a user perspective, DENIM seems to use a 
minimal amount of recognition. Gestures are differentiated 
from ink by using the “right” pen button, while ink is 
created using the “left” button. This is the behavior we 
selected in DENIM, but can be modified in SATIN. 

The scenegraph is comprised of five objects: the sheet, 
labels, panels, ink strokes, phrases, and arrows. The sheet is 
the root of the scenegraph. Labels are titles of web pages, 
for example “Lodging” and “Cabernet Lodge.” Labels are 

sticky, meaning that they are always displayed the same 
size, to ensure that they can always be read at the same size 
they were created. Panels are located beneath labels, and 
represent the content in a web page. Ink strokes are what 
are drawn in a panel. Phrases are collections of nearby 
strokes automatically aggregated together. Arrows connect 
ink and phrases from one page to another page. 

Currently, DENIM only uses single stroke interpreters. All 
strokes are first passed through the Sheet’s gesture 
interpreters, and then, if rejected by all of the gesture 
interpreters, are passed to the ink interpreters6. The gesture 
interpreters used in DENIM are all provided by SATIN, 
and include (in the order called): 

• hold select, which processes a tap and hold to select 
shallowly if zoomed out (i.e. selects top-level 
scenegraph objects such as panels), or deeply if 
zoomed in (i.e. deeper level scenegraph objects, 
such as individual ink and phrases) 

• circle select, which processes a circle-like gesture 
to select everything contained in the gesture (again 
shallowly or deeply depending on zoom level) 

• move, in which all selected objects are moved the 
same distance the pen is moved 

• standard gesture, which uses Rubine’s recognizer 
[39] to recognize simple gestures like cut, copy, 
paste, undo, redo, and pan. Some gestures work 
shallowly if zoomed out, deeply if zoomed in. 
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gesture interpreters in DENIM only accept “right” button, and 
all ink interpreters only accept “left” button. 

 
Figure 8 – Class diagram for Interpreters and Recognizers. Arrows point up towards parent classes. Rounded rectangles  

are interfaces; dashed square rectangles are abstract classes, and solid square rectangles are concrete classes.  



 

If a stroke is not a gesture, then we check if the stroke 
should be re-dispatched to any of the Sheet’s children, 
which in this case are labels and panels. A stroke is re-
dispatched only if the label or panel bounds contain the 
stroke. If the stroke is re-dispatched to the label, then it is 
added to the label. If the stroke is re-dispatched to a panel, 
it is first processed by a phrase interpreter, which tries to 
group nearby ink strokes together in a single phrase object. 
Otherwise, it is just added to the panel as ink. 

If the stroke is not re-dispatched, then the stroke is 
processed by the Sheet’s ink interpreters. The ink 
interpreters are part of DENIM’s code base, and include (in 
the order they are called): 

• arrow, which processes lines drawn from one page 
to another, replacing the line by an arrow 

• label, which processes ink that might be 
handwritten text, creating a new label & web page  

• panel, which processes ink that resembles large 
rectangles, creating a new label and web page 

If the stroke is not handled by any of the Sheet’s ink 
interpreters, then it is just added as ink to the Sheet. 

The pie menu is attached to the Sheet, and is activated by 
clicking the right button and not moving too far. We 
assigned this behavior so as not to interfere with gestures. 

Second Application – SketchySPICE 
SketchySPICE7 is a simple circuit CAD tool intended as a 
demonstration of some features in SATIN (Figs. 10 and 
11). Users can sketch AND, OR, and NOT gates, as well as 
wires connecting these gates. As proof-of-concept, AND 
and OR gates can be drawn in two separate strokes instead 
of just one, but this feature uses specific domain knowledge 
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and is not part of SATIN. Once an object is recognized, 
SketchySPICE will take one of two actions, depending on 
the current mode. In immediate mode, recognized sketches 
are replaced immediately by a cleaned up version. In 
deferred mode, recognized objects are left sketchy, but 
feedback is provided to let users know that the object was 
recognized. This feedback consists of drawing the 
recognized object translucently behind the sketched object. 

Individual gates can be selected and “cleaned up” to be 
displayed as formal looking gates, or can be “sketchified” 
and returned to their roughly drawn origins. In addition, the 
entire diagram can be cleaned up or sketchified. 

The only new interpreter is the Gate interpreter. When a 
new stroke is added, the Gate interpreter looks at that stroke 
and the last stroke that was added. The two strokes are 
classified by Rubine’s recognizer [39]. If the two separate 
classifications combined have a high probability of being a 
gate, then an AND Gate or an OR Gate object is added. 

EVALUATION OF SATIN 
SATIN has been in development for about two years, and is 
currently in its second iteration. There are about 20,000 
source lines of code, and 13,000 comment lines of code, 
distributed in 2192 methods in 180 source code files. 
SATIN also uses debugging, collection, and string 
manipulation libraries developed by our research group, 
consisting of about 8000 source lines of code. 

 
Figure 9 – A screenshot from DENIM, an application built 
on top of SATIN. This picture shows some ink, as well as 
the pie menu provided by SATIN. The Swing slider on the 
left is used to zoom in and out, and was modified by the 
PenPLAF to have a larger elevator, as well as the ability to 
have its value changed by taps anywhere on the slider. 

 
Figure 10 – A screenshot from SketchySPICE. 

 
Figure 11 – SketchySPICE gives feedback by rendering 
the formal representation of the object translucently 
(top). An object can be displayed either in its original 
sketchy format, or in a cleaned-up format (bottom). 



In contrast, DENIM, a fairly mature and large app, is only 
about 9000 source lines of code in 642 methods. The four 
interpreters in DENIM (arrow, label, panel and phrase) are 
only 1000 lines of code. Overall, it took three people three 
months to implement DENIM as described in [26]. 

SketchySPICE, a small proof-of-concept application, took 
about three days to implement. It is only 1000 lines of code 
in 32 methods. Half of the code is devoted to the pie menu, 
and 350 lines to the Gate interpreter.  

 SATIN DENIM SketchySPICE 
#source files 180 76 7 
size of source 
files (kbytes) 

1900 865 63 

#methods 2192 642 63 
#comments 
lines of code 

13000 4500 400 

#source lines 
of code 

20000 9000 1000 

#class files 220 131 32 
Table 2 – Code size of SATIN and applications 

Performance 
We have used performance regression tests throughout the 
development of SATIN. The regression test suite is a 
repeated battery of operations, comprised of adding 
randomly generated graphical objects (always using the 
same seed value), zooming both in and out, and rotating. 
The regression tests were all run on the same computer, a 
Pentium II 300MHz running Windows NT 4.0 with a 
Matrox Millennium II AGP video card. 

The overall performance speedup, from when the first 
regression test was run to when this paper was written, is 
1.87. Approximately 54% of the speedup is due to code 
optimizations in SATIN, with the rest due to performance 
enhancements in the Java Virtual Machine. The two most 
significant gains came from polygon simplification and 
reduction of temporary objects generated.  

FUTURE WORK 
We are currently implementing a more extensive PenPLAF, 
which would make existing Java Swing applications more 
usable with pens. Besides eliminating the need for double-
taps and making some widgets larger, we are also looking at 
integrating handwriting recognition and other interpreters 
with the existing Swing widgets. 

Furthermore, we are working on making interpreters more 
sophisticated. For example, we are looking at mechanisms 
for adding in notions of time, to make it easy for developers 
to specify operations in which the pen must be held down 
for a period of time. We are also examining techniques to 
make it easier for developers to manage ambiguity. This 
ranges from implementing reusable, generic probabilistic 
data structures and algorithms, to interaction techniques, 
such as the mediators suggested by Mankoff [28]. 

SUMMARY 
We introduced SATIN, a Java-based toolkit for developing 
informal pen-based user interfaces. By informal interfaces, 
we mean user interfaces that step away from the rigidity of 
traditional user interfaces, supporting instead the flexibility 
and ambiguity inherent in natural modes of communication. 
As a reusable toolkit, SATIN provides features common to 
many informal pen-based prototypes, including scenegraph 
support, zooming, multiple views, and stroke manipulation.  

We have also described a generalized software architecture 
for informal pen-based applications that can handle 
sketching and gesturing in an extensible manner. This 
architecture consists of separating recognizers, which are 
components that classify strokes, from interpreters, which 
are components that process and manipulate strokes. 
Furthermore, multi-interpreters allow developers to specify 
policies of which interpreters are used and when they are 
used. Combined together, these features in the SATIN 
toolkit simplify application implementation.  

With respect to input and output for pens, we are at a stage 
similar to that of windowing toolkits in the early 1980s. 
There are many bits and pieces here and there, but no 
cohesive frameworks to support the creation of effective 
informal pen-based applications. We hope that SATIN will 
be a significant step towards creating such a framework. 

SATIN has been publicly released and can be found at: 
http://guir.berkeley.edu/projects/satin 
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Abstract 
 

This paper describes Lipi Toolkit (LipiTk) - a 
generic toolkit whose aim is to facilitate development 
of online handwriting recognition engines for new 
scripts, and simplify integration of the resulting 
engines into real-world application contexts. The 
toolkit provides robust implementations of tools, 
algorithms, scripts and sample code necessary to 
support the activities of handwriting data collection 
and annotation, training and evaluation of 
recognizers, packaging of engines and their 
integration into pen-based applications. The toolkit is 
designed to be extended with new tools and 
algorithms to meet the requirements of specific scripts 
and applications. The toolkit attempts to satisfy the 
requirements of a diverse set of users, such as 
researchers, commercial technology providers, do-it-
yourself enthusiasts and application developers. In 
this paper we describe the first version of the toolkit 
which focuses on isolated online handwritten shape 
and character recognition. 

Keywords: Online Handwriting Recognition, Shape 
Recognition, Toolkit, Linguistic Resources, API 

1. Introduction 
There are still large parts of the world 

characterized by the extensive use of paper and 
handwriting in all facets of society, and poor 
penetration of traditional PCs and keyboards. In India 
for instance, only 12 in 1000 persons have PCs, as 
compared to 785 in the US, and over 500 in most 
Western European countries1. In this setting, products 
and solutions with pen and/or paper-based interfaces 
may play an important role in making the benefits of 
Information Technology more pervasive. HWR is an 
important technology in order to research appropriate 
user interfaces, and create innovative products, 
solutions and services for these markets. For example, 
the Gesture Keyboard [14] is an experimental desktop 
peripheral that uses recognition of handwritten 
gestures for Indic text input, and form-filling solutions 
in local languages also appear to have potential [15]. 

 
1 2004 figures, Source: Gartner Report 

Unfortunately for many of the languages in these 
parts of the world - such as the Indic languages - no 
commercial handwriting recognition technology 
exists. The central problem being addressed in this 
paper is: how can we simplify the creation of HWR 
technology for a new script, and how can we simplify 
its integration into real-world applications?  This 
problem has been addressed by sister language 
technology communities working on speech 
recognition, speech synthesis, and machine translation 
through the creation of toolkits comprised of tools and 
algorithms that can be used to create language 
technology for a new language [1,2]. The issue of 
integration has been addressed by the creation of 
standard interfaces/protocols such as MRCP for 
speech recognition engines [3].  However, to the best 
of our knowledge, no generic toolkit or standards 
exist for online handwriting recognition.  
 
1.1. The Lipi Toolkit 

There are many different challenges involved in 
developing a “generic” toolkit for online handwriting 
recognition. The first is that the toolkit should provide 
good enough generic components to perform 
reasonably well on simple as well as complex scripts, 
while providing the flexibility to tune, extend or even 
replace them with more suitable components, to meet 
the challenge of a particular script or application. A 
second challenge is to balance the needs of different 
classes of potential users (Figure 1). For researchers in 
handwriting recognition, the toolkit should serve as a  

 

Figure 1. Design goals of Lipi Toolkit 

research bed to experiment with new algorithms. For a 
certain class of do-it-yourself enthusiasts, it should 
allow the creation of engines for new shapes and 



  
 
scripts out of the box, without requiring much 
knowledge of the algorithms. For a potential vendor 
interested in building commercial HWR engines, it 
should support the building of robust engines for new 
scripts. Finally, for the application developer, it 
should allow easy integration of engines built using 
the toolkit into any pen-based application. 

The Lipi Toolkit (“lipi” being Sanskrit for 
“script”) is our effort to create a generic toolkit whose 
components can be used to build an online HWR 
engine for a new script, while addressing the 
challenges described. There are three distinct stages in 
the lifecycle of the toolkit. In the first stage, standard 
tools and algorithms are packaged into a 
“downloadable toolkit”. In the second stage, an 
intermediate user (such as a researcher or vendor) 
downloads the toolkit source and binaries, 
experiments with and potentially modifies the 
algorithms or adds new ones in order to build a 
custom engine for a new script and/or application 
context. In the third stage, an end-user (such as the 
application developer) integrates the built engine into 
a pen-based application. The three stages can clearly 
be separated temporally and spatially and involve very 
different sets of users. While designing the toolkit, our 
emphasis is primarily in the first stage, while ensuring 
that the toolkit supports the second and third stages in 
the hands of the respective user groups. 

The first version of the toolkit (LipiTk 1.0) 
supports the recognition of isolated handwritten 
shapes and characters, as well as boxed words, 
captured as digital ink. The components of the toolkit 
make it possible to carry out all the steps involved in 
building a character recognition engine. These 
components are represented in Figure 2 and described 
in Section 3. But first we take a look at some of the 
salient features of the toolkit in the light of previous 
efforts. 

2. LipiTk: Salient Features  
While toolkits such as Sphinx from Carnegie 

Mellon University [1] and Festival from University of 
Edinburgh [2] exist for problems such as Automatic 
Speech Recognition and Speech Synthesis 
respectively, we believe LipiTk to be one of the first 
to address the problem of online HWR.  Open source  
implementations of online gesture and character 
recognition such as Rosetta [4], XStroke [5] and 
WayV [6] are not primarily intended for 
experimentation with HWR algorithms, which is one 
of the (many) core goals of LipiTk. 

LipiTk is designed to support a data-driven 
methodology for the creation of recognition engines. 
This implies tools for handwriting data collection and 
annotation, standard script-independent algorithms for 
preprocessing and feature extraction, algorithms for 

training and pattern classification, and tools for 
subsequent evaluation and error analysis.  

While many handwriting recognition algorithms 
are script specific, LipiTk is intended to provide 
robust implementations of generic features and 
classifiers that are expected to perform reasonably 
well on any given set of symbols by learning the 
statistical shape properties of that set. This allows a 
reasonably performing recognition engine to be built 
with a minimum of effort. 

One of the characteristics of handwriting 
recognition is that no single approach or set of 
features/classification algorithms is known to work 
optimally for all scripts. Also, the nature and quality 
of the input (digital ink) tends to vary widely with the 
capture device. LipiTk has been designed to 
accommodate different tools and algorithms specific 
to the device, script and/or application.  

LipiTk 1.0 uses open standards such as UNIPEN 
[17] for the representation of digital ink and its 
annotation, facilitating the creation of shareable 
linguistic resources within the community. Future 
versions may use W3C InkML [18] and UPX [19] for 
digital ink and annotation respectively.  

There is a focus on robust and efficient 
implementation of algorithms in LipiTk, in order to 
facilitate the integration of engines created using the 
toolkit into real-world applications.  

LipiTk also specifies standard shape and word 
recognition interfaces for recognition engines. All 
engines built using the toolkit hence expose a standard 
interface, simplifying their integration into pen-based 
applications. The shape recognition API is less 
ambitious in some aspects than previous efforts [7], 
but is distinct from them in that it includes training 
and online adaptation of shape recognizers. 

3. LipiTk Architectural Design 
The Lipi Toolkit was intended to support both 

Windows and Linux platforms, hence its design and 
implementation considers portability related issues. 
Most of the algorithms and tools are implemented 
using C++ & STL. Only ANSI functions are used for 
portability. Some of the utilities and scripts are written 
in Perl.  The major components of the toolkit are 
described below. 

 
3.1. Generic Class and Utilities Library 

The generic class library includes classes to store 
and manipulate ink traces, such as Trace and 
TraceGroup, and classes to store device and screen  

 
 

 



  
 

 
 

Figure 2. Lipi Toolkit Architecture and Components 

 
context. These classes are shared by different 
algorithm and tool implementations.  The design of 
these classes reflects a tradeoff between a 
conceptually intuitive and object-oriented data model, 
and efficient access to frequently accessed attributes, 
such as X and Y channels in the case of ink traces. 

The utilities library provides utility functions to 
read and write LipiTk configuration files, read and 
write UNIPEN data files, and so on. 

 
3.2. HWR algorithms 

LipiTk 1.0 provides implementations of common 
preprocessing operations, common shape recognition 
algorithms, as well as a boxed field recognizer which 
iteratively calls one of the shape recognizers to 
interpret a boxed field of ink input. The preprocessing 
module, as well as the shape recognition and boxed 
field recognition modules are implemented as separate 
dynamic link libraries that can be loaded at runtime.  

3.2.1. Generic Preprocessing 

The generic preprocessing module provides 
implementations of commonly used shape/character 
preprocessing operations such as moving-average 
smoothing, size normalization, dehooking, and 
equidistant resampling. All of the operations have 
configuration options that can be varied using 
corresponding properties captured in a configuration 
file. 

3.2.2. Shape Recognition 

The two shape recognition algorithms bundled 
with LipiTk 1.0 are Subspace-based classification 
(PCA), and Nearest-Neighbor classification based on 
Dynamic Time Warping (DTW).   

In subspace classification, each shape class is 
represented by a set of Principal Components 
computed from a fixed length representation of the 
online shape, obtained after size normalization and 
equidistant resampling [12]. The training method 
provided computes the Principal Components from 



  
 
the training data, and stores them in a standard binary 
format.  

The DTW implementation uses the same fixed 
length representation as the subspace classifier, 
together with a Nearest Neighbor classifier [10,11]. 
The training method exposed by the shape recognizer 
provides a choice of different prototype selection 
algorithms for prototype reduction.  

Both shape recognizers expose a standard shape 
recognition API which allows the recognizer to be 
loaded, trained, and invoked on a TraceGroup (group 
of traces) corresponding to a single or multi-stroke 
shape or character. 

 In either case, important parameters (such as the 
number of Principal Components) as well as the 
sequence of preprocessing operations are externally 
configurable using configuration files. 

3.2.3. Boxed field recognition 

As mentioned earlier, the boxed field recognizer is 
useful for recognizing a boxed field of shapes, and in 
turn invokes a trained shape recognizer on each of the 
boxes, and uses a simple trellis for decoding the best 
strings based on the cumulative shape recognition 
confidences.  

Significantly, the boxed field recognizer exposes a 
generic word recognition API, allowing the possibility 
of plugging in a connected word recognizer in the 
future in a backward-compatible manner. 

 
3.3. Tools and Utilities  

LipiTk 1.0 provides a number of tools and utilities 
to support the tasks of handwriting data collection, 
data annotation, and the training and evaluation of 
shape recognizers.  

3.3.1. Data Collection and Annotation Tools 

Collection and annotation of handwriting data is 
an important activity in the data-driven methodology 
for creating recognition engines. LipiTk 1.0 includes a 
generic TabletPC-based data collection tool capable of 
collecting isolated symbols, characters or words from 
writers [13]. We hope to include in subsequent 
releases, tools based on Digital Pen and Paper or 
PDAs, as well as tools running on Linux.  

The annotation tool supports the tagging of digital 
ink with labels corresponding to ground truth, writing 
style etc. at different levels of an appropriate 
hierarchy of annotation. The tool included with 
LipiTk 1.0 is a generic tool written in C++/Qt with the 
ability to annotate entire documents of handwritten 
text, and supports plug-ins for segmentation and 
recognition to partially automate the annotation 
process [22].  

3.3.2. Evaluation Tool 

The Evaluation Tool computes statistics related to 
classification accuracy and performance of the built 
engine on the test data, and allows visualization of the 

results in ways that facilitate analysis of the errors. 
LipiTk 1.0 includes a basic evaluation tool written in 
Perl which renders top N accuracies and confusion 
matrices in the form of HTML pages. 

3.3.3. Utilities 

In addition to the above tools, LipiTk 1.0 also 
includes a number of scripts to facilitate tasks such as 
extraction of isolated character data from the 
annotated data (which may be words), and splitting 
the annotated data randomly into training and test sets.   

 
3.4. Packaging framework 

LipiTk provides build scripts to support the 
creation of specific engines from the source code. 
These scripts interpret project configuration files and 
build the necessary source code into libraries and 
binaries, using a hierarchy of static module-specific 
Makefiles.  

LipiTk also provides scripts for packaging the 
built  engine(s) for deployment, and integration into a 
pen-based application. The components of the 
package are fully user-configurable, and the 
packaging script creates a self-extract package file (or 
gzipped tar file in the case of Linux) that contains all 
the components selected for packaging by the user.   

Finally, LipiTk provides sample code to assist the 
application developer in integrating an engine created 
using LipiTk into his or her application. 

 
3.5. Lipi Engine 

The Lipi Engine is the run-time component of 
engines created using the Lipi Toolkit. It is 
responsible for loading one or more shape/word 
recognition modules as specified in its configuration 
file, routing requests for recognition from the user 
application to the appropriate modules, and returning 
recognition results to the application. 

4. Working with the Toolkit 
In this section, we will take a brief look at the use 

of the toolkit to develop a recognizer for a set of 
shapes, for example, the 10 Indo-Arabic numerals. 
The first step in the process is the creation of a new 
shape recognition project, which we will call 
numrec. The associated project configuration file 
identifies the project as a shape recognition project (as 
opposed to a word recognition project), and the 
number of shape classes to be recognized as 10. 
Within the numrec project, one or more profiles may 
be defined. Each profile contains configuration 
settings for the recognizer corresponding to a 
particular user-defined mode of operation or “flavor” 
of the recognizer. Profiles may be used to distinguish 
settings for writer-independent recognition vs. 
specific writers, specific training data (e.g. US versus 
UK writers), specific recognition algorithms (PCA vs. 
DTW vs. Custom), specific preprocessing settings, 



  
 
and so on – at the discretion of the 
researcher/developer. The profile also stores the 
results of training the shape recognizer (recognizer-
specific model data) using the specific set of 
configuration settings. 

The build scripts provided with the toolkit allow 
the building of a specific project and profile, and use 
the associated settings to determine which recognizers 
to build. For instance, if the numrec project’s 
default profile specified PCA as the recognizer, 
and PCA’s configuration file in turn specified a 
sequence of preprocessing operations, building the 
project and profile would cause the generic 
preprocessing as well as the PCA code to be built into 
dynamic link libraries. Building the project also builds 
a command line utility runshaperec that links with 
these libraries and supports training and testing of the 
shape recognizer on labeled numeral data. 

The data collection tool provided with the toolkit 
may be used to collect samples of numerals from 
different writers, and organize them in the form of an 
annotated UNIPEN dataset. Alternatively an existing 
dataset may be used. A utility script supports the 
creation of training and test lists from the dataset 
using regular expressions to match file names. 

The runshaperec utility may now be used to 
train the shape recognizer by providing the training 
list of samples as input. This causes subspaces for the 
10 classes to be computed as stored as binary model 
data as part the default profile. 

The same runshaperec utility may be used in 
evaluation mode to classify the test samples in the test 
list. The result file produced may then be provided as 
input to the evaluation tool to compute recognition 
accuracy and the confusion matrix. 

Once the cycle of training and testing is 
completed, the packaging script may be used to 
package the entire numrec project and default 
profile into a self-extracting archive file or gzipped tar 
file for deployment on the target machine where the 
pen-based application is going to be deployed. 

On the target machine, the numeral recognizer 
may be extracted and integrated into a pen-based 
application as per the sample code provided.  

The above describes the simplest of scenarios 
wherein an existing recognition algorithm (PCA) is 
used for creating a shape recognizer more or less out 
of the box. Other scenarios address the extraction of 
isolated shape data for training from words or larger 
units of writing, adding and using new preprocessing 
methods, experimenting with different configuration 
parameters, writing a new shape recognizer, and using 
the Boxed Field recognizer to recognize a boxed field 
of characters. 

5. Status 
The first version of LipiTk has been implemented 

at HP Labs, Bangalore, India, by a team composed of 
GDIC engineers and HP Labs researchers, and was 

released internally in Dec 2005. The toolkit was 
subsequently released into the Open Source in April 
2006 under a BSD-like license, and is now hosted on 
SourceForge at http://lipitk.sourceforge.net. As 
mentioned earlier, this first version is aimed at 
isolated shape and character recognition, and includes 
generic tools for data collection, annotation and 
evaluation, source code for common preprocessing 
and classification, build and packaging script, 
miscellaneous scripts, and sample data and code.  

The included simple model-based shape 
classification algorithms based on Dynamic Time 
Warping and Principal Component Analysis have 
been shown to perform in the range of 80% accuracy 
on Indic scripts such as Tamil whose character set has 
many similar looking characters with complex shapes 
[11,12]. These algorithms have also been 
benchmarked on standard datasets such as Unipen 
[20] and IRONOFF [21]. In all these cases, it is clear 
that while these model-based methods offer a 
reasonable first level of classification, discriminative 
methods together with other features are necessary to 
achieve high accuracy. The toolkit is designed to 
support the addition of such methods. 

Internally, the toolkit has been used to create the 
gesture-stroke recognition component of the Gesture 
Keyboard for Devnagari [23]. Specifically, this uses 
the PCA recognizer in a rank-based combination with 
a global gesture shape recognizer, and yields 97% 
accuracy on the constrained gestures used by the 
Devanagari Gesture Keyboard. The toolkit is also 
being used internally to explore other concepts in text 
input of Indic scripts, and solutions such as form 
filling in local languages [15,16]. 

6. Summary and Next Steps 
In summary, the Lipi toolkit effort aims to 

facilitate development of online handwriting 
recognition engines for new scripts, and simplify 
integration of the resulting engines into real-world 
application contexts. The first version of the toolkit 
provides robust implementations of tools, algorithms, 
scripts and sample code necessary to support the 
entire process starting from the collection of 
handwritten data, to the deployment and integration of 
a robust engine, for a particular set of shapes or 
characters.  

The design of the toolkit makes it possible to 
integrate new tools and algorithms (such as a data 
collection tool specifically for gestures, a different 
type of preprocessing, or classification algorithm) into 
the toolkit. For instance, to facilitate training of a 
classifier, LipiTk provides a common interface that 
calls the training module of a specific classifier, while 
hiding the specific details of its implementation from 
the user. 

Given the need to support the potential LipiTk 
user community (whether researchers or application 
developers) across multiple operating systems and  

http://lipitk.sourceforge.net/


  
 
computing platforms, the toolkit is also designed to 
simplify creation of versions for different platforms 
using a common code base. 

As already indicated, there are several important 
research directions for the toolkit, including inclusion 
of discriminative classification algorithms, native 
support for emerging standards such as W3C Ink 
Markup Language, improved tools for data collection, 
annotation and error analysis, and even potential 
extensions to Offline HWR. However, our major 
focus at present is to validate the design and utility of 
the toolkit with different sets of users. Projects within 
HP Labs such as the Gesture Keyboard are the first 
“internal” users of the toolkit, and provide an 
opportunity to study the usability and cross-platform 
robustness of the toolkit at close quarters. We are also 
interested in collaborative projects with university 
research groups using the toolkit. We hope that some 
of these users can contribute by trying to use the 
toolkit and providing feedback, while others may 
contribute to the toolkit by way of new tools and 
algorithms. 
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ABSTRACT
While sketches are commonly and effectively used in the early
stages of design, some information is far more easily conveyed ver-
bally than by sketching. In response, we have combined sketching
with speech, enabling a more natural form of communication. We
studied the behavior of people sketching and speaking, and from
this derived a set of rules for segmenting and aligning the signals
from both modalities. Once the inputs are aligned, we use both
modalities in interpretation. The result is a more natural interface
to our system.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation (e.g., HCI)]: User
Interfaces—Natural language, Graphical user interfaces (GUI),
Evaluation/methodology, Input devices and strategies (e.g., mouse,
touchscreen), Interaction styles (e.g., commands, menus, forms, di-
rect manipulation), User-centered design, Voice I/O

General Terms
Performance, Design, Experimentation, Human Factors

Keywords
speech, sketch, multimodal interaction

1. INTRODUCTION
Sketches are commonly used in the early stages of design. Our

previous system, ASSIST[2], lets users sketch in a natural fash-
ion and recognizes mechanical components (e.g., springs, pulleys,
axles, etc.). Sketches can be drawn with any variety of pen-based
input (e.g., tablet PC). ASSIST (see Figure 1) displays a “cleaned
up” version of the user’s sketch and interfaces with a simulation
tool to show users their sketch in action.

Some parts of a mechanical system might be too difficult to ex-
press by sketching alone, but might be easy to describe verbally.
In that case, adding speech recognition creates a more natural user
interface. Our goal is to create a multimodal system where the user

Copyright is held by the author/owner.
IUI’04, January 13–16, 2004, Maderia, Funchal, Portugal.
ACM 1-58113-815-6/04/0001.

Figure 1: The left image shows the sketch in ASSIST. The right
image shows the simulation.

can have a natural conversation with the computer, of the sort a
user might have with another person. We do not want the speech to
be limited to simple, single word commands, like uttering “spring”
while pointing. Rather, we want to allow the user to say whatever
comes to mind and have the system gather as much as possible from
the speech input [1].

We begin with an example that motivates our work, then describe
how we collected data and created the set of rules for our system.
Next, we describe how the speech and sketching components of the
system are combined and conclude with related and future work.

2. MOTIVATING EXAMPLE
Newton’s Cradle (see Figure 2) is a system of pendulums that

consists of a row of metal balls on strings. When you pull back
a number of balls on one end, after a nearly elastic collision, the
same number of balls will move outward from the other end of the
system. Although this system seems simple enough to sketch, it is
in fact nearly impossible to draw so that it operates properly. The
system works because the metal balls at the end of the pendulums
just touch each other, and because each pendulum is identical to the
others. In the sketching system, you would have to draw identical
pendulums, and align them perfectly. If the user could simply say
that “there are five identical, evenly spaced and touching pendu-
lums,” the device would be easy to create.

Figure 2: A sequence of images showing Newton’s Cradle when
one of the pendulums is pulled back and released.

3. OBTAINING SAMPLE DATA
To support natural speech, we conducted an empirical investiga-

tion of spoken descriptions of mechanical devices while the partic-
ipant was drawing. We videotaped six outside participants while

214



they sketched six mechanical systems at a whiteboard. They were
given small hardcopy drawings of the systems and were told to
draw them on the whiteboard, describing them as they did so. They
were told to describe them as if they were talking to a small group
of people, such as in a physics tutorial. The figures had marks to in-
dicate identical components and identical distances. These graph-
ical marks were provided to get an idea of how the participants
would describe identical or equally spaced objects without inadver-
tently biasing their language by using words we had chosen. The
recordings from the participants were transcribed, and each speech
and sketching action was time-stamped. This provided a basis for
developing a set of approximately 50 rules that could segment and
align the speech and sketching events.

4. SEGMENTING DATA
The data from the videos were analyzed by hand, segmenting

it into individual speech events (roughly, phrases) and sketching
events (drawing part of an object), and aligning corresponding events.
From this analysis, we manually derived a set of rules that encapsu-
lated the knowledge gathered. Some rules group objects that are the
same shape (e.g., grouping consecutively drawn triangles), others
use the timing between the speech and sketching events to iden-
tify overlapping events and pauses between events (e.g., pauses are
gaps of at least 0.8 seconds where there is no sketching or speech
event), while others look for key words in the speech events. For
example, words such as “and,” “then,” or “there are” were good in-
dicators that the user started a new topic. In our analysis we noted
that users never talked about one thing while sketching another.

The rules determine a set of times, or break points, that group
together speech and sketching events that refer to the same objects.
One rule indicates a possible break point when a speech utterance
starts with a key word which is preceded by a pause. This might
produce a group that included the speech phrase “that’s suspended
by springs on the bottom” and the three sketching events in which
a spring is sketched.

The rules were created using 18 data sets. The rules were kept
general and do not use specific features or vocabulary of the me-
chanical engineering domain.

This process of segmenting and aligning the data also allows us,
in a limited way, to use both modalities in interpretation. For exam-
ple, if the user draws three pendulums and says there are two, the
system will ignore the speech. However, if the user says that there
are four pendulums, then the system will wait for another pendulum
to be drawn.

There are three stages to the processing of the speech and sketch-
ing. The initial partitioning of both is done by the rule system. In
the second phase, a search is conducted within a group found in the
first phase to align the speech and sketching events (e.g., match the
speech event containing the word “pendulums” with any sketched
pendulums). In the third phase, the search is widened to adjacent
groups in the event that the correspondence can’t be found in the
original group alone. The third phase relaxes the constraints deter-
mined by the rules to provide more flexibility in the grouping.

4.1 Results
To determine how well the rules work, the transcript files from

the videos were parsed and run though the rule system, with each
speech and sketching action presented sequentially as if arriving
from a user. The data used to test the system was separate from the
data used to create the rule system.

The results of running the rules on the video transcripts were
compared in detail to hand-generated results for 4 data sets that
comprised the test set. There were 29 break points in the hand-

generated segmentations. The computer-generated segmentation
matched on 24 of these, and found 18 additional break points. The
18 additional break points were analyzed by hand and further clas-
sified as “incorrect,” “inconsequential,” or as resulting from “shal-
low knowledge.” The “inconsequential” category includes break
points that were immaterial to parsing, such as break points added
at the beginning, prior to any speech or sketching events, and extra
break points between some speech events at the end of the inter-
action (see Table 1). The “shallow knowledge” category contains
additional break points that were placed between sketching events
(see Table 2).

1a “I’m puzzled as to how to indicate that”
2a “equal size of”
2b “the suspended balls”
3a “and that it is not the same as”
3b “the falling balls”

Table 1: Data from one of the participants exhibits how the
speech we are working with is not grammatical. The hand seg-
mentation placed all 5 events into the same group, however, the
software placed the events into three groups by placing “incon-
sequential” break points between speech events 1a and 2a and
between speech events 2b and 3a.

1a “The slopes are fixed in position”
1b [draws middle ramp]
1c [draws middle ramp anchor]
2a [draws bottom ramp]
2b “slope”

Table 2: Example of a “shallow knowledge” break point. The
hand segmentation placed all 5 events into the same group,
however the software placed the events into two groups by plac-
ing an extra break point between sketching events 1c and 2a.
The rules do not have any knowledge of the meaning of the an-
chor or the spatial relationship between the ramps. As a result,
the rules did not place these events into the same group, as the
hand segmentation did.

The hand segmentation had the advantage of having all the sketch-
ing and speech events to examine at once, as well as the spatial re-
lationships between sketched components. The software segmen-
tation processed speech and sketching events sequentially and did
not have access to any spatial relationship information.

5. SYSTEM OVERVIEW
Figure 3 shows screen shots of the working system.

Figure 3: Three successive steps in our multimodal system. The
first image shows the sketch before the user says anything. The
second image shows the sketch after the user says “there are
three identical equally spaced pendulums.” The third image
shows the sketch after the user says that the pendulums are
touching.
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The vocabulary and sentences from the transcribed videos, aug-
mented with a few additional words (e.g., plurals and numbers),
were used to create a speech recognizer for the system. The speech
understanding is provided by part of Galaxy[4], a speaker-indepen-
dent speech understanding system that functions in a continuous
recognition mode. The system allows users to talk without prior
calibration of the system and without having to warn the system
before each utterance. Both factors help create a natural user inter-
face.

ASSIST was modified so that the sketch interpretations were
combined with the speech recognition data, possibly resulting in a
modified sketch. For example, for Newton’s Cradle, functions were
needed to space the pendulums equally and to make them identical.
Changing the sketch required performing a simple translation from
the descriptions, such as “equally spaced,” to a set of manipulation
commands that were implemented in ASSIST.

The system has a grammar framework that recognizes certain
nouns and adjectives and thereby produces a modest level of gen-
erality. For instance, one noun it can recognize is “pendulum.” The
system needs to be told what a pendulum looks like, i.e., a rod
connected to a circular body, so that it can link the user’s inten-
tions (e.g., drawing three identical pendulums) to a modification of
the sketch. Adjectives it can recognize include numbers andwords
like “identical” and “touching.” Adjectives are modifications to be
made to the sketch (e.g., “touching”). The framework is general
enough to allow the system to be extended to work with more ex-
amples.

6. RELATED WORK
ASSISTANCE[6] was a previous effort in our group to combine

speech and sketching. It built on ASSIST by letting the user de-
scribe the behavior of the mechanical device with additional sketch-
ing and voice input. Our new system lets the users simultaneously
talk in an unconstrained manner and sketch, which produces amore
natural interaction.

QuickSet[7] is a collaborative multimodal system built on an
agent-based architecture. The user can create and positionitems
on a map using voice and pen-based gestures. For example, a user
could say “medical company facing this way<draws arrow>.”
QuickSet is more command-based, targeted toward improvingef-
ficiency in a military environment. This differs from our goal of
creating the most natural user interface possible. In contrast to our
system where the user starts with a blank screen, QuickSet isa map-
based system and the user starts with a map to refer to. Like our
system, QuickSet uses a continuous speaker-independent speech
recognition system.

AT&T Labs has developed MATCH[5], which provides a speech
and pen interface to restaurant and subway information for New
York City. This program uses a finite-state device and lets users
make simple queries. This tool provides some multimodal dialogue
capabilities, but it is not a sketching system and has only text recog-
nition and basic circling and pointing gestures for the graphical in-
put modality.

There are several other related projects[3, 7] that involvesketch-
ing and speech, but they are focused more on a command-based in-
teraction with the user. In our system, speech augments the sketch-
ing; in other systems, the speech is necessary to the interaction.

7. FUTURE WORK
Speech will allow the system to capture information that is not

currently available with only the sketching interface. Speech is a
rich input modality and more information, such as numericalrefer-
ences, can be extracted from it to aid in the disambiguation of the
inputs. Future work will attempt to make it easier to add new ob-
jects and commands to the system. We also want to evaluate how
people actually talk when presented with a working system ofthis
type. Other input modalities, such as gesture, could also help dis-
ambiguate the sketches and correctly simulate the user’s designs.
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ABSTRACT
Classification of natural hand gestures is usually approached
by applying pattern recognition to the movements of the
hand. However, the gesture categories most frequently cited
in the psychology literature are fundamentally multimodal;
the definitions make reference to the surrounding linguis-
tic context. We address the question of whether gestures
are naturally multimodal, or whether they can be classi-
fied from hand-movement data alone. First, we describe an
empirical study showing that the removal of auditory in-
formation significantly impairs the ability of human raters
to classify gestures. Then we present an automatic gesture
classification system based solely on an n-gram model of
linguistic context; the system is intended to supplement a
visual classifier, but achieves 66% accuracy on a three-class
classification problem on its own. This represents higher ac-
curacy than human raters achieve when presented with the
same information.

Categories and Subject Descriptors
H.1.2 [User-Machine Systems]: Human information pro-
cessing; H.5.1 [Information Interfaces and Presenta-
tion]: Multimedia Information Systems—Artifical, augment-
ed, and virtual realities; H.5.2 [Information Interfaces
and Presentation]: User Interfaces—Evaluation/methodol-
ogy, Natural language, Theory and methods, Voice I/O

General Terms
Human Factors, Reliability, Experimentation

Keywords
Gesture Recognition, Gesture Taxonomies, Multimodal Dis-
ambiguation, Validity
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1. INTRODUCTION
A number of multimodal user interfaces afford interaction

through the use of communicative free hand gestures [6, 7, 9,
11]. Since hand gestures can be used for a number of differ-
ent communicative purposes–e.g., pointing at an object to
indicate reference, or tracing a path of motion–classification
of hand gestures is an important problem.

One class of systems focuses on artificial gestures, such as
waving, closed fist, or “thumbs up” (e.g., [6]). These are not
intended to correspond to the natural gestures that sponta-
neously arise during speech. For such systems, the goal is to
maximize ease and speed of recognition, rather than the nat-
uralness of the user interface. With such artificial gestures,
gesture classes are distinguished purely on the basis of the
dynamics of hand motion; however, mutual disambiguation
with speech [16] could be used to improve recognition.

There is, however, a growing set of user interfaces that
attempt to allow users to communicate using more natural
gestures [7, 9, 11]. Here too, gesture classification has been
taken to be primarily a problem for computer vision [9] or
pattern recognition applied to glove input devices [7, 11].
Mutual disambiguation has been applied to improve recog-
nition by constraining the gesture recognition candidates
based on a set of possible semantic frames [7]. But the
idea that gesture classes themselves are fundamentally mul-
timodal entities – defined not only by the hand motion but
also by the role of gesture within the linguistic context – has
not yet been given full consideration.

We begin with a brief summary of the most frequently
cited gesture taxonomy from the psychology literature; there
has been some work on automatic classification for subsets
of this taxonomy. Next, we present an empirical study of
the ability of näıve raters to classify gestures according to
this taxonomy, evaluating the effect of removing either the
visual or auditory modalities. Then we present a gesture
classification system that uses only the linguistic context;
no hand-movement information is used.

2. TYPES OF GESTURES
Kendon describes a spectrum of gesturing behavior [8].

On one end are artificial and highly structured gestural lan-
guages, such as American Sign Language. In the middle,
there are artificial but culturally shared emblems, such as
the “thumbs-up” sign. At the far end is gesticulation, ges-
tures that naturally and unconsciously co-occur with speech.
Gesticulation is of particular interest for HCI since it is com-
pletely natural; speakers do not need to be taught how to



do it. However, gesticulation is challenging because of the
potential for variety in gesturing behavior across speakers,
particularly across cultures.

Linguists have created a taxonomy of gesticulation, and
gestures that naturally co-occur with speech are now typi-
cally divided into several classes: deictic, iconic, metaphoric,
beat [13]. McNeill notes that these types should not be
thought of as discrete, mutually exclusive bins, but rather,
as features that may be present in varying degrees, possibly
in combination. Thus, identification of the extent to which
each feature is present would be the ultimate goal, rather
than gesture classification. For the moment, however, im-
plemented systems have focused on classification [3, 7, 9,
11].

The following definitions are quoted and summarized from
Cassell [2].

• “Deictics spatialize, or locate in physical space...”
Deictics can refer to actual physical entities and loca-
tions, or to spaces that have previously been marked
as relating to some idea or concept.

• “Iconic gestures depict by the form of the gesture
some features of the action or event being described.”
For example, a speaker might say “we were speeding
all over town,” while tracing an erratic path of motion
with one hand.

• “Metaphoric gestures are also representational, but
the concept they represent has no physical form; in-
stead the form of the gesture comes from a common
metaphor.” For example, a speaker might say, “it hap-
pened over and over again,” while repeatedly tracing
a circle.

• “Beat gestures are small baton-like movements that
do not change in form with the content of the accom-
panying speech. They serve a pragmatic function, oc-
curring with comments on one’s own linguistic contri-
bution, speech repairs and reported speech.” Speak-
ers that emphasize important points with a downward
motion of the hand are utilizing beat gestures.

2.1 Vision and Speech
One thing to notice about the definitions of the gesture

types is that they are linguistic in nature. That is, gesture
types are defined in terms of the role they play in the dis-
course, rather than in terms of a specific hand trajectory
or class of trajectories. Indeed, researchers have found that
there is no canonical set of hand trajectories that define each
gesture class. For example, Cassell states, “Deictics do not
have to be pointing index fingers.” [2] For non-deictic ges-
tures, it is even harder to characterize a “typical” set of hand
shapes or trajectories; there are perhaps an infinite variety of
possible iconic and metaphoric gestures [18]. Clearly, some
amount of linguistic evidence – prosodic, lexical, or semantic
– is necessary to classify gestures.

The remainder of this paper will seek to answer two ques-
tions.

1. To what extent does our perception of gesture types
depend on a visual analysis of the hand motion, and to
what extent does linguistic evidence come into play?

2. Can we build an accurate gesture classification sys-
tem using linguistic data? What linguistic features
are most informative for this purpose?

This paper describes two experiments aimed at answer-
ing these questions. In the first, näıve participants were
trained to classify gestures according to the taxonomy de-
scribed above. We assessed the level of interrater agreement
to show that the taxonomy presents meaningful categories.
We then removed the auditory and visual modalities sepa-
rately, and found that participants make significantly differ-
ent ratings in the absence of either modality. In other words,
neither modality alone is sufficient to classify gestures.

Next we describe a gesture classification system that con-
siders only the text surrounding the gesture. This system
is trained using the majority classifications from the human
raters as ground truth. Our classifier achieves a 66% agree-
ment on a cross-validated evaluation; this is higher than the
human coders achieved when they were denied access to the
visual modality.

3. CLASSIFICATION BY HUMAN RATERS
In a previous study, nine speakers were videotaped while

describing the behavior of three different mechanical de-
vices [5]. These monologues were transcribed and the ges-
ture phrases were segmented by the experimenter. Speakers
ranged in age from 22 to 28; eight were native English speak-
ers; four were women. The devices they described were: a
latchbox, a piston, and a pinball machine. None of the par-
ticipants had any special expertise in physics or mechanical
engineering.

A second group of participants was then asked to classify
the gestures from this corpus of videos, using the catego-
rization scheme described above. There were four types of
conditions: both video and audio (VA) were available, video
only (V), audio only (A), and a textual transcription of the
audio with no video (T). The VA condition was presented
twice, and the ordering of conditions was identical for all
participants: VA, V, A, T, VA.

A permutation of the videos was used so that no partici-
pant saw the same video in more than one condition, and so
that each video was used in each condition nearly an equal
number of times. The ninth video, of a male native English
speaker, was used for training examples, as discussed below.
Only videos of the explanations of the piston device were
used. Overall, each video was annotated by eight or nine
different participants in the VA condition, and by four or
five participants in every other condition.

In each condition, participants were required to classify
every gesture in the video. The videos ranged in length
from 10 to 90 seconds, and included as few as four and as
many as 53 distinct gesture phrases.

The entire study was performed using automated software
that required no intervention from the experimenter. Partic-
ipants were able to play each gesture segment from the video
whenever and as frequently as they desired. Radio buttons
were used to indicate the gesture classes in a fixed order,
and were not preset to any value; participants were required
to classify each gesture before moving on to the next condi-
tion. The video was presented in a separate window, 300 by
400 pixels in size. Each video segment ran from the begin-
ning to the end of the gesture phrase, as segmented by the
experimenter. In the audio-only condition, a beep was used



Figure 1: The experimental user interface for the VA, V, and A conditions

to indicate the onset of the stroke phase of the gesture. The
user interface for the experimental tool is shown in Figure 1.

A different user interface was used for the text-only con-
dition (Figure 2). Participants were presented with a list of
the gestures (at left), while the center of the screen presented
a transcript of all of the text used in a 4 second interval sur-
rounding the onset of the stroke phase of the gesture. The
location of the onset of the stroke phase was indicated in
the transcript as “[GESTURE]”. Radio buttons were once
again used for the gesture classification.

3.1 Participants
There were 36 participants in this study; 22 men and 14

women. They ranged in age from 18 to 57, with a median of
26 and a mean of 29.3. Ten of the participants self-reported
their English as being worse than that of a native speaker.
Participants were recruited using posters placed around a
university campus, and were compensated with free movie
passes for completing the study. None of the participants
had any prior experience with gestural or linguistic anal-
ysis, and all can be considered “novice” annotators. One
participant was excluded because the experimental software
crashed.

3.2 Instructions
Text and video examples were used to instruct partici-

pants about the gesture classification scheme. The instruc-
tions described both the kinetic and verbal components of
each gesture class. The label “Action” was used in place
of “Iconic”, since pilot participants found the latter term
to be confusing. Similarly, the label “Other” was used to
capture “Beat” gestures, as well as any additional gestures
that the listener felt did not belong to either of the other
two categories. As reported in [5], metaphoric gestures are
extremely infrequent in this corpus. A subset of participants
were also allowed to classify gestures as “Unknown.”

The written instructions given to participants can be found
in the appendix.

4. RESULTS
The standard Kappa (κ) metric was used to assess inter-

rater reliability [1]. In the Kappa statistic, a value of zero
indicates chance agreement, and a value of one indicates
perfect agreement.

A confusion matrix for the second iteration of the video-
audio (VA) condition is shown in Table 1. For each condi-
tion, a confusion matrix is generated for every pair of raters,
and these confusion matrices are then averaged together.
Given two raters r1 and r2, both pairs 〈r1, r2〉, and 〈r2, r1〉
will be included in the average, so the resulting matrix is
necessarily symmetric.

The table indicates reasonable agreement for the deictic
and action categories: κ = .581 when isolating the subma-
trix containing only these categories. However, the labeling
of the “other” category is essentially random, lowering the
overall Kappa to .449 when this category is included. It is
possible to compute the variance of the Kappa statistic; in
this case, σ = .033, yielding better than chance agreement
at p < .01.

The relatively low Kappa here may reflect McNeill’s con-
tention that the gesture types are not truly mutually exclu-
sive. Another possible factor is the limited training for these
participants, which typically lasted less than five minutes
(see the Appendix for the raters’ instructions). Interrater
agreement was significantly higher in the second iteration of
the VA condition than in the first iteration, where κ = .273.
This suggests that the raters’ assessments of the meaning
of the gesture categories converged as they gained experi-
ence with the rating task. For expert raters, Nakano reports
Kappa agreement of .81 using similar categories [15].

The extremely low agreement on the “other” category sug-
gests that some raters may have used “other” whenever they
were unable to classify the gesture as either “deictic” or



Figure 2: The experimental user interface for the
text-only condition

deictic action other unknown
deictic .270 .069 .060 .017
action .069 .249 .032 .009
other .060 .032 .079 .015
unknown .017 .014 .015 .004

Table 1: Confusion matrix for the second VA con-
dition

“action.” Note that this confusion matrix includes results
from the sixteen participants who did not have access to the
“don’t know” option, as well as those who did have access to
this option. The “don’t know” option increased the Kappa
marginally, to 0.451, but this difference is not significant
(p > .05).

4.1 Conditions
The agreement for the audio-only (A) condition was sig-

nificantly lower than the VA condition, κ = .337, p < .01.
The same is true of the video-only (V) condition, κ = .276,
p < .01, and the text condition (T), κ = .315, p < .01. How-
ever, in all cases, the Kappa value was better than chance,
p < .01.

It may be somewhat surprising that interrater agreement
was lower in the impaired conditions. One conceivable source
of disagreement in the VA condition is the choice of which
modality to favor when each suggests a different classifica-
tion. In the impaired conditions, no such choice need be
made, so one might predict that agreement within the im-
paired conditions would be higher. But in fact, the oppo-
site is the case – intra-condition agreement increases when
both modalities are available. This suggests that the modal-
ities usually provide complementary cues, and that in many

Condition Intra-condition
agreement (κ)

Agreement with
VA majority

VA .451 78%
V .276 59%
A .335 45%
T .315 41%

Table 2: Agreement results for each condition

cases, neither modality provides enough information on its
own.

We computed the majority vote classifications for each
video in the second VA condition, and took this as ground
truth. Then for each condition, we computed the average
percentage agreement between ground truth and each rater’s
annotations. As an upper bound, in the VA condition, the
average rater agreed with the majority annotations at a level
of 78%, σ = 0.018. In the audio-only condition (A), the
average agreement with the modal classifications from the
VA condition is 45%, σ = 0.017. In the video-only condition
(V), the average agreement is better, at 59%, σ = 0.021. In
the text-only condition (T), the average agreement is 41%,
σ = 0.016.

Since the video-only condition had the highest level of
agreement with the VA condition, this would suggest that
visual information is the primary cue for gesture classifi-
cation. However, there is a statistically significant drop-off
from the VA condition to the video-only condition (p < .01),
suggesting that audio cues do play a necessary supplemen-
tary role.

5. AUTOMATIC CLASSIFICATION FROM
TEXT

The previous section shows that human listeners use both
vision and audition when recognizing gestures, and that two
modalities contain complementary information. In this sec-
tion, we explore the idea of classifying gestures using only
linguistic information. The goal here is to determine what
type of linguistic cues are most useful for gesture classifica-
tion, to get a sense for the classification performance these
cues can provide, and to develop a system that could be com-
bined with a vision-based approach in an integrated multi-
modal gesture classifier. We use the majority classifications
from the previous study as ground truth, and evaluate our
system’s ability to replicate these classifications using only
textual information.

5.1 Features
For each gesture, a feature vector was constructed using

the words that appear within a series of windows surround-
ing the onset of the stroke phase of the gesture. According
to the psychology literature, the stroke phase usually over-
laps the most prosodically prominent part of the associated
speech [13]. We used two windows to differentiate words that
appear during the stroke phase from words that appear at
any point during the whole gesture phrase (see Figure 3).
The windows were buffered by 133 milliseconds at the front
and 83 milliseconds at the back. Ideally, these parameters
should be estimated by cross-validation, but the results are
not overly sensitive to their settings.

Since strokes are a component of gesture phrases, the



Figure 3: Separate windows are used to capture stroke and gesture phrase features

stroke window is a subset of the gesture phrase window.
By including the stroke window, we are heeding McNeill’s
advice that the words overlapping the stroke phase are the
most important for determining the semantic content of the
multimodal utterance [13]. This did in fact improve per-
formance; from 61.5% using the only the gesture phrase
window, to 65.9% when using both windows. Using the
stroke phase window alone produced performance of 58.7%;
the multiple-window technique was significantly better than
both alternatives.

The stroke window contained n-grams that were highly
informative but sparse. For example, consider the part-of-
speech unigram “VBZ”, indicating a verb in the 3rd person
singular, present tense. This feature is somewhat informa-
tive when appears in a gesture phrase window:

p(VBZ ∈ GP window | Deictic) = .38 (1)

p(VBZ ∈ GP window | Iconic) = .52 (2)

This feature is more informative if it appears in the stroke
window:

p(VBZ ∈ Stroke window | Deictic) = .21 (3)

p(VBZ ∈ Stroke window | Iconic) = .44 (4)

Put another way, if the VBZ feature appears during the ges-
ture phrase window of an iconic gesture, it is almost always
during the stroke phase. For deictic gestures, it could ap-
pear with equal likelihood anywhere throughout the gesture
phrase.

5.1.1 Linguistic Analysis
Each word was stemmed, using a lexically-based stem-

mer, and tagged, using a Java implementation of the Brill
tagger [12]. Stemming had no appreciable affect on perfor-
mance. Each word stem was included as a feature. We also
tried some coarse word-sense disambiguation by appending
the part-of-speech tag to each word, and including each
type of usage as an independent feature (e.g., “fish/NN”
and “fish/VB”) – this decreased performance from 65.9% to
64.2%. POS tags were used as features on their own; with-
out them, performance decreased to 58.6%. Both differences
were significant.

For both words and POS tags, n-grams of size 1 to 3 were
used. All n-grams were simply thrown into the feature vec-
tor together; in the future we may use backoff models to
combine the different size n-grams in a more intelligent way.

Unigrams alone provided a performance of 55.1%; adding
bigrams improved performance to 60.0%; adding trigrams
improved performance to 65.9%; adding 4-grams decreased
performance to 65.7%, an insignificant change (all other
changes were significant).The mean number of words in each
gesture phrase window was 5.0 (median = 4, σ = 3.7),
and the mean for the stroke window was 2.8 (median =
2, σ = 2.0). Thus it is unsurprising that larger n-grams
afforded no improvement. In total, when using unigrams,
bigrams, and trigrams, there were 2746 features.

5.2 Classifier Performance
Table 3 compares the performance of various classifiers on

this task. For all classifiers except TWCNB, the Weka [19]
implementation was used.

HyperPipes is a simple, fast classifier for situations with
a large number of attributes (there are 2746 in this case).
HyperPipes records the attribute bounds for each category,
and then classifies each test instance according to the cate-
gory that most contains the instance. As shown in the table,
HyperPipes significantly outperforms all other classifiers on
this task.

TWCNB is a modification of the Naive Bayes classifier de-
signed by Rennie et. al [17] to better suit text-classification
problems. It includes a complement-class formulation which
is useful when the number of examples is poorly balanced
across classes, as is the case here. It also implements term-
frequency transformations, addressing the fact that the multi-
nomial distribution is a poor model of text. Our own imple-
mentation of this classifier is used in these experiments.

The NaiveBayes, SVM, and C4.5 classifiers are used “as
is” from the Weka library; default settings are used for all
parameters. While any one of these classifiers might perform
substantially better given an optimal choice of parameters,
our purpose is to show the range of performance on this task
achieved by some commonly-used techniques, rather than to
offer a comprehensive comparison of classifiers.

Table 3 compares the performance of each classifier on the
gesture classification task. The results were the average of
one hundred experiments, each of which involved random-
izing the dataset and then performing a stratified ten-fold
cross-validation. All classification accuracy differences were
significant, except for SVM versus C4.5, where the difference
was not significant.

The “always deictic” classifier chooses the “deictic” class
every time. All classifiers significantly outperformed this



Accuracy σ

HyperPipes 65.9% 1.47
TWCNB 63.5% 1.66
Naive Bayes 58.9% 1.10
C4.5 56.0% 2.17
SVM 55.9% 2.17
Always deictic 48.7% N/A
Humans: audio-only 45% 2.7
Humans: audio-video 78% 2.8

Table 3: Comparison of classifier performance, av-
eraged over 100 stratified, ten-fold cross-validation
experiments

baseline. Another baseline is the performance of human
raters who had access to the same information, the audio
surrounding the gesture. The performance of human raters
in the audio-only condition was actually worse than the “al-
ways deictic” baseline. This suggests that while the linguis-
tic context surrounding the gesture clearly does provide cues
for classification, human raters were unable to use these cues
in any meaningful way when the video was not also present.

As an upper bound, we consider the performance of the
human raters who had access to both the audio and video;
the majority opinion of these raters forms the ground truth
for this experiment. As shown in the table, the average rater
agreed with the majority 78% of the time. This appears to
be a reasonable upper bound for a multimodal gesture clas-
sification system; it seems unlikely that using the text only,
we could achieve higher performance than human raters who
had access to visual and prosodic information.

5.3 Discussion
Table 4 lists the ten features that were found to be carry

the highest information gain. Capital letters indicate part-
of-speech tags, which are defined according to the Penn
Treebank set. “UH” indicates an interjection, e.g., “um”,
“ah”, “uh”; “VB*” is a verb, with the last character indi-
cating case and tense; “PRP” is a personal pronoun.

The features correlate with gesture categories in a way
that accords well with linguistic theory about the role of
speech and gesture as part of an integrated communicative
system [13]. For deictics, the word “here” is a good pre-
dictor, since it is typically accompanied by a gestural refer-
ence to a location in space. The class of “other” gestures
is primarily composed of beats, which serve the same turn-
keeping function as interjections such as “uh.” The “VBZ”
tag – indicating a verb in the third-person singular – is a
good predictor of iconic gestures, as are the more domain-
specific cue words, “back” and “push.” These words were
used by several speakers to describe the motion of the pis-
ton, and were typically accompanied by an iconic gesture
describing that motion.

6. RELATED WORK
For a more detailed discussion of the gesture classes de-

scribed in this paper, see [13]; for an analysis specifically
geared towards multimodal user interfaces, see [2].

Computational analysis of unconstrained, natural gesture
is relatively unexplored territory, but one exception is the

research of Quek and Xiong et al. They have applied Mc-
Neill’s catchment model [14] to completely unconstrained
dialogues, extracting discourse structure information from a
number of different hand movement cues, such as gestural
oscillations [20].

Pattern-recognition approaches to recognizing some of these
gesture classes have been reported in a few publications.
Kaiser et al. [7] describe a system that recognizes deictic
pointing gestures and a set of manipulative gestures: point,
push, and twist. Kettebekov and Sharma [9] present a map-
control user interface that distinguishes between deixis and
“motion” gestures that are a subset of the class of iconic
gestures in the taxonomy that we have used. Kettebekov,
Yeasin, and Sharma also applied prosodic information to im-
prove gesture segmentation and the recognition of movement
phrases and various types of deictic gestures [10].

Perhaps the most closely related research topic is mutual
disambiguation [16], which views speech and gesture as co-
expressive streams of evidence for the underlying seman-
tics. If the speech modality suggests a given semantic frame
with very high probability, then the probabilities on gestures
that are appropriate to that frame are increased; the con-
verse is also possible, with gesture disambiguating speech.
While most of the work on mutual disambiguation involves
pen/speech interfaces [4], it has more recently been applied
to free hand gestures as well [7].

Mutual disambiguation relies on having a constrained do-
main in which the semantics for every utterance can be un-
derstood within the context of a formal model of the topic of
discourse. Our approach gives up some of the power of mu-
tual disambiguation, in that semantic information may pro-
vide tighter constraints on gesture than the linguistic cues
that we use. Our approach is more appropriate to situations
in which a formal model of the domain is not available.

7. FUTURE WORK
The ultimate goal of this research is multimodal gesture

recognition: a combination of linguistic priors of gesture
classes with vision-based recognition. Consequently, the
most pressing future work is to combine the textual classifier
developed here with traditional pattern-recognition tech-
niques. Hopefully this will show that linguistic context does
indeed improve classification performance, as it does for hu-
mans.

In addition, there are a number of other ways in which
both the empirical study and the automatic classifier can be
extended.

7.1 Prosodic versus lexical cues
The experiment involving human raters showed that au-

ditory cues significantly improve visual classification of ges-
tures. However, this experiment does not disambiguate the
role of prosody versus lexical and higher-order linguistic fea-
tures. We can remove prosody by transcribing the speech
and feeding it to a text-to-speech engine. If the results using
this audio and the original video are indistinguishable from
the video-audio condition with human speech, then we could
conclude that prosody plays no role in gesture classification.
Alternatively, we can remove lexical and higher-order lin-
guistic cues by having speakers communicate in a language
unknown to the listeners, but with similar prosodic conven-
tions. If the results prove to be indistinguishable from the
video-audio condition in which the listener understands the



Feature Window Information p(w| Deictic) p(w| Iconic) p(w| Other)
back phrase 0.088 .013 .17 .04
UH stroke 0.064 .051 .017 .24
push stroke 0.058 .013 .12 .04
VBZ stroke 0.056 .21 .44 .16
back stroke 0.055 .026 .15 .04
here phrase 0.054 .23 .051 .24
as phrase 0.053 .064 .20 .04
uh stroke 0.051 .039 .017 .20
as stroke 0.044 .039 .15 .04
PRP-VBP phrase 0.044 .12 .017 .08

Table 4: The top ten features by information gain

speaker, then lexical and higher-order linguistic cues are ir-
relevant to gesture classification.

7.2 Domain generality
All of the test and training data in this corpus is drawn

from an experiment within a single domain: engineering
mechanical devices. Another experiment could help deter-
mine whether the language model learned here is general be-
yond that domain. The absence of obviously domain-specific
terms in the set of more informative features described in
the previous section is encouraging.

7.3 Recognized speech and gesture boundaries
The current evaluation is performed using transcriptions,

rather than automatically recognized speech. Thus, this sys-
tem does not have to deal with word errors. In the future,
we hope to demonstrate that this classifier is still accurate,
even when presented with errorful speech. In addition, we
would like to segment gestures automatically, possibly with
the aid of prosodic cues as in [10].

7.4 Feature fusion
The classification system as implemented uses classes of

features varying on several dimensions: gesture phrase win-
dow versus stroke window; word versus part of speech tag;
n-gram size. Currently, all features are combined into a sin-
gle vector and sent to a classifier. A more sophisticated
approach might be to interpolate between multiple classi-
fiers and use backoff models to combine the different size
n-grams.

8. CONCLUSIONS
Natural, communicative gesture is well described by ges-

ture classes that are fundamentally multimodal in nature,
pertaining to both the hand motion and the role played
by the gesture in the surrounding linguistic context. Hu-
mans rely on auditory as well as visual cues to classify ges-
tures; without auditory cues, performance decreases signif-
icantly. This suggests that automatic classification of ges-
tures should make use of both hand movement trajectories
and linguistic cues. We have developed a gesture classifier
that uses only linguistic features and achieves 66% accuracy
on a corpus of unconstrained, communicative gestures.

Acknowledgements
We thank Aaron Adler, Christine Alvarado, Sonya Cates,
Tracy Hammond, Michael Oltmans, Sharon Oviatt, Metin
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Appendix: Instructions for Raters
In this study you will be asked to identify gestures as be-
longing to one of three classes: deictic, action, or other.

DEICTIC gestures involve pointing at, tracing the out-
line of, or otherwise indicating a specific object or region of
space. For example, a speaker might point at a book and
say, “this is the book I read last week.” Drag the mouse over
the squares below to see short video clips of deictic gestures.

ACTION gestures reenact a physical interaction, trajec-
tory of motion, or some other event. For example, a speaker
might describe a bouncing pinball by tracing a path of mo-
tion with the hand while saying, “the ball bounces all over
the place.” Drag the mouse over the square below to see a
short video clip of an action gesture.

OTHER gestures include the gesticulation that typically
accompanies speech (e.g., creating visual “beats” to empha-
size important speaking points) as well as any other gesture
that cannot easily be classified in either of the above two
categories. Drag the mouse over the square below to see a
short video clip of an “other” gesture.

First, you will be presented with a video, and a user-
interface window that allows you to play specific clips from
the video. Each clip includes a single gesture, which you
will be asked to classify using the above framework. You
will be presented with four such videos; at times, the audio
may be muted, or the video itself may be hidden. Based
on whatever information is available, please make your best
effort to correctly classify each gesture. Even if you feel that
you do not have enough information to correctly classify a
gesture, please make your best guess.

Next, you will be presented with a set of textual tran-
scriptions of the speech surrounding each gesture. Based on
this text, please make your best effort to correctly classify
each gesture.
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Abstract

Current computer-based design tools for mechan-
ical engineers are not tailored to the early stages
of design. Most designs start as pencil and pa-
per sketches, and are entered into CAD systems
only when nearly complete. Our goal is to create
a kind of “magic paper” capable of bridging the
gap between these two stages. We want to create
a computer-based sketching environment that feels
as natural as sketching on paper, but unlike paper,
understands a mechanical engineer’s sketch as it is
drawn. One important step toward realizing this
goal is resolving ambiguities in the sketch— deter-
mining, for example, whether a circle is intended
to indicate a wheel or a pin joint—and doing this
as the user draws, so that it doesn’t interfere with
the design process. We present a method and an
implemented program that does this for freehand
sketches of simple 2-D mechanical devices.

1 Sketching Conceptual Designs
Engineers typically make several drawings in the course of
a design, ranging from informal sketches to the formal man-
ufacturing drawings created with drafting tools. Drawing is
far more than an artifact of the design process; it has been
shown to be essential at all stages of the design process[Ull-
manet al., 1990]. Yet almost all early drawings are still done
using pencil and paper. Only after a design is relatively sta-
ble do engineers take the time to use computer aided design
or drafting tools, typically because existing tools are too dif-
ficult to use for the meager payoff they provide at this early
stage.

Our aim is to allow designers to sketch just as they would
on paper, e.g., without specifying in advance what component
they are drawing, yet have the system understand what has
been sketched. We want to have the input be as unconstrained
as possible, in order to make interaction easy and natural; our
route to accomplishing this is to build a sufficiently powerful
sketch recognizer.

It is not yet obvious that a freehand sketching interface will
be more effective in real use than a carefully designed menu-
based system. In order to do the comparison experiments,
however, we must first build powerful sketch-based systems.

It is the construction of such a system that is the focus of this
paper.

The value of sketching as an interface and the utility of
intelligent sketch understanding has gained increasing atten-
tion in recent years (e.g.,[Hearst, 1998]). Some early re-
search was concerned with single stroke classification ([Ru-
bine, 1991]), while more recent work ([Gross, 1995; Landay
and Myers, 2001]) puts groups of strokes together to form
larger components. A number of efforts (e.g.,[Gross and Do,
1996], [Mankoff et al., 2000]) have acknowledged the ne-
cessity of representing ambiguities that arise in interpreting
strokes, but have not substantially addressed how to resolve
those ambiguities.

Given the frequency of ambiguities in a sketch, a tool that
constantly interrupts the designer to ask for a choice between
multiple alternatives would be cumbersome. Our work is
thus focused, in part, on creating a framework in which to
both represent and use contextual (top-down) knowledge to
resolve the ambiguities. We built a program called ASSIST
(A Shrewd Sketch Interpretation and Simulation Tool) that in-
terprets and understands a user’s sketch as it is being drawn,
providing a natural-feeling environment for mechanical engi-
neering sketches.

The program has a number of interesting capabilities.

• The basic input to the program is a sketch, i.e., a se-
quence of strokes drawn “while the system watches,” not
a finished drawing to be interpreted only after it is com-
plete.

• Sketch interpretation happens in real time, as the sketch
is being created.

• The program allows the user to draw mechanical compo-
nents just as on paper, i.e., as informal sketches, without
having to pre-select icons or explicitly identify the com-
ponents.

• The program uses a general architecture for both repre-
senting ambiguities and adding contextual knowledge to
resolve the ambiguities.

• The program employs a variety of knowledge sources
to resolve ambiguity, including knowledge of drawing
style and of mechanical engineering design.

• The program understands the sketch, in the sense that
it recognizes patterns of strokes as depicting particular



Figure 1: A car on a hill, as drawn by the user in ASSIST.

Figure 2: The sketch as displayed by ASSIST.

components, and illustrates its understanding by running
a simulation of the device, giving designers a way to
simulate their designs as they sketch them.

We describe the system and report on a pilot user study
evaluating the naturalness of the program’s interface and the
effectiveness of its interpretations.

2 Designing with ASSIST
Figure 1 shows a session in which the user has drawn a sim-
ple car on a hill. The user might begin by drawing the body
of the car, a free-form closed polygon. As the user completes
the polygon, the system displays its interpretation by replac-
ing the hand-drawn lines (shown in Figure 1) with straight
blue lines. Next the user might add the wheels of the car,
which also turn blue as they are recognized as circular bod-
ies. The user can then “attach” the wheels with pin joints
that connect wheels to the car body and allow them to rotate.
The user might then draw a surface for the car to roll down,
and anchor it to the background (the “x” indicates anchor-
ing; anything not anchored can fall). Finally, the user can add
gravity by drawing a downward pointing arrow not attached
to any object. The user’s drawing as re-displayed by ASSIST
is shown in Figure 2.

The system recognizes the various components in the
drawing by their form and context; when the “Run” button is
tapped, it transfers the design to a two-dimensional mechani-

Figure 3: The sketch simulated, showing the consequences.

cal simulator which shows what will happen (Figure 3).1

Note that the user drew the device without using icons,
menu commands, or other means of pre-specifying the com-
ponents being drawn. Note, too, that there are ambiguities
in the sketch, e.g., both the wheels of the car and pin joints
are drawn using circles, yet the system was able to select the
correct interpretation despite these ambiguities, by using the
knowledge and techniques discussed below. The automatic
disambiguation allowed the user to sketch without interrup-
tion.

Figure 4 shows a session in which the user has drawn a
more interesting device, a circuit breaker, and run a simula-
tion of its behavior.

Note that ASSIST deals only with recognizing the me-
chanical components in the drawing and is, purposely, literal-
minded in doing so. Components are assembled just as the
user drew them, and component parameters (e.g. spring con-
stants, magnitudes of forces, etc)̇ are set to default values.
The car in Figures 1–3, for example, wobbles as it runs down
the hill because the axles were not drawn in the center of the
wheels. The combination of literal-minded interpretation and
default parameter values can produce device behavior other
than what the user had in mind. Other work in our group has
explored the interesting and difficult problem of communicat-
ing and understanding theintendedbehavior of a device once
it has been drawn using ASSIST[Oltmans, 2000].

3 Embedding Intelligent Assistance
We created a model for sketch understanding and ambigu-
ity resolution inspired by the behavior of an informed human
observer, one that recognizes the sketch by relying on both
low-level (i.e., purely geometric) routines and domain spe-
cific knowledge.

One interesting behavior of an informed observer is that in-
terpretation begins as soon as the designer begins sketching.
While not a required strategy—people can obviously interpret
a finished sketch—there are advantages in ease of use and in
speed from having the program do its interpretation in par-
allel with drawing. Ease of use arises because the program

1We use Working Model 2D from Knowledge Revolution, a
commercial mechanical simulator; any simulator with similar ca-
pabilities would do as well.



Figure 4: A sketch of a circuit breaker (left) and its simulation
(right).

can provide an indication of its interpretation of parts of the
sketch as soon as they are drawn, making it easier for the user
to correct a misinterpretation. Interpretation is faster because
incremental interpretation effects a divide and conquer strat-
egy: parts of the drawing interpreted correctly can provide
useful context when interpreting parts drawn subsequently.2

A second interesting behavior of an informed observer is
the ability to accumulate multiple interpretations and defer
commitment. Consider for example the objects in Figure 5.
Are the strokes in 5a going to become part of a ball and
socket mechanism (5b), or are they the beginning of a gear
(5c)? Committing too soon to one interpretation precludes
the other. Hence interpretation must be capable of revision in
the face of new information.

There is clearly a need to balance out the desire for in-
terpretation occurring in parallel with drawing, and the need
to avoid premature commitment. We discuss below how our
system accomplishes this.

Third, while commitment should be deferred, it must of
course be made eventually, and determining when to make
that commitment is not easy. Timing information can assist.
Consider the case of circles: Because circles are low-level
structures, it is likely that they will be used in higher-level
structures, as for example when a circle turns out to be part of
a pulley system. One way of dealing with this is to use timing

2The program also seems faster because it is working while the
user is drawing, reducing the user’s wait.

(b) (c)

(a)

Figure 5: An example of ambiguity: The bold strokes in (b)
and (c) are identical to the strokes in (a).

data: the system gets to “watch” the sketch being drawn and
knows when each stroke was made. If, some time after the
circle has been drawn, it has still not been used in any other
structure, the observer can plausibly guess that it will not be
incorporated into another piece and should be interpreted as
an independent circular body.3

Finally, parts may remain ambiguous even when a piece of
the drawing is finished. To resolve these residual ambiguities,
the observer uses his knowledge of mechanical engineering
components and how they combine. Consider, for example,
the small circles inside the larger circles in Figure 2; ASSIST
determines that these are more likely to be pivot joints than
additional circular bodies, both because small circles typi-
cally indicate pin joints and because bodies do not typically
overlap without some means of interconnection (i.e., the pin
joint).

Our system incorporates each of these observations: it be-
gins interpreting the sketch as soon as the user starts draw-
ing; it accumulates multiple interpretations, deferring com-
mitment until sufficient evidence (e.g., stroke timing) accu-
mulates to suggest a component has been finished, and it re-
solves ambiguities by relying on knowledge from the domain
about how components combine.

4 ASSIST’s Interpretation and
Disambiguation Process

ASSIST’s overall control structure is a hierarchical template-
matching process, implemented in a way that produces con-
tinual, incremental interpretation and re-evaluation as each
new stroke is added to the sketch. Each new stroke triggers
a three stage process of recognition, reasoning and resolu-
tion. Recognition generates all possible interpretations of the
sketch in its current state, reasoning scores each interpreta-
tion, and resolution selects the current best consistent inter-
pretation. After each pass through the three stages the sys-
tem displays its current best interpretation by redrawing the
sketch.

4.1 Recognition
In the recognition stage, ASSIST uses a body of recognizers,
small routines that parse the sketch, accumulating all possible

3A body is any hunk of material not otherwise interpreted as a
more specialized component (like a spring, pin joint, etc.). The car
body is a polygonal body; its wheels are circular bodies.



interpretations as the user draws each stroke. A recognizer
takes as input raw strokes and previously recognized objects,
and if the input fits its template, produces a new object. For
example, the circle recognizer reports a circle if all the points
on a stroke lie at roughly the same distance from the average
X and Y coordinate of the stroke.4 The circle is then available
to other recognizers, e.g., the pulley recognizer.

4.2 Reasoning
In the second stage the system scores each interpretation us-
ing a variety of different sources of knowledge that embody
heuristics about how people draw and how mechanical parts
combine.

Temporal Evidence
People tend to draw all of one object before moving to a new
one. Our system considers interpretations that were drawn
with consecutive strokes to be more likely than those drawn
with non-consecutive strokes.

Additional evidence comes from “longevity:” the longer
a figure stays unchanged, the stronger its interpretation be-
comes, because as time passes it becomes more likely that
the figure is not going to be turned into anything else by ad-
ditional strokes.

Simpler Is Better
We apply Occam’s razor and prefer to fit the fewest parts pos-
sible to a given set of strokes. For example, any polygonal
body (e.g., the car body in Figure 2) could have been inter-
preted as a set of (connected) individual rods, but the system
prefers the interpretation “body” because it fits many strokes
into a single interpretation.

More Specific is Better
Our system favors the most specific interpretation. Circles,
for example, (currently) have three interpretations: circular
bodies, pin joints, and the “select” editing gesture. The se-
lection gesture is the most specific interpretation, in the sense
that every circle can be a circular body or pin joint, but not
every circle can be a selection gesture (e.g., if it does not
encircle any objects). Hence when a circle contains objects
inside of it, the system prefers to interpret it as a selection
gesture.

Domain Knowledge
ASSIST uses basic knowledge about how mechanical com-
ponents combine. For example, a small circle drawn on top
of a body is more likely to be a pin joint than a circular body.

User Feedback
User feedback also supplies guidance. The “Try Again” but-
ton (see the bottom of Figure 1) permits the user to indicate
that something was recognized incorrectly, at which point the
system discards that interpretation and offers the user an or-
dered list of alternative interpretations. Conversely the sys-
tem can be relatively sure an interpretation is correct if the
user implicitly accepts it by continuing to draw.

4In other work we describe recognizers that use more sophisti-
cated early processing of basic geometry[Sezgin,].

Combining Evidence
The heuristics described above all independently provide ev-
idence concerning which interpretation is likely to be correct.
Our method of combining these independent sources involves
distinguishing between two categories of evidence: categori-
cal and situational.

Categorical evidence ranks interpretations relative to one
another based on the first four knowledge sources described
above. Each source is implemented in the system as a set of
rules that takes two interpretations as input, and outputs an
ordering between them. In processing Figure 1, for exam-
ple, the interpretation “body” is ranked higher than the inter-
pretation “connected rods,” based on the “Simpler is Better”
heuristic.

Situational evidence comes from implicit and explicit feed-
back from the user. Explicit feedback is provided by use of
the “Try Again” button; implicit feedback arises when the
user keeps drawing after the system displays an interpreta-
tion, suggesting that the user is satisfied that the system has
understood what has been drawn so far.

The system gives each interpretation two numeric scores,
one from each category of evidence. The categorical score
is an integer from 0 to 10; the situational score is an integer
from -11 to 11. These values are chosen so that the situa-
tional dominates the categorical, because we want user feed-
back to dominate general ranking rules. An interpretation’s
total score is simply the sum of its two scores.

To convert categorical evidence to a numerical score (so it
can be combined it with the situational score), we generate
a total ordering of all the interpretations consistent with the
partial orders imposed by the categorical evidence. We do a
topological sort of the graph of partial orders produced by the
evidence and distribute scores evenly, from 0 to 10, over all
the interpretations in the sorted graph.5

Situational scores start out at 0 and are strengthened or
weakened by evidence that can raise of lower the current
value by 1 or by 11. Situational evidence thus either mod-
ifies an interpretation’s value by a small amount (1 unit) or
declares it to be certainly correct or certainly incorrect. The
system declares an interpretation to be certainly correct or
certainly incorrect when the user explicitly accepts or rejects
the interpretation using the “Try Again” dialog box. The sys-
tem strengthens an interpretation by a small amount each time
strokes added by the user are consistent with that interpreta-
tion.6

We developed this approach to accumulating and combin-
ing evidence, and implemented our knowledge sources as a
rule based system, in order to provide a degree of modularity

5The system first removes cycles in the graph by collapsing
strongly connected components. Conceptually, this step indicates
that the system will give an equal score to all interpretations that
have inconsistent ordering given the evidence (i.e., one rule says A
is more likely than B, while another says B is more likely than A).
In addition, if there are more than 11 interpretations, the top ten are
assigned scores of 10 through 1; the remaining interpretations all
receive a score of 0.

6The system does not yet weaken an interpretation by a small
amount; we have included this possibility for symmetry and possible
future use.
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Figure 6: A recognition graph for four strokes; scores are
shown at the left of each interpretation.

to the system. Our overall approach to the problem is to take
into account as many sources of knowledge as prove useful in
interpreting the sketch. We knew that it would be impossible
to identify and implement them all at the outset, hence our
design put a high premium on the ability to add and remove
sources of evidence easily.

4.3 Resolution

The third stage in the interpretation process involves deciding
which interpretation is currently the most likely. Our system
uses a greedy algorithm, choosing the interpretation with the
highest total score, eliminating all interpretations inconsistent
with that choice, and repeating these two steps until no more
interpretations remain to be selected.

The process is illustrated by the interpretation graph in Fig-
ure 6, which shows in graphical form all of the possible in-
terpretations of four strokes (the top row of ovals): 4 separate
lines, 4 rods, a quadrilateral, rectangle, or square. The rod
on the left has the highest score, so it is chosen as a correct
interpretation for stroke A. Choosing that interpretation elim-
inates the interpretations of quadrilateral, rectangle or square,
because stroke A is needed in any of these interpretations. In
this context the other strokes are interpreted as rods because
that interpretation has the highest score of any remaining in-
terpretation.

Recall that our interpretation process is continuous: all
three stages of processing occur after every new stroke is
added to the sketch, and the current best interpretation as se-
lected by the greedy algorithm is presented to the user. The
process tends to settle down reasonably quickly, in part be-
cause, as noted, we reward longevity. Hence once an interpre-
tation has been presented to the user and unchanged for some
period of time, it becomes increasingly unlikely to change.

Figure 7: A scale.

Figure 8: A Rube-Goldberg machine. The ball rolling down
the incline sets in motion a sequence of events that eventu-
ally pushes the block at the right into the receptacle at bot-
tom right. The device is an adaptation of the one found in
[Narayanan, 1995].

5 Evaluation and Results
Our initial evaluation of ASSIST has focused on its natu-
ralness and effectiveness. We asked subjects to sketch both
on paper and using ASSIST. We observed their behavior and
asked them to describe how ASSIST felt natural and what
was awkward about using it.

We tested the system on eleven people from our the labo-
ratory, two of whom had mechanical engineering design ex-
perience. All were asked first to draw a number of devices
on paper (Figures 7, 8, 9), to give them a point of compari-
son and to allow use to observe differences in using the two
media.

They were then asked to draw the same systems using AS-
SIST (they drew with a Wacom PL-400 tablet, an active ma-
trix LCD display that allows users to sketch and see their
strokes appear directly under the stylus). We asked them how
often they felt the system got the correct interpretation and
how reasonable the misinterpretations were, and asked them
to compare using our system to drawing on paper and to using
a menu-based interface.

The system was successful at interpreting the drawings de-
spite substantial degrees of ambiguity, largely eliminating the



Figure 9: A circuit breaker.

need for the user to specify what he was drawing. As a con-
sequence, a user’s drawing style appeared to be only mildly
more constrained than when drawing on paper.

People reported that the system usually got the correct in-
terpretation of their sketch. Where the system did err, ex-
amination of its performance indicated that in many cases the
correct interpretation had never been generated at the recogni-
tion step, suggesting that our reasoning heuristics are sound,
but we must improve the low-level recognizers. This work is
currently under way.

Users tended to draw more slowly and more precisely with
ASSIST than they did on paper. The most common com-
plaint was that it was difficult to do an accurate drawing be-
cause the system changed the input strokes slightly when it
re-drew them (to indicate its interpretations). Users felt that
the feedback given by ASSIST was effective but at times in-
trusive. Our next generation of the system leaves the path of
the strokes unchanged, changing only their color to indicate
the interpretation.

For a more complete discussion responses to the system
from a user interface perspective, see[Alvarado and Davis,
2001].

6 Related Work
The Electronic Cocktail Napkin (ECN) project[Do and
Gross, 1996; Gross, 1996] attacks a similar problem of sketch
understanding and has a method for representing ambiguity.
Our system takes a more aggressive approach to ambiguity
resolution and as a result can interpret more complicated in-
teractions between parts. In order for ECN to to resolve am-
biguity, the user must either inform the system explicitly of
the correct interpretation, or the system must find a specific
higher-level pattern that would provide the context to disam-
biguate the interpretation of the stroke. Our system, in con-
trast, takes into account both drawing patterns and knowledge
of drawing style.

[Mankoff et al., 2000] presents a general framework for
representing ambiguity in recognition-based interfaces. This
work is similar in using a tree-like structure for representing
ambiguity, but touches only briefly on ambiguity resolution.
Our work pushes these ideas one step further within the do-
main of mechanical engineering by providing a framework
and set of heuristics for ambiguity resolution.

SILK [Landay and Myers, 2001] allows a user to sketch out
rough graphical user interface designs, then transform them
into more polished versions. SILK addresses the notion of

ambiguity, but limits its handling of it to single parts, e.g., is
this group of strokes a radio button or a check box? This does
not in general affect the interpretation of the other strokes in
the sketch. In contrast, our system can resolve ambiguities
that affect the interpretation of many pieces of the sketch.

A theoretical motivation to our work was provided by work
in [Saund and Moran, 1995], which outlines several goals
in interpreting ambiguous sketches. Our work implements
many of the multiple representation and disambiguation tech-
niques suggested in their work.

We have also been motivated by work in mechanical sys-
tem behavior analysis, especially in the field of qualita-
tive behavior extraction and representation[Sacks, 1993;
Stahovichet al., 1998]. The work by Stahovich aims to
extract the important design constraints from the designer’s
rough sketch and is less focused on the interface or sketch
recognition process. It was nevertheless the inspiration for
our work in this area.

7 Future Work
The work presented in this paper is a first step toward creating
a natural interface. It can usefully be expanded in several
areas.

First, our current formulation of recognition and evidential
reasoning is of course quite informal. This is a consequence
of our focus at this stage on the knowledge level, i.e., trying to
determine what the program should know and use to evaluate
interpretations. Once the content has become more stable and
better understood, a more formal process of evaluation and
control (e.g., Bayes’ nets) may prove useful both for speed
and scaling.

Second, in our efforts to combine the best properties of
paper and the digital medium we have yet to find many of
the appropriate trade-off points. How aggressive should the
system be in its interpretations? Forcing the user to correct
the system immediately when it makes a mistake greatly aids
recognition, but may distract the designer by forcing her to
focus on the system’s recognition process rather than on the
design. In addition, some ambiguities are resolved as more
of the sketch is drawn, yet if the system waits for the sketch
to be finished, unraveling an incorrect interpretations can be
a great deal of work.

In the same vein, it will be important to calibrate how im-
portant true freehand sketching is to designers. The obvious
alternative is a icon-based system with graphical editing capa-
bilities (e.g., moving and resizing the standard components).
Freehand drawing can be powerful, but alternative interface
styles need to be considered as well.

The system should also adapt to new users and their sketch-
ing style. For example, one of our heuristics was that people
draw all of one object before moving onto the next, but there
are of course exceptions. The system should be able to ad-
just to this type of behavior and learn to override its default
heuristic.

8 Conclusion
CAD systems are rarely used in early design because they
do not allow for quick and natural sketching of ideas. To be



useful here, computers must allow the designer to sketch as
on paper, yet provide benefits not available with paper, such
as the ability to simulate the system.

To provide an interface that feels natural yet interprets
sketches as the user draws, the system must be able to re-
solve ambiguities without interrupting the user. This work
provides one solution to problem of ambiguity resolution in a
framework of reasonable generality.
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ABSTRACT
A long standing challenge in pen-based computer interaction
is the ability to make sense of informal sketches. A main
difficulty lies in reliably extracting and recognizing the in-
tended set of visual objects from a continuous stream of pen
strokes. Existing pen-based systems either avoid these issues
altogether, thus resulting in the equivalent of a drawing pro-
gram, or rely on algorithms that place unnatural constraints
on the way the user draws. As one step toward alleviat-
ing these difficulties, we present an integrated sketch parsing
and recognition approach designed to enable natural, fluid,
sketch-based computer interaction. The techniques presented
in this paper are oriented toward the domain of network di-
agrams. In the first step of our approach, the stream of pen
strokes is examined to identify the arrows in the sketch. The
identified arrows then anchor a spatial analysis which groups
the uninterpreted strokes into distinct clusters, each repre-
senting a single object. Finally, a trainable shape recognizer,
which is informed by the spatial analysis, is used to find the
best interpretations of the clusters. Based on these concepts,
we have built SimuSketch, a sketch-based interface for Mat-
lab’s Simulink software package. An evaluation of Simu-
Sketch has indicated that even novice users can effectively
utilize our system to solve real engineering problems with-
out having to know much about the underlying recognition
techniques.

Categories and Subject Descriptors: H.5.2 [User Inter-
faces]: Graphical User Interfaces (GUI), Interaction Styles;
I.5.5 [Pattern Recognition]: Implementation, Interactive sys-
tems

Additional Keywords and Phrases: Sketch understand-
ing, pen computing, symbol recognition, visual parsing, sketch
understanding, SimuSketch, Simulink

INTRODUCTION
Pen-based computer interaction is becoming increasingly ubiq-
uitous as evidenced by the growing interest in Tablet PC’s,
electronic whiteboards and PDA’s. Many of these devices
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now come equipped with robust handwriting recognition,
making them an attractive alternative to the keyboard and
mouse for text entry. However, when it comes tographi-
cal input, such as sketches and diagrams, such devices ei-
ther leave the pen strokes uninterpreted, or offer only limited
support in the form of stroke beautification or simple shape
recognition.

We believe that among the many issues that remain to be
solved, there are two particular challenges that hinder the de-
velopment of robust sketch understanding systems. The first
is ink parsing, the task of grouping a user’s pen strokes into
clusters representing intended symbols, without requiring the
user to indicate when one symbol ends and the next one be-
gins. This is a difficult problem as the strokes can be grouped
in many different ways, and moreover, the number of stroke
groups to consider increases exponentially with the number
of strokes. The combinatorics thus clearly render approaches
based on exhaustive search infeasible. To alleviate this diffi-
culty, many of the current systems require the user to explic-
itly indicate the intended partitioning of the ink. This is often
done by pressing a button on the stylus, or more commonly,
by pausing between symbols [11, 25]. Alternatively, some
systems avoid parsing by requiring each object to be drawn
in a single pen stroke [20, 27, 17]. However, such constraints
usually result in a less than natural drawing environment.

The second issue issymbol recognition, the task of recogniz-
ing individual hand drawn figures such as geometric shapes,
glyphs and symbols. While there has been significant recent
progress in symbol recognition [27, 11, 6, 24], many recog-
nizers are either hand-coded or require large sets of training
data to reliably learn new symbol definitions. Such issues
make it difficult to extend these systems to new domains with
novel shapes and symbols. Additionally most symbol rec-
ognizers have been built as stand alone applications without
addressing the issue of integration into high-level sketch un-
derstanding systems.

In this paper, we address the issue of parsing and recognition
of hand-drawn sketches in the domain of network diagrams.
The types of sketches we consider can be broadly character-
ized as a set of symbols (nodes) connected by a set of arrows.
The techniques we present are thus well-suited to a variety of
diagrams such as signal flow diagrams, organizational charts
and algorithmic flowcharts, and to various graphical models
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such as finite state machines, Markov models and Petri nets.

Our approach is based on the hierarchical mark-group-recognize
architecture shown in Figure 1. The first step focuses on
identifying the arrows in the sketch. We refer to these arrows
as “markers” because of two important properties: First, their
geometric and kinematic characteristics enable them to be
easily extracted from a continuous stream of strokes, and
second, they serve as delimiters, which allow the remaining
strokes to be efficiently clustered into distinct groups corre-
sponding to individual symbols. The key here is that stroke
clustering is driven exclusively by the arrows identified in
the first step, without need for search. Next, informed by
the result of the clustering algorithm, our approach employs
contextual knowledge to generate a set of candidate interpre-
tations for each of the stroke groups. The groups are then
evaluated using a symbol recognizer to determine which of
these interpretations is correct. The key advantage of our rec-
ognizer is that it can learn new symbol definitions from single
prototype examples, thus allowing users to easily customize
the system to their unique styles. The underlying image-
based pattern recognition techniques allow our recognizer to
be applicable to multiple-stroke symbols without restricting
the order in which the strokes are drawn. In cases of mis-
recognitions, the last step involves error correction where the
user rectifies the mistakes.

OVERVIEW
To provide a test bed for our work, we have created Simu-
Sketch; a prototype sketch-based front-end to Matlab’s Simu-
link package (Figure 2). Simulink is used for analyzing feed-
back control systems and other similar dynamic systems. It
has a typical drag and drop interface in which the user nav-
igates through a nested symbol palette to find, select and
drag the components, one at a time, onto an empty canvas.
With SimuSketch, on the other hand, the user can construct
functional Simulink models by simply sketching them on a
computer screen. The sketch interface does not restrict the

Figure 2: (Top) SimuSketch, (Bottom) Automatically
derived Simulink model.

order in which the symbols must be drawn nor the number
of strokes used to draw them. Furthermore, it does not re-
quire the user to indicate when one symbol ends and the next
begins. Likewise, the user need not complete one symbol be-
fore moving onto another, and thus the user may come back
to a previous location to add more strokes at any time.

The objects interpreted by SimuSketch are live from the mo-
ment they are recognized, thus enabling users to interact with
them. For example users can edit the objects through dialog
boxes or alter their sketch using traditional means such as se-
lection and deletion. Once the user’s model is recognized,
a simulation can be run and viewed directly in SimuSketch.
At the end, users can save their work either in their original
sketchy form or in a format compatible with Matlab, thus al-
lowing users to resume their work either in the SimuSketch
or the conventional Matlab environments.

In the next section, we present a survey of previous research
on sketch-based systems with an emphasis on parsing and
recognition approaches. Further detail about interaction with
SimuSketch and the underlying parsing and recognition tech-
niques are detailed in the subsequent sections.

RELATED WORK
Inspired by the advances in speech recognition, some sys-
tems facilitate parsing by requiring visual objects to be drawn
with a predefined sequence of pen strokes [30, 33]. While
useful at reducing computational complexity, the strong tem-



poral dependency in these methods forces the user to remem-
ber the correct order in which the strokes must be drawn.
The nature of these approaches thus makes them more suit-
able to handwriting recognition rather than sketch recogni-
tion. Other approaches employ constrained search methods,
where the idea is to generate a multitude of partial interpre-
tations from the strokes, and later support or refute these in-
terpretations based on new evidence [13]. Such approaches
are often faced with the difficulty of non-optimal thresholds
that either prematurely terminate a promising path, or retain a
futile one for too long. Alvarado [3], on the other hand, pro-
posed an extension to this idea in the form of Probabilistic
Relational Models but has not yet presented formal evalua-
tions.

A number of techniques have been devised for parsing and
recognition in visual scenes. Shilman et. al. [31] present
a statistical visual language model for ink parsing. During
training, a number of spatial relationships between objects
are used to construct the object models. During recogni-
tion, the models are matched against the users’ strokes using
a Bayesian framework. Their approach requires a descrip-
tion of a visual grammar, which is currently encoded manu-
ally. The trainable parser, on the other hand, requires a large
number of training examples. Costagliola and Deufemia [7]
present an approach based on LR parsing for the construc-
tion of visual language editors. They employ “extended po-
sitional grammars” to encode the attributes of the graphical
objects and present a set of production/reduction rules for the
grammar. Saund et. al. [29] present a system that uses Gestalt
principles to determine the salient objects represented in a
line drawing. Their work only concerns the grouping of the
strokes and does not employ recognition to verify whether
the identified groups are in fact the intended ones. Jacobs
[16] describes a system to recognize objects with straight-
line perimeter representations. The system uses a number of
heuristic rules to group edges that likely come from a sin-
gle object, and then uses simple recognizers to identify the
objects represented by the edges. However the rules rely on
the presence of straight line segments and sharp corners, and
thus are not well-suited to less structured patterns such as
sketches.

A number of systems that support sketch-based interaction
have been developed in recent years. For user interface de-
sign, Landay and Myers [20] present an interactive sketching
tool called SILK that allows designers to quickly sketch out a
user interface and transform it into a fully operational system.
Hong and Landay [14] describe a program called SATIN de-
signed to support the creation of pen-based applications. Lin
et al [22] describe a program called DENIM that helps web
site designers in the early stages of the design process. All
three programs use Rubine’s single-stroke gesture recognizer
[27] as their main recognition tool and are thus not concerned
with parsing. Alvarado and Davis [4] describe a system that
can interpret and simulate a variety of simple, hand drawn
mechanical systems. The system uses a number of heuristics
to construct a recognition graph containing the likely inter-
pretations of the sketch. The best interpretation is chosen us-
ing a scoring scheme that uses both contextual information
and user feedback. In their approach, each time a new stroke
is entered, the entire recognition tree is updated. By contrast,

we allow recognition to be controlled by the user. Also, their
shape recognizers are sensitive to the results of segmentation
(i.e., fitting line and arc segments to the raw ink) forcing the
user to be cautious during sketching. Our approach does not
rely on segmentation, thus allowing for more casual drawing
styles.

Matsakis [24] describes a system for recognizing handwrit-
ten mathematical expressions. The work presents an interest-
ing idea based on minimum-spanning trees used for uncover-
ing the spatial structure of the expressions. However the ap-
proach requires a large amount of training samples to learn
new symbols, and each training sample needs to be drawn
using the same number of strokes in the same direction and
order. Similarly, recognition is sensitive to the number of
strokes and order. Kurtoglu and Stahovich [18] describe a
program that augments sketch understanding with qualitative
physical reasoning to understand schematic sketches of phys-
ical devices. One key feature of their system is that it allows
users to incorporate shapes from several different domains,
instead of limiting them to one particular domain.

In the field of shape recognition, some methods either rely
on single stroke methods in which an entire symbol must
be drawn in a single stroke [27, 17], or constant drawing
order methods in which two similarly shaped patterns are
considered different unless the pen strokes leading to those
shapes follow the same sequence [26, 33]. Systems such as
[5, 12] allow for multiple stroke symbols, however the rec-
ognizers are manually coded. While trainable, systems such
as [11, 6, 24, 15] typically require a multitude of training ex-
amples. By contrast, we present a multiple stroke symbol
recognizer that can learn definitions from single prototype
examples.

INTERACTION WITH SIMUSKETCH
SimuSketch is deployed on a 9 inx 12 in Wacom Cintiq dig-
itizing tablet with a cordless stylus. The drawing surface of
the tablet is an LCD display, which enables users to see vir-
tual ink directly under the stylus. Data points are collected as
time sequenced (x,y) coordinates sampled along the stylus’
trajectory. As shown in Figure 2-top, SimuSketch’s interface
consists of a drawing region and a toolbar that contains but-
tons for commonly used commands.

The user draws as he or she ordinarily would on paper. As
the user is drawing, SimuSketch does not attempt to inter-
pret the scene. Instead, it employs arecognize on demand
(ROD) strategy in which the user taps the “Recognize” but-
ton in the toolbar whenever he wants the scene to be inter-
preted. This command invokes the sketch recognition engine
which then parses the current sketch, recognizes the objects,
and produces a Simulink model. As shown Figure 2-top, the
program demonstrates its understanding by displaying a faint
bounding box around each object, along with a text label in-
dicating what the object is. Recognized arrows are delineated
with small colored points at each of their two ends.

The ROD strategy has a number of advantages over the sys-
tems that try to interpret the scene after each input stroke.
First, as the users are not distracted by display of potentially
premature interpretation results, they can focus exclusively
on sketching. Second, as very little internal processing takes



Figure 3: The user can interact with the system through
sketch-based dialog boxes. The simulation results are
displayed through conventional Simulink graphs.

place after each stroke, the program is better able to keep up
with the user’s pace1. Third, by delaying recognition in a
user controlled manner, it allows the system to acquire more
context that would help improve the recognition accuracy of
earlier strokes. Note that ROD does not require the model
to be entirely completed before it can be used. In fact, it en-
courages an iterative construction process in which the user
draws a portion of the final model, asks SimuSketch to rec-
ognize it, tests the model, and continues with the rest of the
model.

Once the sketch is recognized, the user can run a simula-
tion of it by pressing the “Simulate” button. This command
simply hands the model over to Simulink (which runs in the
background) for processing. The results of the simulation
can be viewed directly in the sketch interface by double tap-
ping on the Scope blocks. As shown in the right part of Fig-
ure 3, this brings up a window showing the simulation re-
sults. At any time, the user can add new objects to the model
by simply sketching them.

Object Manipulation: SimuSketch offers a number of ges-
tures for different tasks. To select an object or an arrow,
the user either taps on it or circles it with the stylus; the
selected item is highlighted in a translucent blue color in-
dicating its selection. The circular selection gesture is differ-
entiated from a drawing stroke based on its end points and
the region it encircles. If the distance between the stroke’s
first and last points is less than 10% of the total stroke length
(i.e., the stroke forms a nearly closed contour) and the stroke
encircles one or more objects or arrows, the stroke is taken
as a selection gesture. Once an object is selected, one of four
things can happen depending on the subsequent input stroke.
First, if the stroke is simply a quick tap in the blue region, a
pop dialogmessage is dispatched, which brings up a dialog
box pertinent to the selected object. Second, if the stroke is
not a tap but its initial contact point is still within the blue re-
gion, amovemessage is dispatched and the selected object(s)
is moved to the lift point of the stroke. Third, if both the con-
tact and lift points of the stroke are outside the blue region
but the midpoint is in the blue region, adeletemessage is

1Systems that interpret the sketch after each stroke, such as [2], often
force the user to pause for a short duration between the strokes.

dispatched and the object is removed from the visual scene.
A typical manifestation of this gesture is a stroke through the
selected object. Finally, if the entirety of the stroke is out-
side the blue region, all selected objects arede-selectedand
the stroke is added to the raw sketch. An alternative to de-
selection is a tap in the white space.

Object Dialogs: For objects with variable parameters, se-
lecting and tapping on the object brings up a dialog box for
editing its parameters. The left part of Figure 3 shows an ex-
ample. Interaction in these dialog boxes is also sketch-based
in that users can cross out the old value with a delete gesture
(a stroke through the number) and simply write in the new
value. The program can recognize negative and/or decimal
numbers using a digit recognizer we have developed.

Views: Once the user’s sketch has been interpreted, the user
has the option of viewing the model in its sketchy or cleaned
up form. In the cleaned up view, the sketchy symbols are
replaced by their iconic forms and the arrows are straight-
ened out into line segments. Users can toggle between these
two views by tapping the “Toggle view” button. Subjects
in our user studies have indicated that the informality of the
sketchy view gave a sense of freedom and creativity, while
the cleaned up view gave a sense of completeness and defi-
niteness. Despite these perceived differences, the cleaned up
view is just as functional as the sketchy view in that it sup-
ports the same interaction mechanisms, including sketching,
object selection, object manipulation and editing.

SYSTEM DETAILS
In the following sections, we detail each of the steps of our
multi-level parsing and recognition approach outlined in Fig-
ure 1.

Preliminary Recognition
One key to successful sketch understanding lies in the abil-
ity to establish the ground truths about the sketch early on,
before costly mistakes take place. Based on this idea, we in-
troduce the concept of “marker symbols,” symbols that are
easy to recognize and that can guide the interpretation of the
remainder of the sketch. In the domain of network diagrams,
arrows fulfill this purpose. This approach is similar in spirit
to the construction of “islands of certainty” in the Hearsay-II
speech understanding system [9].

There are several reasons why arrows are useful marker sym-
bols. First, they occur relatively frequently in network di-
agrams, thus providing good resolution for separating the
other symbols. Second, arrows have unique geometric and
kinematic (e.g., pen speed) features that allow them to be re-
liably extracted from the input stream. Third, as explained
later, arrows help guide the interpretation of the other sym-
bols in the sketch by narrowing down the set of possible in-
terpretations. SimuSketch thus begins by recognizing the ar-
rows.

Our observational tests on a small set of users during the de-
sign stages of our system indicated that, despite some excep-
tions, arrows were usually drawn as either a single pen stroke
or two consecutive strokes, one for the shaft and one for the
head. We thus developed two types of arrow recognizers to
account for these two styles. To simplify our analysis, we
require that both types of arrows be drawn from tail to head.
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Figure 4: Arrow recognition. (a) A one-stroke arrow
with the key points labeled. (b) Speed profile. Key
points are speed minima.
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Figure 5: Examples of (a) arrows and (b) arrow heads,
that are correctly recognized.

Here we describe only the single-stroke arrow recognizer, as
the two-stroke recognizer is a minor extension of it.

Arrow recognition is based on the identification of five key
points, labeled A, B, C, D and R in Figure 4a. Points A, B
and C correspond to the sharp corners on the arrowhead. The
distinguishing characteristic of these points is that they all
correspond to pen speed minima, as can be seen in the pen
speed profile in Figure 4b. These points are thus identified
by locating the last three global minima in the speed profile,
excluding the end point, which is labeled point D. Finally, R
is a “reference” point on the arrow shaft and is obtained by
moving a small distance backwards from point A.

Once these points are determined, a series of geometric tests
is performed to determine whether or not the stroke really is
an arrow. We require the four angleŝABC, B̂CD, R̂AB and
R̂AD to all be less than90◦, and the length of line segments
BC and DC to be less than 20% of the total stroke length.
These geometric tests were designed empirically by collect-
ing a corpus of positive and negative examples of arrows
from several users, and experimenting with different levels
of specificity and thresholds until the best classification per-
formance was obtained. With the resulting recognizer, a va-
riety of arrow shapes with different arrowhead styles can be
recognized as shown in Figure 5.

Stroke Clustering
Once the arrows have been recognized, the next step is to
group the remaining strokes into different clusters, represent-
ing different symbols. The key idea behind stroke cluster-
ing is that strokes are deemed to belong to the same sym-
bol only when they are spatially proximate. The challenge
is reliably determining when two pen strokes should be con-

(a)

(b)

(c)

(d)

Figure 6: Illustration of the cluster analysis. (a) Each
stroke is assigned to the nearest arrowhead or tail.
(b) Strokes assigned to the same arrow are grouped
into clusters. (c) Clusters with overlapping bounding
boxes are merged. (d) Arrows that did not receive any
strokes are attached to the nearest cluster.

sidered close together. Here, we rely on the arrows to help
make this determination. In network diagrams, each arrow
typically connects a source object at its tail to a target ob-
ject at its head. Hence, different clusters can be identified by
grouping together all the strokes that are near the end of a
given arrow. In effect, two strokes are considered spatially
proximate if the nearest arrow is the same for each. Based on
this observation, we developed the following procedure for
identifying symbol clusters:

Step-1 Assign each non-arrow stroke to the nearest ar-
row: Stroke clustering begins by assigning each non-arrow
stroke to the nearest arrow (Figure 6a). The distance between
a stroke and an arrow is defined to be the Euclidean distance
between the median point of the stroke and either the head or
tail of the arrow, whichever is closer. The head is taken to be
the apex, which is shown as point C in Figure 4.

Step-2 Combine strokes into clusters:Strokes assigned to
the same arrow end in Step-1 are grouped to form a stroke
cluster. These clusters will form the basis of the symbols.
Figure 6b shows the results of this step.

Step-3 Merge overlapping clusters: Next, clusters with
partially or fully overlapping bounding boxes are merged.
The bounding box of a cluster is the minimum sized rectan-
gle, aligned with the coordinate axes, that fully encloses the
constituent strokes. As shown in Figure 6c, this process com-
bines strokes that are part of the same symbol but which were
initially assigned to different arrows in Step-1. If bounding
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Figure 7: Examples of symbol templates.

boxes of different symbols overlap, this process could erro-
neously merge the symbols. However, in our experience, we
have found that users rarely draw in such a way that this hap-
pens. Thus, at the completion of this step, each cluster is
assumed to be a distinct symbol.

Step-4 Connect empty arrowhead/tails to the nearest clus-
ter: Step-1 guarantees that each non-arrow stroke is attached
to the nearest arrow end. However, some of the arrow ends
might remain devoid of any strokes. In this step, empty arrow
ends are linked to the nearest stroke cluster (Figure 6d). This
step helps to ensure the intended connectivity of the diagram
by ensuring that each arrow has a cluster at its tail and head.

Generating Symbol Candidates
After identifying the stroke clusters, the next step is to rec-
ognize the symbols they represent. Our approach combines
contextual knowledge with shape recognition to achieve ac-
curacy and efficiency. In particular, we examine the num-
ber of input and output arrows associated with each stroke
cluster to help constrain its possible interpretations. For ex-
ample, function generators such as the Sine Wave can have
only output terminals, and therefore, must have only outgo-
ing arrows. Likewise, certain symbols can have only input
terminals, such as the Scope block, or may have an arbitrary
number of input and output terminals such as the Sum block.

By examining the number of input and output arrows for a
given cluster, SimuSketch identifies a set ofcandidatesym-
bols for the cluster. This reduces the amount of work the
subsequent shape recognizer must do and additionally helps
increase accuracy by reducing the possibilities for confusion.
For example, while the Sum block and the Clock look quite
similar (the two circular symbols in Figure 6), context dic-
tates that a Sum block must have at least two incoming ar-
rows while the Clock must have none. With this additional
knowledge, the shape recognizer would never consider the
Sum block and the Clock as two competing candidates dur-
ing shape recognition.

Symbol Recognition
We have developed a novel image-based symbol recognizer
that can recognize shapes independent of their position, size
and orientation.2 However, it is sensitive to non-uniform
scaling, and thus we can distinguish between, say, a square
and a rectangle. A distinguishing feature of this recognizer is
that it is used for recognizing both the Simulink objects, and
the digits in the objects’ dialog boxes.

2Our recognizer uses a polar coordinate representation to efficiently ac-
count for changes in orientation, but that is beyond the current scope.

Input symbols are internally described as 24x24 quantized
bitmap images which we call “templates”. Figure 7 shows
example symbol templates. This representation has a number
of desirable characteristics. First, segmentation – the process
of decomposing the symbol into constituent primitives such
as lines and curves – is eliminated entirely. Second, the rep-
resentation is well suited for recognizing “sketchy” symbols
such as those with heavy overtracing, missing or extra seg-
ments, and different line styles (solid, dashed,etc.). Lastly,
this recognizer puts no restrictions on the number of strokes,
or the order in which the strokes are drawn.

Unlike many traditional methods, our shape recognizer re-
quires only asingleprototype example to learn a new sym-
bol definition. Using the “Train New” button in the interface,
the user can create a new symbol definition by simply draw-
ing a shape and assigning a name to it. With this approach,
users can seamlessly train new symbols or overwrite existing
ones on the fly, without having to depart the main application.
This feature makes it easy for users to extend and customize
their symbol libraries.3

Our recognizer uses an ensemble of four different classifiers
to evaluate the match between an unknown symbol and a
candidate definition symbol. The classifiers we use are ex-
tensions of the following methods: (1) Hausdorff distance
[28], (2) Modified Hausdorff distance [8], (3) Tanimoto co-
efficient [10] and (4) Yule coefficient [32]. The Hausdorff
methods reveal thedissimilarity between two templates by
measuring the distance between the maximally distant pix-
els in the two point sets. The Tanimoto coefficient on the
other hand reveals thesimilarity between two templates by
measuring the amount of overlapping black pixels. The Yule
coefficient is also a similarity measure except it considers the
matching white pixels in addition to the matching black pix-
els. The motivation for using a multiple classifier scheme lies
in the pragmatic evidence that, although individual classifiers
may not perform perfectly, they usually rank the true defini-
tion highly, and tend to misclassify differently [1]. Hence,
by advocating definitions ranked highly by all four classi-
fiers, while suppressing those that are not, we can determine
the true class more reliably.

During recognition, each classifier outputs a list of symbol
definitions ranked according to their similarity to the un-
known. Results of the individual classifiers are then synthe-
sized by first transforming the similarity measures into dis-
similarity measures, then normalizing the classifiers’ output
into a unified scale (to make them compatible), and finally
combining the modified outputs of the classifiers. The defi-
nition symbol with the best combined score is chosen as the
symbol’s interpretation.

Error Correction
Our system provides several means to correct recognition er-
rors when they occur. Our techniques have strong parallels
with the mediation techniques presented in [23]. When an

3Currently SimuSketch has the operational knowledge of 16 Simulink
objects. However, the extension to other Simulink objects is straightfor-
ward, requiring only code for linking the objects in SimuSketch to those in
Simulink.



object is misrecognized, the user canrepeatthe object by se-
lecting, deleting and redrawing it. A more direct way is by
choosing the correct interpretation from achoice list, which
is revealed by bringing the stylus near the misrecognized ob-
ject and pressing one of the buttons on its side. This list con-
tains only the candidate symbols previously determined us-
ing contextual information, and is ranked according to the re-
sults of the shape recognizer. Hence, the list is typically short
with the correct interpretation usually occurring near the top.
Finally, if an arrow goes undetected, and hence becomes part
of an object, the user candictatethe correct interpretation by
drawing a small circle on or near the stroke. This gesture,
which we call the ‘o’ gesture, explicitly forces the stroke in
question to be an arrow. The ‘o’ gesture is distinguished from
a regular drawing stroke based on its absolute size and its two
end points. If the gesture fits in a 30x 30 square on a 1024x
768 screen, and the stroke forms a closed contour (similar to
a selection gesture) without encircling any object, the stroke
is interpreted as an ‘o’ gesture. Once a misrecognized arrow
is corrected, SimuSketch automatically rectifies the portion
of the sketch that was affected by the missed arrow.

USER STUDIES
We conducted two user studies to evaluate our system. The
first study focused on the performance of our symbol recog-
nizer and was conducted with a simple interface designed for
this study. The second investigated users’ reactions to Simu-
Sketch as a pen-based interaction system, and the evaluation
was more observational compared to the first study.

Evaluation of the Symbol Recognizer:Our evaluation of
the symbol recognizer consisted of two experiments. In the
first experiment, we used a set of 20 graphic symbols shown
in Figure 8. Five users participated in this experiment, each
of whom was asked to provide three sets of the symbols using
the digitizing tablet. In the second experiment, we used digit
recognition as our test bed. Nine users participated in the
second study and each was asked to provide six sets of dig-
its from “0” to “9”. Both experiments were conducted in a
user-dependent setting in which the recognizer was evaluated
using the user’s own training symbols. The last set from each
user was used for training while the previous ones were used
for testing. Each session involved only data collection; the
data was processed at a later time. This approach was chosen
to prevent users from adjusting their writing style based on
our program’s output.

When the top-one classification performance is considered,
the recognition rate from the graphic symbol study was 87%.
However when top-two classification performance is consid-
ered,i.e., the rate at which the correct class is either the high-
est or second highest ranked class, the accuracy was 97.5%.
We consider the top-two classification performance to be of
considerable importance, as it provides a measure of how fre-
quently the correct class will appear in the list of alternatives
suggested by our program during error correction.

For the digit recognition study, the top-one accuracy was
93.8% and the top-two accuracy was 98.0%. State-of-the-
art hand-drawn digit recognition systems achieve recognition
rates above 96-97% in user-independent settings [19, 21],
however, these systems usually work from scanned images

Figure 8: Symbols used in the graphic symbol recog-
nition experiment.

which adds another level of complexity to their task. We
achieve about 94% accuracy in a setting where the recogni-
tion is user-dependent and the input data is not affected by
poor image quality. Nevertheless, we consider our approach
to be quite attractive given that it works from asingletraining
example. To have a point of comparison, LeCun’s neural net-
work recognizer [21] for handwritten digits, one of the best
in its class, uses a total of 60,000 digits for training purposes.
As one would expect, if the problem is to recognize digits
only, it is better to use a dedicated digit recognizer. However,
if the problem involves user defined symbols, such as those
shown in Figure 8, our approach has distinct advantages.

Evaluation of SimuSketch: The focus of this study was to
assess the performance of SimuSketch. Among the various
aspects that we investigated, we were particularly interested
in SimuSketch’s ease of use, its parsing and recognition accu-
racy, users’ adaptability to the system, their success at recov-
ering from recognition errors, and their short and long term
view of SimuSketch as a practical front-end to Simulink.

A total of 14 graduate and undergraduate students – 12 engi-
neering and 2 computer science majors – participated in the
studies. Nearly half of the users either regularly used Simu-
link or had previously used it once or twice, while the other
half had never used Simulink before. 10 users had no prior
experience with the digitizing tablet or the stylus, while 4
users had once used the hardware in a previous study. How-
ever, none of the users had previously used SimuSketch, nor
had seen it in use by others.

Each session lasted approximately 30 to 40 minutes. For
those who were not familiar with Simulink, we first described
what Simulink is and gave a brief demonstration on its inter-
face. Next, we introduced SimuSketch. Using simple exam-
ples, we demonstrated the means for creating a sketch, select-
ing, deleting and moving objects, editing object properties,
correcting recognition errors, running simulations, training
new symbols and switching between views. During this pe-
riod, we elaborated on SimuSketch’s arrow recognizer as our
experience with the first few users had indicated the arrow
recognition to be fragile at times. Particularly, we told the
users that only single or two stroke arrows were permitted
and both types had to be drawn from a source object toward
a target object. Other than the recognition of arrows, no fur-



Figure 9: Test problems employed in the user studies.

ther explanation was given regarding the underlying parsing
and recognition algorithms. At the end of this introduction, a
brief warm up period of approximately 5 minutes was given
to let the users become familiar with the hardware and Simu-
Sketch’s interface.

The main test involved the two Simulink models shown in
Figure 9. Users were asked to use SimuSketch to construct
these models, run a simulation of each, and view the re-
sults with minimal help from us. The first model involved
changing the parameters of several objects through their dia-
log boxes while in the second model the default values were
accepted. Because the users were not involved in the train-
ing of the object shapes, none of them knew what the trained
shapes looked like. Although users were given the option to
train their own set of symbols before starting, none of them
chose to do so. Hence, we provided a sketched version of
each of the two models as a quick reference. Both the origi-
nal models and the sample sketches were presented on paper.
Similarly, all users decided to use the pre-trained digit rec-
ognizer rather than training their own set of digits. However,
in this case we did not provide sample figures of the trained
digits. Although no time constraints were set, we encouraged
users to complete their tasks in a total of 20 minutes.

Observations, Evaluations and Discussions

One consistent pattern among the users was that their en-
counter with SimuSketch began with great excitement as ob-
served from their reactions during the demo session. This
was followed by a period of frustration at the beginning of
the warm up period, and finally reached a favorable equilib-
rium toward the end of the warm up period and during the
actual testing. At the end, all users completed the first task
successfully, while all but four users completed the second
task. In the case of the four users, either the program crashed
unexpectedly and they did not have time to redo it, or it was

taking too long for them to finish the task.
The users’ main remark about SimuSketch was that it was
intuitive and fast to use, and easy to learn. They particularly
liked the idea of simply drawing the objects without having
to navigate through an object library to find them. Most users
found the interaction mechanisms to be “natural” and “famil-
iar.” Many highlighted the ability to quickly train a custom
set of symbols as an outstanding attribute, although they did
not make use of it.

The user studies enabled us to evaluate the individual accu-
racies of our arrow recognizer, parsing algorithm, and sym-
bol recognizer. In its current implementation, our program
saves only the user’s final sketch, and any objects that are
deleted during a drawing session are lost. Our initial accu-
racy calculations thus do not reflect errors that users repaired
by deleting and redrawing objects. This does not produce a
significant error in our accuracy calculations, however, be-
cause users in the study rarely repaired interpretation errors
in this way. In the results presented below, we include es-
timates of the accuracy that would have been obtained if all
interpretation errors had been considered.

The study has shown the main strength of SimuSketch to be
its parsing algorithm. In cases where the arrows were all cor-
rectly recognized, or the misrecognized ones were corrected
by the user, the parsing algorithm had an accuracy above
95%. In the few cases it failed, two distinct symbols were
drawn too close to each other and thus their strokes were
grouped into a single cluster.

In cases where all stroke clusters were correctly identified,
the symbol recognition accuracy was between 85 and 90%.
Note that while this result is obtained in a user-independent
setting (i.e., the training and test symbols belong to different
individuals), it is similar to the result of the user-dependent
study explained in the previous section. We believe that
SimuSketch’s ability to maintain the same level of accuracy
in a more difficult setting can be attributed to its use of con-
textual knowledge for narrowing down the set of interpreta-
tions of a symbol prior to recognition. Nevertheless, when
errors occurred, they were mostly due to: (1) the confusion
between similarly shaped objects, or (2) the recognizer’s sen-
sitivity to non-uniform scaling. Figure 10 shows examples
of these issues. However, contrary to our expectation, users
did not seem to mind such occasional errors, mainly because
they found the means for recovery – either by deleting and
redrawing, or by selecting the right interpretation from the
list of alternatives – to be intuitive and undemanding. In the
latter case, the correct interpretation was always in the list of
alternatives suggested by SimuSketch.

The main complaint about SimuSketch centered around the
arrow recognizer being too restrictive. Although several
users quickly became adept at drawing arrows during the
warm up period, most users continued having difficulty dur-
ing the main test session. As we expected, the majority of
the errors thus occurred due to the misrecognized arrows.
For the most successful users, the arrow recognition accu-
racy was above 90%. However, when considering all users,
the average accuracy for arrow recognition was between 65
and 70%. These results indicate that our arrow recognizer
must be further improved to accommodate a wider variety of
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Random Chirp Coul. & Visc. Friction Sign
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Definition of Transfer Function One user’s Transfer Function

Figure 10: (a) Pairs of most frequently confused ob-
jects. (b) A misrecognition due to non-uniform scaling.
(Left) Definition symbol, (Right) One user’s misrecog-
nized symbol.

styles. One approach in this direction would be to replace
the hard-coded thresholds of the geometric constraints with
thresholds that are tunable to individual users.

Besides the issue with arrows, some users had difficulty tap-
ping the stylus to select an object or to bring up a dialog box.
Usually, faulty taps were either too gentle, in which case the
program did not receive a tap message, or persisted too long
on the tablet, in which case the tap was interpreted as a draw-
ing stroke. Another observed difficulty was with the digit
recognition in the dialog boxes. While our pre-trained digit
recognizer had acceptable performance for certain users, it
could not accommodate the vastly dissimilar digit styles that
it was not trained for. In cases where the numbers were mis-
recognized, we asked the users to re-enter them until they
got it right. If each user had trained his or her set of digits,
we expect that the accuracy would have been similar to the
results presented in the previous section.

To obtain the users’ evaluation of SimuSketch’s performance,
we asked each user to complete a questionnaire at the end of
the session. The results shown in Table 1 indicate that, while
there are a number of usability issues that must be addressed,
most users viewed SimuSketch as a promising alternative to
Simulink.

Because SimuSketch is still at an early stage, we have delib-
erately avoided a head-to-head comparison between Simu-
Sketch and Simulink in our user studies. Nevertheless, as
a subjective test of how an individual who is proficient in
both environments would perform, one of the authors used
the two programs to construct and simulate a variation of the
second model shown in Figure 9. The test involved creating
the model, changing the default properties of several objects,
and viewing the simulation results. While the task took 241
seconds to complete in Simulink, it took only 183 seconds
in SimuSketch. Although simplistic, we believe this experi-
ment helps reveal the latent value of SimuSketch as a practi-
cal tool.

CONCLUSIONS
We have presented a multi-level parsing and recognition ap-
proach designed to enable natural sketch-based computer in-
teraction. This approach allows users to continuously sketch
without indicating when one symbol ends and a new one be-
gins. Additionally, it does not restrict the number of strokes,

Score
As I was using SimuSketch , I was able to 8.2
adapt to it easily
The software was fast enough to keep up 7.8
with my pace
Most of the time, SimuSketch interpreted my 7.4
sketch the way I intended
Most of the time, SimuSketch behaved expectedly8.2
and when it did not, I felt I was in control to fix it
The visual feedback on the interpretation results 9.1
was adequate and unobtrusive
The editing operations (select, move, delete 8.3
deselect) were intuitive and easy to use
I was comfortable using objects’ dialog 7.7
boxes to enter numeric values
Currently, the overall performance 7.6
of SimuSketch is
Assuming that SimuSketch was significantly more9.4
robust I would use it in my projects
Overall, my rating of SimuSketch is 8.7

Table 1: Average scores obtained from user question-
naire. Scale: 1-10, 10 being excellent.

or the order in which they must be drawn.

Our approach is based on a mark-group-recognize architec-
ture. In the first step, our program identifies the arrows in the
sketch, which serve as useful markers that separate the unin-
terpreted strokes into distinct clusters. After the symbol clus-
ters are identified, an image-based symbol recognizer, which
is informed by clustering and domain specific knowledge, is
used to find the best interpretations of the strokes. One ad-
vantage of this recognizer over traditional ones is that it can
learn new definitions from single prototype examples. The
recognizer is versatile in that we use it both for graphical
symbol recognition and digit recognition.

We have demonstrated our approach with SimuSketch, a
sketch-based interface for Simulink. User studies have indi-
cated that we have sound algorithms for parsing and symbol
recognition, and useful means for error recovery. However,
our current arrow recognizer should be improved to enhance
the user’s experience with SimuSketch. Overall, most users
had highly favorable opinions of our prototype system, and
found it easy and straightforward to use.

While useful for the practicing engineer, SimuSketch is likely
to have distinct advantages in engineering education. By
its nature, SimuSketch is ideally suited for electronic white-
board applications and thus can be readily integrated into the
classroom environment. In the near future, we plan to ex-
plore this possibility with pilot studies.

Finally, although the techniques presented in this paper are
tailored toward the domain of network diagrams, our prelimi-
nary studies suggest that our mark-group-recognize approach
may be applicable to other domains as well. We are currently
working to apply this approach to several other domains in-
cluding electrical circuits and mechanical systems.
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ABSTRACT

We propose interactive beauti�cation, a technique for
rapid geometric design, and introduce the technique and
its algorithm with a prototype system Pegasus. The mo-
tivation is to solve the problems with current drawing
systems: too many complex commands and unintuitive
procedures to satisfy geometric constraints. Interactive
beauti�cation system receives the user's freestroke and
beauti�es it by considering geometric constraints among
segments. A single stroke is beauti�ed one after another,
preventing accumulation of recognition errors or catas-
trophic deformation. Supported geometric constraints
includes perpendicularity, congruence, symmetry, etc.,
which were not seen in existing freestroke recognition
systems. In addition, the system generatesmultiple can-
didates as a result of beauti�cation to solve the problem
of ambiguity. Using the technique, the user can draw
precise diagrams rapidly satisfying geometric relations
without using any editing commands.

Interactive beauti�cation is achieved by three sequen-
tial processes; 1) inferring underlining geometric con-
straints based on the spatial relationships among the
input stroke and the existing segments, 2) generating
multiple candidates combining inferred constraints ap-
propriately, and 3) evaluating the candidates to �nd the
most plausible candidate and to remove the inappropri-
ate candidates. An user study was performed using the
prototype system, a commercial CAD, and an OO-based
drawing system. The result showed that the users can
draw required diagrams more rapidly and more precisely
using the prototype system.

KEYWORDS: Drawing programs, sketching, pen-based
computing, constraints, beauti�cation.

INTRODUCTION

Commercial Object-Oriented(OO) drawing editors such
as MacDraw and CAD systems have various editing

Figure 1: A diagram drawn on the prototype system
Pegasus: this diagram is drawn without any editing
commands such as rotation, copy, or gridding.

commands and special interaction modes. An user can
construct a diagram with geometric constraints by com-
bining these commands appropriately. For example,
symmetry can be achieved by the combination of du-
plication, ipping, and location adjustment, while per-
pendicularity can be achieved by duplication and 90 de-
gree rotation. In addition, CAD systems often have spe-
cial interaction modes such as a mode for drawing per-
pendicular lines. However, invoking these commands
or switching to the special editing modes requires addi-
tional overhead, and selection of appropriate commands
or interaction modes is di�cult, especially for novice
users[12].

To solve these problems, we propose a new interaction
technique for drawing, interactive beauti�cation. Inter-
active beauti�cation is a technique for rapid construc-
tion of geometric diagrams (an example is shown in Fig-
ure 1) without using any editing commands or special in-
teraction modes. Interactive beauti�cation can be seen
as an extension of free stroke vectorization [7] and dia-
gram beauti�cation [18]. It receives a user's free stroke
and beauti�es the stroke considering various geometric
constraints among segments. The intuitiveness of the
technique allows novice users to draw such precise dia-
grams rapidly without any training.

Interactive beauti�cation is characterized by the follow-
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ing three features; 1) stroke by stroke beauti�cation, 2)
automatic inference and satisfaction of higher level ge-
ometric constraints, and 3) generation and selection of
multiple candidates as a result of beauti�cation. These
three features work together to achieve rapid and intu-
itive drawing, avoiding the problem of ambiguity.

Interactive beauti�cation is currently implemented on
a prototype system Pegasus (an acronym for \Percep-
tually Enhanced Geometric Assistance Satis�es US!"),
and user evaluations using it showed promising results.
This paper introduces interactive beauti�cation, and de-
scribes the implementation of prototype the system Pe-
gasus in detail.

The remainder of this paper is organized as follows: the
next section describes related work in diagram drawing
on computers. Then, we describe the technique as seen
by the user using several examples. We describe the
algorithm of the technique in detail, and introduce the
prototype system Pegasus. An user study performed to
con�rm the e�ectiveness of the technique is described.
Finally, we consider the limitation of our current imple-
mentation and conclude the paper.

RELATED WORK

Much work has been done to facilitate the diagram
drawing on computers for these 35 years. We will
overview several important techniques that have been
developed, which a�ected the design of interactive beau-
ti�acation.

At a glance, the system may seem similar to existing
sketch-based interfaces including commercial products
such as Apple's Newton, GO's Penpoint, and freestroke
drawing mode in typical drawing editors (SmartSketch,
Corel Draw, etc.). These systems convert freestrokes
into vector segments, and satisfy primitive geometric
constraints such as connection. The di�erence is that
interactive beauti�cation considers complex, global con-
straints such as parallelism, symmetry, or congruence,
which enhances the range of geometric models. In addi-
tion, the generation and selection of multiple candidates
is unseen in the existing systems.

Gesture based systems [1][23][19][16] also employ free-
stroke input, but they convert input strokes into inde-
pendent primitives, while interactive beauti�cation con-
verts them into simple line segments satisfying geomet-
ric relations. Gross pointed out the importance of con-
text in solving the problem of ambiguity[9], which has
inuenced our idea.

Beauti�cation systems [18][22][14] are basically batch-
based, which can lead to unwanted results because of
ambiguity in users input. Interactive beauti�cation pre-
vents such results by interactively presenting multiple
candidates and requesting user's con�rmation.

While interactive beauti�cation systems control the place-
ment of two vertices (start and end) simultaneously,
many existing drawing systems assist the placement of
a vertex by controlling the movement of the mouse cur-

Perpendicularity

Connection

y-coordinate alignment

Freestroke input

Inferred constraints

Beautified segment

Multiple candidates

a)

b)

c)

d)

Figure 2: Basic operation of interactive beauti�cation

sor. Grid restricts cursor placement to some speci�c
geometry and gravity function snaps the cursor to some
meaningful places [3]. For example, the Adobe Intel-
lidraw editor[17] automatically aligns the cursor to ex-
isting edges. In comparison, the advantages of interac-
tive beauti�cation are as follows: 1) Freestroke drawing
is more intuitive and less cumbersome than careful ma-
nipulation of the cursor, especially for pen-based inter-
face. 2) The system can attain more information from
freestroke trace than cursor placement. For example,
equality of interval between parallel lines cannot be de-
tected from the placement of a single vertex.

Bier's Snap Dragging[2], an extension of gravity-active
grids, has the same motivation as ours; to make con-
struction of geometric design easier. However, interac-
tive beauti�cation requires much simpler and fewer op-
erations to construct precise diagrams. Moran et al.'s
work [20] shares our aims, but does not support the con-
struction of precise diagrams.

Constraint based systems [10][5][21][6] facilitate the con-
struction of complex diagrams with many constraints,
but require considerable amount of e�ort to specify the
constraints. Interactive beauti�cation aims at an oppo-
site goal: to reduce the e�ort by focusing on relatively
simple diagrams.

INTERACTIVE BEAUTIFICATION

Basically, interactive beauti�cation is a freestroke vec-
torization system; it receives a freestroke and converts it
into a vector segment, inferring and satisfying geometric
constraints.

First, the user draws an approximate shape of his de-
sired segment with a freestroke using a pen or a mouse
(Figure 2a). Then, the system infers geometric con-
straints the input stroke should satisfy by checking the
geometric relationship among the input stroke and exist-
ing segments(Figure 2b). Finally, the system calculates
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Figure 3: Supported geometric relations

the placement of the beauti�ed segment by solving the
simultaneous equations of inferred constraints, and dis-
play the result to the user(Figure 2c). In addition, the
system generates multiple candidates to deal with the
ambiguity of the freestroke (Figure 2d).

The characteristics of interactive beauti�cation are 1)
stroke by stroke beauti�cation, satisfying higher level
constraints such as congruence, perpendicularity, or sym-
metry, and 2) generation and selection of multiple can-
didates. We describe the detail of the interaction in the
following subsections.

Stroke by Stroke Beauti�cation Satisfying Geomet-

ric Constraints

This subsection describes how diagrams are constructed
using stroke by stroke free stroke beauti�cation, satisfy-
ing various geometric constraints. To make it simple, we
assume that the system generates only one candidate as
a result of beauti�cation in this subsection. Next sub-

a) b)

Figure 4: Example use of interval equality among seg-
ments

section describes the generation of multiple candidates
in detail.

Figure 3 shows some examples of supported constraints,
input strokes, and beauti�ed segments. Figures 3a,b de-
scribe the connection constraint. If the user draws a free
stroke whose start or end point is located near a vertex
of an existing segment, the system automatically detects
the adjacency and connects the point to the vertex or
the body of a segment.

Figures 3c,d illustrate parallelism and perpendicularity
constraints. The system compares the slope of the input
stroke and those of existing segments, and if it �nds an
existing segment with approximately the same slope, it
makes the slope of the beauti�ed segment identical to
the detected slope. Similarly, if the system �nds an ex-
isting segment approximately perpendicular to the input
stroke, it converts the stroke into a precisely perpendic-
ular segment.

Figure 3e shows vertical and horizontal alignment con-
straints. When a free stroke is drawn, the system indi-
vidually checks the x and y coordinates of the vertices
of the input stroke, and makes the coordinates precisely
identical to the existing ones if they are near.

Figures 3f,g show congruence and symmetry constraints.
When a new input stroke is drawn, the system searches
for a segment almost congruent to the stroke among
the existing segments. If such a segment is found, the
system makes the input stroke exactly congruent to the
segment (Figure 3f). Similarly, the system searches for a
segment that is similar to the vertically or horizontally
ipped input stroke. If such a segment is found, the
system makes the input stroke exactly congruent to the
ipped one (Figure 3g).

Figure 3h describes interval equality. This relation is
detected by comparing the interval between the input
stroke and an existing line segment parallel to the stroke,
and intervals between existing parallel segments. This
mechanism can be used to draw a pipe with a constant
width or to draw cross stripes or grids (Figure 5). Con-
struction of these diagrams is particularly di�cult with
menu-based systems, where the user must copy, rotate,
and move the segment.

In actual drawing, the geometric constraints described
above are combined and work together to produce a pre-
cise diagram. In Figure 3a, relations such as connec-
tion, perpendicularity, and y-coordinate alignment are
simultaneously satis�ed. In Figure 3b, interval equality,
y-coordinate alignment and ipped congruence (symme-
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Figure 5: Construction of a diagram with many con-
straints
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Figure 6: Construction of a symmetric diagram

try) work together to generate the arch (The unneces-
sary line fragments can be removed easily by `erasing'
interaction, which is explained later).

Figure 6 illustrates how a symmetric diagram is con-
structed using interactive beauti�cation. For each input
stroke, the system infers appropriate constraints and re-
turns a beauti�ed segment. Notice that, except for the
slope sides which constitute the arrowhead, the symme-
try for the rest of the arrow shape is achieved solely
by locally de�ned relationships (alignment, congruence
and connection constraints) without resorting to some
special constraints to achieve global symmetry.

Generation and Selection of Multiple Candidates

The inherent di�culty with any freestroke recognition
systems is that a freestroke is ambiguous in nature. The
user draws an input stroke with an intended image in
mind, and the system must infer the intended image

Multiple candidates are
generated.

Select a candidate by 
tapping.

Confirm.

Confirm
(tapping outside).

Multiple Possibilities

a) b)

c) d)

e) f)

Existing Segments
Primal or Currently Selected Candidate
Multiple Candidates
Geometric Constraints Satisfied by the Candidate

Figure 7: Interaction with multiple candidates: the
user can select a candidate by tapping on it, and sat-
is�ed constraints are visually indicated.

based on the shape of the freestroke. However, it is
not an easy problem to reconstruct the intended image
from the ambiguous input stroke. For example, when
the system observes an input stroke shown in Figure 7a,
it is di�cult to guess which segment in Figure 7b is the
one the user intended. Existing systems do not consider
these multiple possibilities, and just return a single seg-
ment as a result. If the user is not satis�ed with the
result, he must draw the stroke again, but the revised
stroke may also fail.

To solve the problem, interactive beauti�cation infers
all possible candidates and allows the user to select one
among them (Figure 7c). If the user is not satis�ed
with the primary candidate, he can select other candi-
dates by tapping on them directly (Figure 7e). During
the selection, the system visually indicates what kinds of
constraints are satis�ed by the currently selected candi-
date. Visualized constraints ensure that the desired con-
straints are precisely satis�ed. In addition, they assist
the selection of a candidate in a cluttered region, where
it is di�cult to �nd the desired one. The selection com-
pletes when the user taps on outside the candidates or
draws the next stroke (Figure 7d,f).

Generation of multiple candidates, together with visu-
alization of the satis�ed constraints, greatly reduces the
failure in recognition, and makes it possible to construct
complex diagrams such as Figure 1 using freestroke only.
Additional overhead caused by candidate selection is
minimum because the user can directly go to the next
stroke without any operation when the primary candi-
date is satisfactory.

4



Figure 8: Erasing gesture and trimming operation

Auxiliary Interfaces

In addition to free stroke drawing and selection by tap-
ping, the current system supports a oating menu and
an erasing gesture. The oating menu is a button on
the screen, and the user can place the button anywhere
by dragging it. Menu commands appear when the user
taps on the button, similar to a pie menu[11]. Currently,
`clear screen' and `undo' commands are implemented in
the menu.

The erasing gesture is scribbling. If the system detects
the gesture, it deletes the nearest line segment to the
start point of the scribbling gesture. As the system par-
titions the line segments at every cross point and contact
point beforehand, the user can easily trim the unneces-
sary fragments (Figure 8). Trimming is a frequently
used operation on any drawing system, and this easily
accessible trimming operation greatly contributes to the
e�cient construction of complex geometric diagrams.

ALGORITHM

This section describes the algorithm of interactive beau-
ti�cation in detail. From a programmer's point of view,
the interactive beauti�cation system works as follows
(Figure 9); 1)When the user �nishes drawing and lifts
the pen from the tablet, the system �rst checks whether
the stroke is an erasing gesture or not. 2)If the input
stroke is not an erasing gesture, the beauti�cation rou-
tine is called. It receives the stroke and the scene de-
scription as input and returns multiple candidates as
output. Then, the generated candidates are indicated
to the user, allowing him to select one. 3)The settle-
ment routine is called when the user �nishes selection,
that is, starts to draw the next stroke or taps on out-
side the candidates. The settlement routine adds the
selected candidate to the scene description and discards
all other candidates. 4)If an erasing gesture is recog-
nized, the erasing routine detects the segment to be
erased and removes the segment from the scene. The
settlement routine is called after the erasing routine to
refresh the scene description. Settlement routine also
performs some preliminary calculations to accelerate the
beauti�cation process (sorting the vertex coordinates,
for example).

We now describe the algorithm of beauti�cation routine
in detail. The beauti�cation routine consists of three
separate modules (Figure 10). First, a constraint infer-
ence module infers the underlining constraints the in-
put stroke should satisfy. Next, a constraint solver gen-
erates multiple candidates based on the set of inferred
constraints. Finally, an evaluation module evaluates the
certainty of generated candidates and selects a primary
candidate. The separation of the constraint inference

Draw

Select

Beautify

Settle

Pen Release

Scribbling

System Action

User Action

Trigger

Erase

Tap on outer region or
draw next stroke.

Stroke

Figure 9: Operational model of interactive beauti�-
cation

Generated Candidates

Ordered Candidates

Segment Coordinates
Input (1,50, 9,51),
Exist (0,50,0,52),(10,50,10,52)

(x0=0, x1=10, y0=50, y1=52, y0=y1)

(0,50,10,50),(0,50,10,52)

Constraint inference module

Constraint solver module

Candidate evaluation module

A Set of Inferred Constraints

primary (0,50,10,52),
secondary (0,50,10,50)

Figure 10: Sturcture of the beauti�cation routine

and the constraint solving remarkably improves the ef-
�ciency of multiple candidates generation, because the
system performs the most time-consuming task of check-
ing all combinations of segments only once, instead of
performing the task for each candidates.

The evaluation process must follow to the solver because
it is necessary to consider the resulting coordinates as
well as the satis�ed constraints to calculate the certainty
of a candidate. That is, the candidate located close
to the input stroke should be evaluated highly, but the
location is unkown until the constraint is solved.

Constraints are represented as numerical equalities bind-
ing four variables (coordinates of the new segment). The
constraint inference module communicates the inferred
geometric relations in a form of numerical equalities, and
the constraint solver solves the simultaneous equations.
Figure 11 shows the currently supported geometric re-
lations and the corresponding numerical equalities.

Constraint Inference module

First, the system searches the table of parameters of
all the existing segments, in order to �nd values that
are `adjacent' to those of the input stroke and gener-
ates constraints that would constraint the parameters
of the input stroke as variables. To be speci�c, the sys-
tem examines and compares the 5 parameters of the
input stroke (x, y coordinates of start/end vertex, and
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x0 = const 
y0 = const

x1 = const
y1 = const

Alignment (start -x ) x0 = const

Alignment (start -y ) y0 = const

Alignment (end -x )

Alignment (end -y )

x1 = const

y1 = const

Congruence x1 - x0 = cosnt
y1 - y0 = const

y1 - y0 = const * ( x1 - x0 )Parallelism
  ( Perpendicularity)

y0 = const * x0 + const

y1 = const * x1 + const

y0 = const * x0 + const
y1 = const * x1 + const

Geometric Relations Corresponding 
    Equalities

Vertical line x0 = x1

Horizontal line y0 = y1

Interval equality

Connection
(end point on a vertex)

Connection
(start point on a vertex)

Connection
(start point on a line)

Connection
(end point on a line)

(Symmetry)

Figure 11: Relation between geometric relations and
equalities

the slope of the stroke). As a result, constraints to rep-
resent geometric relations such as x and y coordinate
alignment, parallelism, and perpendicularity, are gener-
ated. As the parameters of all segments in the scene
are sorted in the settlement routine, the computational
complexity of this routine is O(log n) while n is the num-
ber of existing segments. Perpendicularity is achieved
by storing 90 degrees rotation of the existing slopes.

Next, all the segments in the scene are examined to �nd
various geometric relations between the existing seg-
ments and the input stroke, such as congruence, connec-
tion and symmetry. In addition, to �nd the equality of
intervals among segments, this routine calculates the in-
terval between the input stroke and each approximately
parallel segment in the scene, and searches for the stored
interval that are adjacent. The computational complex-
ity of this routine is O(n log n).

This two-phased constraint inference process generates a
set of constraints to be satis�ed. To reduce unnecessary
overhead in constraint solving, the system checks the
duplication whenever a new one is created during the
constraint inference.

Constraint Solver

Subsequently to the constraint inference, the system
calculates the coordinates of the beauti�ed segment
based on the inferred constraints. As the inferred con-
straints are usually over-constrained (they can not be
under-constrained because all variables are automati-
cally bounded to the original coordinates of the input
stroke), the system searches for all the possible combi-

(-,-)

(1,-)

(-,-) (1,2)

(1,-)

(-,2)

(1,1)(2,2)

(-,-)

(-,-)

(1,-)

(-,2)(-,-) (1,2)

(1,1)(2,2)(-,-) (-,2)(-,-) (1,2)
x-y=0

x=1

y=2

x-y=0

x+y=2

(-,-)
x+y=2

(0,2) (1,-)

(0,2)(2,2) (1,1)(1,2)

x-y=0

Final valuation

1

2
3

45

6
7

8

Constraints Intermediate Valuations

Figure 12: Algorithm for constraint solving

nations of inferred constraints to generate multiple can-
didates.

The constraint solver is a modi�cation of the equality
solver of CLP(<)[13] with an extension to generate mul-
tiple candidates from over-constrained equalities. Sim-
ilar to the equality solver of CLP(<), the initial state
consists of an empty valuation, and the system tries to
apply the constraint one by one to the intermediate val-
uation. The di�erence is that the system maintains a
set of valuations instead of a single valuation, and the
new valuation is added to the valuation set without dis-
carding the previous valuation when a constraint is suc-
cessfully applied.

Figure 12 shows how the solver works using a simpli-
�ed example with two variables and four constraints.
First, the solver creates an empty valuation (1), and
then, applies the �rst constraint (x=1) to the valuation.
Naturally, the constraint is successfully applied and a
new valuation is created (1,-)(2). Note that the initial
valuation (-,-) is preserved instead of being replaced
by the new valuation (3). When the solver tries to apply
the constraint (x-y=0) to the valuation (1,2), the ap-
plication fails and no new valuation is created (4). On
the other hand, the constraint can be successfully ap-
plied to the empty valuation (-,-), creating a new val-
uation with a suspended (delayed) constraint (5). The
suspended constraints are solved when enough variables
are ground or enough equalities are given(6). Identi-
cal valuations are detected and uni�ed by the solver to
prevent redundant calculations (7). Finally, the system
returns the fully grounded valuations as multiple candi-
dates (8).

To improve e�ciency, intermediate valuations are stored
in a tree structure whose root node is the initial empty
valuation. This representation is natural because every
valuation is created as a child of another valuation with
additional grounded variables or additional suspended
constraints. If a constraint fails to be applied to a valu-
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Figure 17: The diagrams used in the experiment, and
required geometric relations

of a geometric design. The widths of the ring and spokes
are all identical, which may be di�cult for conventional
editors. Figure 16(right) gives an example of symmetric
illustration. As horizontal symmetry is achieved with-
out any additional operation, a designer can concentrate
on design itself, instead of struggling with complex op-
erations.

EXPERIMENT

This section describes an experiment performed to eval-
uate the interactive beauti�cation using the prototype
system compared to existing drawing systems in some
diagram drawing tasks. We were particularly interested
in whether or not interactive beauti�cation would im-
prove the task performance time (rapidness) and the
completeness of the geometric constraint satisfaction in
the diagrams (precision). Similar experiment is pre-
sented in [12], but this experiment is focused on eval-
uation of the technique, while previous paper intended
to clarify the problems of existing drawing editors.

Method

Systems The experiment was conducted on a Mitsubishi
pen computer AMiTY SP (i486DX4 75MHz, Win95).
Along with our prototype system Pegasus, we used a
CAD system (Auto Sketch by AutoDesk Inc.) and
an OO-based drawing system (Smart Sketch by Future
Software Inc.) The CAD system is used as a repre-
sentative for precise geometric design systems, and the
OO-based editor is selected as a representative for easy-
to-use rapid drawing editors.

Task Subjects were required to draw three diagrams
shown in Figure 17 using the editors. They were in-
structed to 1) draw as rapidly as possible, satisfying the
required geometric relations as much as possible, 2) to
quit drawing when drawing time exceeds the limit of 5
minutes, and 4) give the completion of drawing priority
over the complete constraint satisfaction, if it appears
to be too di�cult.

Subjects 18 student volunteers served as subjects in the
experiment. They vary in their pro�ciency in using com-
puters and each software. 8 subjects were accustomed
to typical window-based GUI, but other subjects had
little experience with computers.
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Draw
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Figure 18: Drawing time required for each task: Each
column corresponds to a drawing session of a subject.
The order of subjects is sorted by the time required.

Procedure To avoid the e�ect of learning, the order of
editor usage was changed for each subject in a balanced
way. The experiment consisted of 18 (subjects) � 3 (sys-
tems) � 3 (diagrams) = 162 diagram drawing sessions
in total. Each session lasted less than 5 minutes and
they were video-recorded and examined later.

Prior to performing the experiment with each system,
each subject was given a brief explanation of each sys-
tem and a practice trial. This tutorial session lasted 5 -
10 minutes varying among systems and subjects. CAD
system generally required more tutorial time than oth-
ers.

Result and discussion

Rapidness Figure 18 shows the time required for each
subject to complete each task. Each column corresponds
to a drawing session of a subject. The order of subjects
is sorted by the drawing time. As the drawing time was
limited to 300sec., drawing sessions which exceeded the
limit are indicated as 300sec. The time required with
the prototype system was clearly shorter than with other
systems, and all sessions �nished within the limit, while
many sessions exceeded the limit with the CAD system
and the OO-based drawing editor.

Figure 19 shows how many sessions are �nished within
the limit. Many subjects failed to �nish drawing tasks
within the limit using the CAD system and the OO-
based editor, while all subjects �nished drawing using
our prototype. Whether the required constraints are
precisely satis�ed or not is not considered in this graph.

It is impossible to calculate the exact mean drawing
time and the mean variance because the recorded draw-
ing time was limited to 300sec., but Figure 20 gives an
approximation of the mean drawing time. Drawing time
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Figure 19: The ratio of �nished sessions: this �gure
shows in how many sessions subjects �nished drawing
within 300sec. among each 3 � 18 = 54 sessions.
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Figure 20: Estimation for time required for a subject
to draw the three diagrams: the prototype system
exhibits considerable advantage.

is averaged for each diagram-editor combination over
those sessions that �nished within the limit, and the av-
eraged time for each editor is summed to estimate \to-
tal drawing time for a subject to draw three diagrams
on each editor." According to the calculations, subjects
were able to draw the three diagrams at least 48 % faster
than the OO-based editor and 54 % faster than the CAD
system. As the averages do not include sessions exceed-
ing 300sec., actual di�erences are greater.

Precision Even if task performance time might be im-
proved, the bene�t could be nulli�ed if the precision of
the resulting diagrams is considerably lost. Figure 20
shows how many sessions �nished satisfying all the re-
quired geometric relations shown in Figure 17. The ses-
sions where the subjects �nished drawing within 300sec.
but failed to satisfy the required geometric relations
completely are not counted. It is interesting to see that
the OO-based system is superior to the CAD system in
time performance, but the opposite holds true concern-
ing the precision, which is in accordance with the nat-
ural expectation. Our prototype system showed better
performance in both criteria than either systems.

We must note, however, that this experiment is still a
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Figure 21: The ratio of diagrams where required
constraints are perfectly satis�ed: this graph shows
in how many sessions subjects successfully satis�ed
all the required geometric constraints among each
3 � 18 = 54 sessions.

preliminary evaluation. Many important aspects of di-
agram drawing are not accounted for, such as line pat-
tern variation, scaling, rotation, etc. Curves, circles,
and text did not appear in the diagrams. Also various
kinds of diagrams must be considered, such as node-
link diagrams, informal illustrations, complex mechan-
ical diagrams, etc. In spite of these limitations, this
preliminary experiment clearly shows a promising po-
tential of interactive beauti�cation system, particularly
its signi�cant advantage in rapid and precise construc-
tion of simple geometric diagrams. Time performance
and constraint satisfaction rate were considerably im-
proved, even though interactive beauti�cation is rather
new for the subjects compared with other systems.

LIMITATIONS AND FUTURE WORK

Unsolved problem with interactive beauti�cation is that
it is di�cult to select the intended candidate among
many overlapping candidates. This problem becomes
serious when one draws complex diagrams. Possible so-
lutions are to reduce the number of generated candidates
and to improve the user interface for candidate selection.

The number of candidates can be reduced by restrict-
ing the number of inferred constraints in the constraint
inference module and the number of valuations in the
constraint solving module, and removing the unwanted
candidates in the evaluation module. Various heuristics
and user adaptation may be required to �nd intended
constraints and candidates.

Improvement of user interface is also required. One solu-
tion is to magnify the cluttered region to help the user to
distinguish the desired one from others. Another tech-
nique is to let the user specify the reference segment and
display those candidates that satisfy constraints related
to the speci�ed reference segment.

We plan to implement curves, texts, and line pattern
variations to see whether interactive beauti�cation can
work as an established interaction technique. Imple-
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mentation of arcs and curves give rise to various di�-
culties, but is strongly desirable because satisfaction of
curve-related constraints is especially di�cult with con-
ventional menu based editors.

We would like to perform more user studies to answer
various questions: what kinds of constraints are required
for rapid geometric design, how fast user can master the
e�ective use of the technique, and to what extent the
generation of multiple candidates facilitates the interac-
tion, etc.

Integration of interactive beauti�cation into 3D scene
construction systems such as [24] is also being consid-
ered. The most challenging issue may be how to dis-
play half-constructed 3D models and multiple candi-
dates without confusing the user.

SUMMARY

We have proposed interactive beauti�cation, a technique
for rapid geometric design. The beauti�cation sys-
tem receives a freestroke and converts it into a pre-
cise segment. The technique is characterized by stroke-
by-stroke beauti�cation, recognition of global geomet-
ric constraints, and generation and selection of multiple
candidates, which make the technique suitable for pre-
cise geometric design preserving considerable dexterity.
Our prototype system, Pegasus, is implemented on pen
computers, and user evaluations showed promising re-
sults. The beauti�cation process consists of three inde-
pendent modules, constraint inference, constraint solv-
ing, and candidate evaluation, which achieves e�cient
generation of multiple candidates.

This technique can be used for geometric modeling on
traditional CAD systems, but more informal pen-based
rapid drawing of simple diagrams seems to be the most
promising target. To be speci�c, interactive beauti�ca-
tion appears to be an ideal technique for note-taking on
pen-based PDA systems and graphical explanation on
electronic whiteboards during meeting or in classrooms.
Finally, this technique can be used for creative design
process[15], which has been done with traditional pen
and paper rather than on computers because of com-
plex operations.
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Abstract
Sketching communicates ideas rapidly through approximate visual
images with low overhead (pencil and paper), no need for precision
or specialized knowledge, and ease of low-level correction and
revision. In contrast, most 3D computer modeling systems are
good at generating arbitrary views of precise 3D models and support
high-level editing and revision. TheSKETCH applicationdescribed
in this paper attempts to combine the advantages of each in order
to create an environment for rapidly conceptualizing and editing
approximate 3D scenes. To achieve this, SKETCH uses simple
non-photorealistic rendering and a purely gestural interface based
on simplified line drawings of primitives that allows all operations
to be specified within the 3D world.

Keywords: Interaction Techniques, 3D Modeling, Gestural Inter-
face, Direct Manipulation, Sketching, Nonphotorealistic Rendering

CR Categories: I.3.8. [Computer Graphics]: Applications; I.3.6.
[Computer Graphics]: Methodology and Techniques — Interaction
Techniques

1 Introduction
SKETCH targets the exploration and communication of 3D geo-
metric ideas. Traditionally, people have attacked conceptual design
with paper and pencil, not with computers, even though computer
models offer numerous advantages. The reasons for this include
the low overhead of a single-tool interface (pencil), the lack of spe-
cial knowledge needed to draw, the ease with which many kinds of
changes can be made, and the fact that precision is not required to
express an idea. Consider Ann sketching a table with an oval top
for Joe. Joe gets an immediate sense of the object, without Ann
having to indicate the precise locations of the legs, nor the exact
shapeof the top. By scribbling over what she has sketched,Ann can
make the top round or square or freeform without affecting Joe’s
perception that the legs are attached to the top. (Imagine doing this
in a typical CAD or drawing program.) Nevertheless, pencil and
paper are still imperfect. After many changes, the paper can become
cluttered. Drastic alterations such as showing the model from dif-
ferent viewpoints require new drawings, and collections of drawn
objects cannot be transformed as a unit. While computer models do
not have these disadvantages, they are typically considerably more
difficult to create.

SKETCH is designed to bridge the gap between hand sketches
and computer-based modeling programs, combining some of the
features of pencil-and-paper sketching and some of the features
of CAD systems to provide a lightweight, gesture-based interface
to “approximate” 3D polyhedral modeling. Conceptually, our ap-
proach is very similar to Landay and Myers’ use of sketching to
support the early stages of conventional 2D interface design [16].
SKETCH uses a gestural mode of input in which all operations are
availabledirectly in the 3D scenethrough a three-button mouse. The
user sketches the salient features of any of a variety of 3D primitives
and, following four simple placement rules, SKETCH instantiates
the corresponding 3D primitive in the 3D scene. SKETCH allows
both geometry and the camera to be gesturally manipulated, and
uses an automatic grouping mechanism, similar to that described
by Bukowski and Sequin [6], to make it easier to transform aggre-
gates of geometry. Since the set of geometric primitives is more
restricted than those in most CAD systems, the user approximates
complex shapes with aggregates of simpler primitives. Since we
know these conceptual models are approximations (often to only
partially formed mental images) SKETCH renders them with non-
photorealistic rendering techniques designed to help viewers see
what they want to see.

We also imagine that SKETCH might be used as part of a story-
boarding system, for generating a series of scenesand camera views
in planning a 3D animation.

The accompanying videotape1 shows the features of SKETCH
and indicates the utility of its simple approach in creating and editing
3D models.

2 Related work
A variety of efforts have been made to simplify the process of
generating 3D models, including the “idea sketching” described by
Akeo et al. [1]. Akeo allows users to scan real sketches into the
computer where they are “marked-up” with perspective vanishing
lines and 3D cross sections. The scanneddata is then projected onto
the 3D mark-up to complete the process.

Nearly all CAD applications employ some form of 2D sketching,
although sketching is rarely used in 3D views. A notable exception
is Artifice’s Design Workshop [2], which allows cubes, walls, and
constructive solid geometry (CSG) operations to be constructed
directly in the 3D view. However, the overall style of interaction is
still menu-oriented and the set of primitives is small.

Theconsiderablework done in the area of drawing interpretation,
surveyed by Wang and Grinstein [28], focuses solely on interpreting
an entire line drawing at once. In contrast, we attempt to provide
a complete interface for progressively conceptualizing 3D scenes
using aspects of drawing interpretation to recognize primitives from

1The videotape can be obtained upon request from the authors.



a gesture stream. Viking [20] uses a constraint based approach to
derive 3D geometry from 2D sketches. In Viking, the user draws
line segments, and the system automatically generates a number of
constraints which then must be satisfied in order to re-create a 3D
shape. The difficulty with these approaches is that even though they
are generally restricted to polygonal objects, they are often slow and
difficult to implement. In addition, they are often intolerant of noisy
input and may either be unable to find a reasonable 3D solution, or
may findan unexpectedsolution. Branco et al. [5] combinedrawing
interpretation with more traditional 3D modeling tools, like CSG
operators in order to simplify the interpretation process; however,
their system is limited by a menu-oriented interaction style and does
not consider constructing and editing full 3D scenes.

Deering [10], Sachs et al. [22], Galyean and Hughes [11], and
Butterworth et al. [7] take a very different approach to constructing
3D models that requires 3D input devicesas the primary input mech-
anism. A variety of systems have incorporated gesture recognition
into their user interfaces, including Rubine [21], who uses gesture
recognition in a 2D drawing program, but we know of no systems
that have extended the use of gesture recognition for 3D modeling.

We also use a variety of direct-manipulation interaction tech-
niques for transforming 3D objects that are related to the work of
Snibbe et al. [25], and Strauss and Cary [27]. In addition, we also ex-
ploit somevery simple flexible constrainedmanipulation techniques
that are similar to those described by Bukowski and Sequin [6]. The
latter automatically generates motion constraints for an object di-
rectly from that object’s semantics. Therefore, for example, when
a picture frame is dragged around a room, the frame’s back always
remains flush with some wall in the room to avoid unnatural situa-
tions in which the picture frame might float in mid-air. Also, when
a table is manipulated, all of the objects that are on top of the table
are automatically moved as well.

In our system, since we have less semantic information than
Bukowski, we have less opportunity to automatically generate ap-
propriate constraints, and therefore we occasionally require the user
to explicitly sketch constraints in addition to geometry. Our con-
straint techniques are fast, flexible and almost trivial to implement,
but they are not as powerful as the constrained manipulation de-
scribed by Gleicher [12] or Sistare [24]. Although Gleicher exploits
the fact that constraints always start off satisfied, thereby reducing
constraint satisfaction to constraint maintenance, he still must solve
systemsof equationsduring eachmanipulation which are often slow
and subject to numerical instability. Other approaches like Bier’s
snap-dragging [4] are also related to our constrained manipulation,
although we never present the user with a set of constraint choices
from which to select.

Lansdown and Schofield [17] and Salisbury et al. [23] provide
interesting techniques for non-photorealistic rendering, although
none of these systems specifically targets interactive rendering.

3 The interface
All interaction with SKETCH is via a three-button mouse2 with oc-
casional use of one modifier key on the keyboard, and a single ortho-
graphic window onto the 3D scene. The mouse is used to generate
gestures rather than to select operations from menus. Choosing an
operation like object creation, transformation or grouping is seam-
lessly integrated with the natural expression of intent. SKETCH
infers intended tools by recognizing gestures — sequences of two
types of gestural elements — in its input stream.

Strokes, the first type of gestural element, are pixel-tracks on the
film plane3, made with the first mouse button. There are five classes

2We think that a tablet/pen and an active LCD screen implemen-
tation might be even better. See Section 6.

3A plane perpendicular to the view direction and close enough
to the eyepoint not to interfere with the objects in the scene.

of strokes shown in Table 1.
Each axis-aligned stroke is aligned with the projection of one

the three principal axes of the world. We have also tried aligning
strokes with the three principal axes of the surface over which
the gesture is drawn. In general, this latter approach seems more
effective, although it also presents some difficulties, especially for
curved surfaces and for gestures which span over different surfaces.
Since we have not yet adequately handled these concerns in our
implementation, we will assume for the rest of the paper that all
lines are aligned with the world’s principal axes except those that
are drawn with the “tearing” or freehand strokes.

mouse action stroke
click and release dot
click and drag with-
out delaying

axis-aligned line: line follows axis
whose screen projection is most nearly
parallel to dragged-out segment

click and drag, then
“tearing” motion to
“rip” line from axis

non-axis-aligned line

click, pause, draw freehand curve
click with Shift key
pressed, draw

freehand curve drawn on surface of ob-
jects in scene

Table 1: The five stroke classes.

Interactors, the second type of gestural element, are made with
the second mouse button. The two classes of interactors, a “click
and drag” and a “click,” have no visual representation.

In addition to gestural elements, SKETCH supports direct-
manipulation of camera parameters with the third mouse button, as
outlined in Table 2. Third-button manipulations are not discussed
further in this paper.

mouse action camera manipulation
click and drag pan: point on film plane beneath mouse

remains beneath mouse
click, pause, drag zoom/vertical pan: dragging horizon-

tally zoom in/out towards clicked-on
point, dragging vertically pan up/down

click near window
boundary, drag

rotate: performs continuous XY con-
troller rotation about center of screen [8]

click on object “focus”: camera moves so that object is
in center of view [18]

shift-click change rendering: cycles through avail-
able rendering styles (see Section 5)

Table 2: Gestures for camera manipulation.

4 The implementation
SKETCH processes sequences of strokes and interactors to per-
form various modeling functions with a finite-state machine. The
mapping between gestural input and modeling functions is easy to
remember and gives the user a clear and direct correspondence.
However, one of the principal difficulties in developing a good
gesture-based interface is managing the delicate tradeoff among
gestures that are natural, gestures that are effective, and gestures that
are effective within a system that may already use similar gestures
for other functions. For superior gestures to evolve, this tradeoff
should continue to be explored especially with user studies.

4.1 Creating geometry
We believe gestures can be a natural interface for the fundamentally
visual task of creating 3D geometry. The difficulty is choosing
the “right” gesture for each geometric primitive. In SKETCH, we
define “primary” gestures for instantiating primitives as sequences



of strokes that correspond to important visual features — generally
edges — in partial drawings of the primitives. (see Figure 2 for
an overview of all such gestures.) For instance, a drawing of three
non-collinear line segments which meet at a point imply a corner,
based on our visual understanding of drawings [19]; consequently,
we interpret similar gestures composed of three line strokes as a
cuboid construction operation.

We also provide alternate construction gestures using non-edge
strokes. For example, an object of revolution is sketched via its
profile and axis, and cuboids can be created by sketching a single
edge and two “dimensioning segments” (perpendicular to the edge)
that meet at a vertex lying anywhere along this edge. These alter-
native gestures take their structure from the notions of generative
modeling [26].

SKETCH’s other primitives — cones, cylinders, spheres, objects
of revolution, prisms, extrusions, ducts and superquadrics — have
their own gestures. For most, SKETCH forces some aspect of the
shapes to be axis-aligned, so that the gestures are easier to both
draw and recognize. For example, to create a duct, the user strokes
a closed freehand curve for its cross section, and another freehand
curve for its path of extrusion. However, an arbitrary 3D curve is
not uniquely determined by a single 2D projection, so SKETCH’s
ducts must have extrusion paths that lie on an axis-aligned plane,
specified by a third gesture — an axis-aligned line stroke normal to
the plane on which the path of extrusion should be projected.

The small number of primitive objects sometimes requires the
user to build up geometry from simpler pieces, and precludes some
complex objects — freeform surfaces and true 3D ducts, for example
— from being made at all. But in exchange for this, we believe that
our small set of primitives minimizes cognitive load on the user and
makes gesture recognition and disambiguation easier. Future work,
including user studies, should explore this tradeoff.

4.2 Placing geometry
Object creation requires placement of the object in the scene. We
base object placement on four rules: first, geometry is placed so that
its salient features project onto their corresponding gesture strokes in
the film plane; second,new objects are instantiated in contact with an
existing object when possible; third, certain invariants of junctions
in line drawings [9] that indicate the placement or dimension of
geometry are exploited; and fourth, CSG subtraction is inferred
automatically from the direction of gesture strokes (Figure 2).

These easy-to-understand rules often generate good placement
choices; when they do not, users can edit the results. Furthermore,
the few users that the system has had so far have rapidly learned
to use the simple rules to their advantage, “tricking” the algorithm
into doing what they want. (This may be a consequence of their
programming background.)

Figure 1: A series of strokes is drawn in the film plane in red
(left). The salient vertex is projected into the scene thus defining
the placementof new geometry (green). Though this figure suggests
a perspective camera, we use a parallel projection in our application.

The first rule determines object placement except for translation
along the view direction. This ambiguity is generally resolved by
the second rule, implemented as follows: each gesture has a “most

salient” vertex (the trivalent vertex for a cuboid, for example, or the
first vertex of the two parallel strokes that indicate a cylinder); a
ray is traced through this vertex to hit a surface at some point in the
scene. The object is then instantiated so that the salient vertex is
placed at the intersected surface point (Figure 1).4

The third placement rule exploits invariants of vertex junctions
in line drawings, as described by Clowes [9]. However, our use of T
junctions is related to the treatment given by Lamb and Bandopad-
hay [15]. In particular, T-shaped junctions arise in line drawings
when a line indicating the edge of one surface, Estem, ends some-
where along a line segment indicating the edge of another surface,
Ebar. These junctions generally signify that the surface associated
with Estem is occluded by the surface associated with Ebar, al-
though it does not necessarily indicate that the two surfaces meet.
In SKETCH, a similar notion exists when a straight line segment
(except for connected polyline segments) of a gesture ends along
an edge of an object already in the scene (Figure 3). To uphold the
intuition that such T junctions indicate the occlusion of one surface
by another, SKETCH first places the gesture line into the 3D scene
according to the previous two placement rules. Then, SKETCH
sends a ray out along the gesture line (toward the T junction). If this
ray intersects the object that defined the bar of the T junction and
the normal at the point of intersection is pointed in approximately
the opposite direction of the ray, then the gesture edge is extended
so that it will meet that surface.

If the ray does not intersect the surface, then the object definedby
the surface is translated along the viewing vector toward the viewer
until its edge exactly meets the end of the gesture edge. If the end
of the gesture edge is never met (because it was farther away from
the viewer), then neither the gesture, nor the existing objects are
modified. We never translate objects away from the viewer as a
result of T junctions; tests of this behavior on a variety of users
indicated that it was both unintuitive and undesirable.

The final rule determines whether the new geometry should be
CSG-subtracted from the scene when added to it. If one or more
of the gesture strokes are drawn into an existing surface (i.e., the
dot product of a stroke and the normal to the existing surface on
which it is drawn is negative), then the new piece of geometry is
placed in the scene and subtracted from the existing object (Figure
2). CSG subtraction is recomputed each time the new geometry is
manipulated. If the new geometry is moved out of the surface from
which it was subtracted, CSG subtraction is no longer recomputed.
This makes possible such constructions as the desk drawer in the
Editing-Grouping-Copying section of the videotape.

4.3 Editing
SKETCH supports multiple techniques for editing geometry. Some
exploit paper and pencil editing techniques by recognizing editing
gestures composed of strokes (e.g.,oversketching and drawing shad-
ows). Others use gestures that contain an interactor to transform
shapes as a whole by translation or rotation.

Resizing. A common way to “resize” a surface with pencil and
paper is to sketch back and forth over its bounding lines until they
are of the right size. SKETCH recognizes a similar “oversketching”
gesture to reshape objects. If two approximately coincident lines
are drawn in opposite directions nearly parallel to an existing edge,
SKETCH infers a resizing operation (Figure 2). This sketching
operation works for all primitives constructed of straight line seg-
ments, including cubes, cylinders and extrusions. Additionally, the
two endpoints of an extrusion path can be attached to two objects

4If the ray intersects no surface (possible becausewe use a finite
ground rectangle instead of an infinite ground plane), the object is
placed in the plane perpendicular to the view direction that passes
through the origin; this turns out in practice to be a reasonable
compromise.



in the scene; whenever either object moves, the extrusion will re-
size to maintain the span. However, general reshaping of objects
defined by freehand curves is more difficult and not yet fully imple-
mented. We are currently adapting Baudel’s mark-based interaction
paradigm [3] for use in reshaping 3D objects.

Sketching shadows. Shadows are an important cue for determin-
ing the depth of an object in a scene [29]. In SKETCH, we exploit
this relationship by allowing users to edit an object’s position by
drawing its shadow. The gesture for this is first to stroke a dot over
an object, and then to stroke its approximate shadow — a set of
impressionistic line strokes — on another surface using the Shift
modifier key.5 The dot indicates which object is being shadowed,
and the displacement of the shadow from the object determines the
new position for the object (as if there were a directional light source
directed opposite to the normal of the surface on which the shadow
is drawn). The resulting shadow is also “interactive” and can be
manipulated as described by Herndon et al. [13].

Transforming. Objects can be transformed as a unit by using
a “click-and-drag” interactor (with the second mouse button): the
click determines the object to manipulate, and the drag determines
the amount and direction of the manipulation. By default, objects
are constrained to translate, while following the cursor, along the
locally planar surface on which they were created. However, this
motion can be further constrainedor can be converted to a rotational
motion.

It is important to keep in mind that our interaction constraints are
all very simple. In SKETCH, instead of using a constraint solver
capable of handling a wide variety of constraints, we associate
an interaction handler with each geometric object. This handler
contains constraint information including which plane or axis an
object is constrained to translate along, or which axis an object
is constrained to rotate about. Then when the user manipulates
an object, all of the mouse motion data is channeled through that
object’s handler which converts the 2D mouse data into constrained
3D transformations. To define which of our simple constraints is
active, we require that the user explicitly specify the constraint with
a gesture. Whenever a new constraint is specified for an object it
will persist until another constraint is specified for that object. Each
new constraint for an object overwrites any previous constraint on
the object.

The advantages of such a simple constraint system are that it is
robust, fast, andeasy to understand. A more sophisticatedconstraint
engine would allow a greater variety of constrained manipulation,
but it would also require that the user be aware of which constraints
were active and how each constraint worked. It would also re-
quire additional gestures so that the user could specify these other
constraints.

Systems suchas Kurlander andFeiner’s [14] attempt to infer con-
straints from multiple drawings, but this approachhas the drawback
that multiple valid configurations of the system need to be made
in order to define a constraint. Such approaches may also infer
constraints that the user never intended, or may be too limited to be
able to infer constraints that a user wants.

Constrained transformation. The gestures for constraining
object transformations to single-axis translation or rotation, or to
plane-aligned translation are composed of a series of strokes that
define the constraint, followed by a “click-and-drag” interactor to
perform the actual manipulation (Figure 2). To constrain the motion
of an object to an axis-aligned axis, the user first strokes a con-
straint axis, then translates the object with an interactor by clicking
and dragging parallel to the constraint axis. The constraint axis is
stroked just as if a new piece of geometry were being constructed;

5Recall from Table 1 that Shift-modified strokes normally
produce lines drawn on the surface of objects without special
interpretation.

however, since this stroke is followed by an interactor, a translation
gesture is recognized and no geometry is created. Similarly, if the
user drags perpendicular to the constraint axis instead of parallel to
it, the gesture is interpreted as a single axis rotation. (This gesture
roughly corresponds to the motion one would use in the real world
to rotate an object about an axis.)

To translate in one of the three axis-aligned planes, two perpen-
dicular lines must be stroked on an object. The directions of these
two lines determine the plane in which the object is constrained to
translate. If the two perpendicular lines are drawn over a different
object from the one manipulated, they are interpreted as a contact
constraint (although non-intuitive, this gesture is effective in prac-
tice). This forces the manipulated object to move so that it is always
in contact with some surface in the scene (but not necessarily the
object over which the gesture was drawn) while tracking the cursor.
Finally, a dot stroke drawn on an object before using an interactor is
interpreted as the viewing vector; the object will be constrained to
translate along this vector. This constraint is particularly useful for
fine-tuning the placement of an object if SKETCH has placed it at
the “wrong” depth; however, since we use an orthographic view that
does not automatically generate shadows, feedback for this motion
is limited to seeing the object penetrate other objects in the scene.
We believe that a rendering mode in which shadows were automat-
ically generated for all objects would be beneficial, although we
have not implemented such a mode because of the expected com-
putational overhead. We did, however, mock up a rendering mode
in which just the manipulated object automatically cast its shadow
on the rest of the scene. People in our group generally found the
shadow helpful, but were slightly disturbed that none of the other
objects cast shadows.

In each case, the manipulation constraint, once established, is
maintained during subsequent interactions until a new constraint is
drawn for that object. The only exception is that single axis rotation
and single axis translation constraints can both be active at the same
time; depending on how the user gestures — either mostly parallel
to the translation axis or mostly perpendicular to the rotation axis
— a translation or rotation operation, respectively, is chosen.

Finally, objects are removed from the scene by clicking on them
with an interactor gesture. In early versions of SKETCH we used an
apparentlymore natural gesture to remove objects: the user “tossed”
them away by translating them with a quick throwing motion, as
one might brush crumbs from a table. We found, however, that this
gesture presented a complication: it was too easy to toss out the
wrong object, especially if its screen size were small.

4.4 Grouping and copying
By default, objects are automatically unidirectionally grouped with
the surface on which they were created, an idea borrowed from
Bukowski and Sequin [6], generally resulting in hierarchical scenes.
Each geometric object in SKETCH contains a list of objects that
are grouped to it. Whenever an object is transformed, that object
will also apply the same transformation to all other objects that are
grouped to it; each grouped object will in turn transform all objects
grouped to itself. Cycles can occur and are handled by allowing
each object to move only once for each mouse motion event.

This kind of hierarchical scene is generally easier to manipulate
than a scene without groupings since the grouping behavior typi-
cally corresponds to both expected and useful relationships among
objects. For example, objects drawn on top of a table move when-
ever the table is manipulated, but when the objects are manipulated,
the table does not follow. Grouping also applies to non-vertical
relationships, so a picture frame drawn on a wall is grouped with
the wall.

In some cases, grouping is bidirectional. The choice of bi-
directional and uni-directional grouping is guided by what we be-



lieve is an inherent difference in the way people interpret relation-
ships between certain horizontal versus vertical drawing elements.
When an object is drawn that extends horizontally between two
surfaces, like a rung on a ladder, the two surfaces that are spanned
are grouped bidirectionally, so that if one rail of the ladder moves
so does the other. Although the rung moves whenever either rail is
manipulated, the rails do not move when the rung is manipulated.
The grouping relationship for objects that span vertically, however,
establishes only one-way relationships: the topmost object is uni-
directionally grouped to the bottommost object and the spanning
object is similarly grouped to the topmost object. Thus, a table
leg that spans between a floor and a table top causes the top to be
grouped to the floor and the leg to be grouped to the top, but the floor
is not grouped to the top. We only exploit the difference between
horizontal and vertical elements to distinguish these two grouping
relationships. However we believe it is important to study with user
tests how effective this automatic grouping approachactually is, and
perhaps to determine as well if there are other ways that we might
be able to exploit the differences between vertical and horizontal
elements.

Unlike Bukowski, object grouping is not automatically recom-
puted as objects are moved around the scene. Therefore, if an object
is moved away from a surface, it will still be grouped with the sur-
face. Grouping relationships are recomputed only when objects
are moved using the contact constraint mentioned in Section 4.3
— the moved object is grouped to the surface it now contacts and
ungrouped from any surface it no longer contacts. We have found
this approach to automatic grouping to be simple and effective, al-
though in some environments, Bukowski’s approach may be more
appropriate.

Lassoing groups. SKETCH also allows the user to explicitly
establish groups by stroking a lasso around them (Figure 2).6 De-
ciding which objects are considered inside the lasso is based on the
heuristic that the geometric center and all of the visible corners of
the object must be inside the lasso; shapes like spheresmust be com-
pletely contained in the lasso. SKETCH currently approximates this
heuristic by first projecting an object’s geometric center and all of
its crease vertices (where there is a discontinuity in the derivative of
the surface) and silhouette vertices into the film plane, then testing
whether all these projected points are contained within the lasso.
Currently, no test is made for whether objects are occluded or not;
future work should address the ambiguities that arise in using the
lasso operation.

All lassoed objects are copied if they are manipulated while the
Shift modifier is used. Lassoed objects can be scaled by dragging
the lasso itself.

Repeating gestures. A different form of copying is used when
a user wants to repeat the last geometry-creation operation. After
SKETCH recognizes gesture strokes corresponding to a geometric
construction, it creates and places the new geometry in the scene,
but does not erase the gesture strokes. Thus, the user can click on
any of these strokes (using button 1) in order to “drag and drop”
(re-execute) them elsewhere. Gesture strokes are erased when a
new gesture is started or when any object is manipulated. These
techniques are shown in the videotape.

5 Rendering

SKETCH renders orthographic views of 3D scenes using a con-
ventional z-buffer. Color Plates I-VI show some of the rendering
techniques that SKETCH supports.

6The lasso gesture is similar to the sphere gesture. We differen-
tiate between them by requiring that the sphere gesture be followed
by a dot stroke, whereas the lasso is simply a free-hand closed curve
stroke followed by a manipulation gesture.

“Sketchy” rendering styles are essential because they oftenenable
users to focus on the essence of a problem rather than unimportant
details. Non-photorealistic rendering draws a user’s attention away
from imperfections in the approximate scenes she creates while
also increasing the scene’s apparent complexity and ambiguity. By
making scenes more ambiguous, users can get beyond SKETCH’s
approximate polygonal models to see what they want to see. This is
an important concept: we do not believe that sketchyrendering adds
noise to a signal; rather we believe that it conveys the very wide
tolerance in the user’s initial estimates of shape. The user is saying
“I want a box about this long by about that high and about that
deep.” Showing a picture of a box with exactly those dimensions
is misleading, because it hides the important information that the
dimensions are not yet completely determined.

A line drawing effect is achieved by rendering all polygonal ob-
jects completely white, and then rendering the outlines and promi-
nent edges of the scene geometry with multiple deliberately jittered
lines; the z-buffer therefore handles hidden-line removal. A char-
coal effect is created by mapping colors to grayscale and increasing
the ambient light in the scene; a watercolor effect that washes out
colors is created by increasing the scene’s ambient light. There are a
number of other techniques that we would like to explore, including
pen and ink style textures, and drawing hidden edges with dashed
lines.

Objects are assigned a default random color when they are created
to help differentiate them from the scenery. We can also copy colors
from one object to another. By just placing the cursor on top of
one object and pressing the Shift modifier, we can “pick up” that
object’s color. Then, we can “drop” this color on another object
by placing the cursor over it and releasing the modifier. We can
also explicitly specify colors or textures for objects. In our present
implementation, we do this by placing the cursor over the object
and typing the name of the color or texture. Although this interface
requires the keyboard, it is consistent with SKETCH’s interface
philosophy of not making users search through a 2D interface for
tools to create particular effects. In the future, we expect that voice
recognition, perhaps in conjunction with gesturing, will be a more
effective way to establish surfaceproperties for objects (and perhaps
other operations as well).

6 Future Work
We regard SKETCH as a proof-of-concept application, but it has
many flaws. Many of the gestures were based on an ad hoc trial
and error approach, and some of the gestures still do not satisfy
us. For example, the pause in the freehand curve gesture rapidly
becomes annoying in practice — the user wants to do something,
and is forced to wait. Possible solutions of course include using
more modifier keys, although we would rather find a solution that
preserves the simplicity of the interface.

SKETCH is based on an interface that is stretched to its limits.
We expect that adding just a few more gestureswill make the system
hard to learn and hard to use. We’d like to perform user studies on
ease of use, ease of learning, and expressive power for novice users
as a function of the number of gestures. We’re also interested in try-
ing to determine to what extent artistic and spatial abilities influence
users’ preference for sketching over other modeling interfaces.

We have begun to implement a tablet-based version of SKETCH.
The current generation of tablet pens include pressure sensitivity
in addition to a single finger-controlled button, and one "eraser-
like" button. In order to develop an equivalent interface for the
tablet, we simply need to treat a specific pressure level as a button
click to achieve the equivalent of three buttons. Therefore, the
button 1 drawing interactions described for the mouse are done by
simply pressing hard enough with the penpoint of the tablet pen.
To achieve the button 2 operations of the mouse, the user simply



presses the finger controlled button on the tablet pen. Finally,
to effect camera motion, the user turns the pen over and uses its
"eraser" to manipulate the camera. Our initial efforts with a tablet
based interface lead us to believe that a tablet based system could be
far more effective than a mouse based system, especially if pressure
sensitivity is cleverly exploited.

SKETCH is a tool for initial design — the “doodling” stage,
where things are deliberately imprecise. But initial design work
should not be cast away, and we are examining ways to export
models from SKETCH to modelers that support more precise edit-
ing, so that the sketch can be moved towards a final design. Since
subsequent analysis and design often requires re-thinking of some
initial choices, we are also interested in the far more difficult task
of re-importing refined models into SKETCH and then re-editing
them, without losing the high-precision information in the models
except in the newly-sketched areas.

The scenes shown here and in the video are relatively simple.
Will sketching still work in a complex or cluttered environments?
We do not yet have enough experience to know. Perhaps gestures
to indicate an “area of interest,” which cause the remainder of the
scene to become muted and un-touchable might help.

The tradeoffs in gesture design described in Section 4 must be
further explored, especially with user-studies.
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ABSTRACT 
This paper introduces a new type of interface for 3D 
drawings that improves the usability of gestural interfaces 
and augments typical command-based modeling systems. In 
our suggestive interface, the user gives hints about a desired 
operation to the system by highlighting related geometric 
components in the scene. The system then infers possible 
operations based on the hints and presents the results of 
these operations as small thumbnails. The user completes 
the editing operation simply by clicking on the desired 
thumbnail. The hinting mechanism lets the user specify 
geometric relations among graphical components in the 
scene, and the multiple thumbnail suggestions make it 
possible to define many operations with relatively few 
distinct hint patterns. The suggestive interface system is 
implemented as a set of suggestion engines working in 
parallel, and is easily extended by adding customized 
engines. Our prototype 3D drawing system, Chateau, shows 
that a suggestive interface can effectively support 
construction of various 3D drawings. 

KEYWORDS: interaction technique, user interface design, 
3D drawing, prediction, gestural interface. 

INTRODUCTION 
Typical 3D modeling tools are designed for precise control 
of complicated shapes, and the interfaces are generally hard 
for casual users to learn. To provide simplified interfaces 
for sketching 3D structures quickly, various gestural 
interfaces have been explored [12,25]. These let the user 
interact directly with 3D scenes without using buttons and 
menus and reduce the explicit control required by 
implementing various context-dependent rules. 

Although gestural interfaces for 3D modeling have been 
successful as an experimental effort, they still have several 
limitations. First, they have been designed primarily for 
building approximate models rather than for the precise 

control used in traditional 3D modeling tools, and the realm 
between these, i.e., approximate modeling of objects with 
important symmetries and repeated substructures, has been 
largely unexplored. This makes it hard to sketch many 
interesting architectural forms, for example.1 Second, they 
do not scale well because a system designer cannot define 
many gestures with limited combinations of gestural 
elements (stroke, click, modifier key, etc.). Third, it is 
difficult for novice users to learn a set of gestures because 
the user must complete a gesture to see the result, and must 
start over if it fails.  

This paper introduces a new type of interface that extends 
gestural interfaces to address these limitations. In the 
proposed suggestive interface, the user gives the system 
hints about the desired operation by highlighting related 
components in the scene, and the system suggests 
subsequent operations in an array of small thumbnails 
derived from the hints and the overall scene configuration 
(Figure 1). The user can complete an operation by choosing 

                                                   
1 It was an interest in sketching French chateaus that 
originally motivated this work. 

Figure 1: A screen snapshot of our prototype 
system Chateau. The user gives the hints to the 
system by highlighting related lines (red lines), 
and the system suggests possible operations 
(thumbnails at bottom) based on the hints. 

 



 

one of these suggestions, or can ignore them and continue 
constructing and/or hinting. Suggestions are generated by 
suggestion engines, each of which constantly observes the 
scene and generates a suggestion when the current hint 
configuration matches its input pattern. 

A suggestive interface can be viewed as a mediated version 
of a gestural interface. Instead of responding to the user's 
input by updating the scene immediately, the system asks 
for the user's confirmation after showing multiple 
suggestions. This approach has several advantages over 
earlier gestural interfaces. First, the hinting mechanism lets 
us use existing components as input. This naturally helps in 
the specification of geometric relations among components 
in the scene. Second, because suggestions are merely 
offered, a single collection of hints can serve both as a 
gesture and as a subset of a more complex gesture; e.g., the 
new-drawing-plane engine responds to a single selected line, 
while the rectangle-creation engine responds to two 
connected perpendicular selected lines. Third, the 
suggestive interface helps the learning process because 
users can progressively refine their hints until the desired 
result appears among the suggestions. The suggestions 
themselves, even if not taken, may be helpful in the creative 
process. 

In this paper we describe Chateau, a simple 
proof-of-concept 3D modeling tool we developed to explore 
the suggestive interface idea. Our experience shows that it 
is quite promising. Our initial concern was that too many 
suggestions might be generated, confusing the user. 
However, if the system is carefully designed so that most 
suggestion engines have mutually exclusive input patterns, 
users see only a few suggestions at a time and can control 
the system fluently. Our informal test users understood the 
interface quickly and created various 3D drawings 
successfully. 

Although our original goal was to improve gestural 
interfaces, we believe suggestive interfaces can also be 
useful in augmenting traditional command-based interfaces 
for 3D modeling. Hinting and suggestions encourage novice 
users to explore a new system and find unknown operations, 
and some operations that require combinations of 
commands can be specified naturally by only a few hints.  

A demonstration video and the prototype program are 
available at www.cs.brown.edu/research/chateau.html or 
www.mtl.t.u-tokyo.ac.jp/~takeo/. 

RELATED WORK 
Many researchers are exploring possible next-generation 
user interfaces beyond current WIMP-style GUIs [23]. A 
common observation is that next-generation user interfaces 
should be context-aware in order to reduce the number of 
explicit command operations required [21]. This paper 
reports our experimental effort to implement 

context-awareness in the domain of 3D modeling.  

Our interface is similar to predictive interfaces [5][19] in 
that the system (or an agent) suggests possible subsequent 
operations, but prior efforts have focused on operation 
histories to facilitate repetitive operations, while our system 
suggests various predefined operations based on the static 
configuration of the user-provided hints. 

Multiple candidates are commonly used in 
recognition-based systems such as handwriting or speech 
recognition to solve the inherent ambiguity problem [16]. 
Japanese text-entry interfaces rely on multiple candidates to 
input thousands of characters using a limited number of 
keys [18]. In computer graphics, multiple candidates have 
been used to find desired parameter settings in a large 
parameter space [22], most recently in the Design Galleries 
work [17]. Typically, however, galleries represent samples 
of a large continuous space of possibilities, while our 
suggestions work with a small discrete space of 
possibilities. 

Some constraint-based drawing systems infer geometric 
constraints from the user’s operations. Briar [7] and 
ROCKIT [13] infer graphical constraints based on a user’s 
dragging operation, and allow the user to select from 
several candidate constraints. Hudson and Hsi presented a 
system that infers layout algorithms by generalizing 
examples provided by the user [9]. The system presents 
multiple candidates for the generalization and lets the user  
select the desired one. While these systems infer hidden 
relationships or rules in a programming-by-example manner 
[6], our system constructs static scenes using a simple 
pattern-matching method [14]. 

Suggestive user interfaces extend the notions of 
beautification and prediction introduced in the Pegasus 
system [10,11]. Pegasus beautifies hand-drawn strokes by 
inferring desired geometric relationships, and predicts the 
next operation based on the surrounding context. It also 
generates multiple candidates to facilitate these processes. 
One problem is that too many candidates are offered as the 
scene becomes complicated. We address this “candidate 
explosion” by introducing an explicit hinting mechanism. 
To prevent clutter, we also primarily use visual thumbnails 
instead of presenting candidates in the scene.  

Gesture-based interfaces, frequently used in 2D pen-based 
applications [8,15,20], recognize specific stroke shapes as 
gestures and replace them with predefined primitives or 
invoke editing operations such as undo. The SKETCH 
system [25] introduced a gesture-based interface for making 
3D scenes consisting of stacked geometric primitives. 
Teddy [12] used a gesture-based interface for freeform 3D 
modeling. Our goal is to extend these systems to increase 
scalability and to support geometric relations such as 
symmetry and congruence. 



 

THE USER INTERFACE 
The user constructs 3D scenes by drawing 2D lines on the 
screen. The system converts 2D lines on the screen into 3D 
lines by projecting them onto 3D elements already in the 
scene. Prediction and suggestion mechanisms facilitate this 
drawing process by inferring possible subsequent 
operations. Highlighting plays an essential role throughout; 
highlighted lines guide the snapping mechanism for 
drawing lines and provide hints for prediction and 
suggestions. This section introduces the basics of the 
modeling system and then describes the prediction and 
suggestion mechanisms in detail.  

A First Example 
Suppose that a user wants to create two adjoining walls of a 
room, i.e., the model shown in Figure 2h. We'll briefly 
describe WHAT she does and her intention at each stage 
(i.e., WHY), and then, in the following sections, give 
further details and examples. 

At the start of a modeling session, the user sees a ground 
plane. She wants to create a wall that meets this plane, so 
she draws a line segment on the plane to begin with: she 
clicks at some point, drags to the right, and releases. This 
creates a segment on the ground and automatically 
highlights it. The single highlighted line causes a candidate 
operation to be offered: the system offers to create a 
drawing-plane that's perpendicular to the ground and passes 
through the line (Figure 2a). Because the user wants to draw 
a wall in just such a plane, she clicks on the candidate and 
the transparent drawing plane appears (Figure 2b). Now she 
again clicks on the same starting point, drags a line upwards 
on the screen and releases, which creates a second line 
perpendicular to the first and highlights it as well; because 
both segments are highlighted, the system offers a candidate 
operation ─ the creation of a rectangle in the drawing 
plane (Figure 2c). This candidate is ideal, so she clicks on 
the thumbnail to make it happen (Figure 2d). She now 
wants to draw a new “aseline” on the ground plane, so she 
first clicks on the background to unhighlight all lines 
(Figure 2e). She then clicks on the ground plane some 
distance in front of the first click point and drags back 
towards it and releases the mouse over it. A new line 
appears and is highlighted (Figure 2f). Finally, highlighting 
(by clicking) the first vertical line she drew makes the 
system offer a rectangle in the new drawing plane as a 
candidate (Figure 2g), which she selects by clicking on the 
thumbnail, resulting in the model shown in Figure 2h. 

Thus the basic operations are “dragging out lines 
segments,” clicking on things to highlight/unhighlight them, 
and clicking on thumbnail “candidates” to choose them. 

  
a) draw a line on the ground  b) choose a temporary drawing plane 

  
c) draw a line on the drawing plane   d) choose a rectangle   

  
e) unhighlight lines        f) draw a line on the ground 

  
g) highlight a line            h) choose a rectangle 

Figure 2: A first example. 

Basics 
Chateau currently supports the construction of 3D scenes 
consisting of straight line segments and planar polygons 
(curves and circles are not yet supported). Each line 
segment (called a line) is defined by two terminal vertices 
(called joints). Polygons (called plates) are always 
surrounded by lines. The ground plane is always visible and 
the user begins construction of every model by drawing a 
line on the ground.  

All modeling operations are effected by left-mouse-button 
clicks and drags in the main screen. The right mouse button 
is reserved for camera control, for which we use the 
UniCam interface [24]. Only a few GUI buttons (clear, 
erase, undo) are provided on the screen. Our system 
requires no keyboard operation, and hence supports 
one-handed operation on devices like hand-held notepads. 

Highlighting plays an essential role in our system: the user 
controls snapping, prediction, and suggestion by 
highlighting appropriate lines as hints. The user highlights a 
line on the screen by clicking on it. If the user clicks an 
already highlighted line, it is unhighlighted. When the user 



 

double-clicks a line, the system highlights all lines 
connected to it. Any newly drawn lines are automatically 
highlighted. The user can unhighlight all lines by clicking 
on the ground or the background. When the user clicks on a 
plate, the system highlights all its edges. 

The user draws a new line on a plate or the ground plane in 
the 3D scene by a dragging operation. To be precise, the 
system first finds the foremost plate or plane under the 
mouse cursor at the beginning of dragging, and projects the 
line on the plate or plane. The end points snap to existing 
lines and their end points [2] on the plate or plane. We also 
implemented a “drafting assistant” mechanism [1] whereby 
the user can activate additional snapping constraints by 
touching a line during the dragging operation. For example, 
if the user touches the midpoint of a line, the mouse cursor 
starts to snap to the perpendicular bisector of the line. 
Furthermore, snapping is affected by the highlighted lines; 
it guides the user to draw lines that are parallel or 
congruent 2  to the highlighted lines. In addition to the 
visible plates and the ground plane, the user can draw a line 
on a temporary drawing plane, so that lines can be drawn 
floating in the air [3].  A temporary drawing plane is 
activated by the suggestive interface mechanism described 
later, and appears as an translucent plane in the display. The 
user erases a line or plate by a scribbling gesture (moving 
the mouse cursor back and forth while dragging). The 
“erase” button on the screen erases all highlighted lines at 
once.  

Predictions 
A prediction mechanism like that in the Pegasus system 
[11] predicts the next lines to be drawn around the most 
recently highlighted line and presents multiple candidates as 
purple lines in the 3D scene. (This can be seen as a very 
specialized version of suggestion; its rules are so simple and 
it’s so often applicable that its candidates are shown in the 
3D scene rather than as thumbnails.) While Pegasus uses all 
lines in the scene as the context information for prediction, 
Chateau uses only the highlighted lines, which significantly 
reduces the number of candidates generated. Specifically, 
Chateau generates the flipped duplications of the 
highlighted lines connected to the most recently highlighted 
line (Figure 3a-c). It also searches for a reference line that is 
congruent to the most recently highlighted line, and copies 
the lines connected to the reference line around the most 
recently highlighted line (Figure 3d-f). The user can click a 
candidate to adopt it or simply proceed to the next operation 
to ignore the prediction. This prediction mechanism helps 
users draw locally symmetric or congruent structures. 
Prediction and suggestion are always active, but for clarity 
we suppress prediction in the remaining figures.  

                                                   
2 Here, congruence means translational congruence and 
does not include rotational congruence. 

   
 a) original scene  b) highlight the second line c) click a candidate and 

and prediction occurs  the next prediction occurs 

   
d) original scene    e) highlight a line   f) click a candidate and 

and prediction occurs  the next prediction occurs 

Figure 3: The prediction mechanism. 
 
Suggestions 
Chateau generates suggestions whenever the user adds, 
erases, highlights, or unhighlights a line. The system 
automatically infers possible next operations based on the 
configuration of the highlighted lines, and presents the 
results of the operations as an array of thumbnails (Figure 
1). The user can either ignore these or adopt one by clicking 
the thumbnail. The user can also “preview” the result as a 
large image in the main screen by dragging the mouse 
cursor across the thumbnails. The operation is finalized 
when the user releases the mouse button over the desired 
thumbnail.  

  
a) draw lines on the ground          b) choose a candidate       

  
c) draw a line on the drawing plane       d) choose a candidate   

  
e) unhighlight all              f) draw a line on the plate 

Figure 4: Example operation sequence. 



 

 
Figure 4 shows an example operation sequence. The user 
first draws two lines on the ground and the system presents 
three suggestions (a). Then she chooses the leftmost 
suggestion, which creates a new drawing plane (b). She 
draws the third line on the drawing plane and the system 
presents three new suggestions (c). She chooses to make a 
box (d). She unhighlights everything by clicking on the 
ground (e). She draws a line on the box, and the system 
shows two candidates (f), including one that suggests 
chamfering.  

Candidates are generated by a set of suggestion engines. 
Each engine observes the scene, and when the current scene 
configuration matches its input test pattern it returns the 
updated scene as a candidate (Figure 5). The current 
implementation duplicates the entire scene for each 
candidate instead of maintaining a progressive data 
structure. The behavior of an individual suggestion engine 
can be seen as a variation of the constraint-based 
search-and-replace operation in the Chimera system [14], 
but our engines focus only on the highlighted lines instead 
of pattern-matching against the entire scene. When a 
suggestion is created, a thumbnail is rendered as an 
offscreen image, using the same camera parameters (i.e., 
view) as in the main window. For efficiency, we use fixed 
bitmaps for the thumbnails, which therefore do not update 
as the main-window view is changed.  

Examiner

Generator

Scene Suggestion engines Suggestions  
Figure 5: Suggestion engines observe the scene 
and return candidates when the scene matches 
their input patterns. 

 

Figure 6 shows our current list of engines, S1 to S20. The 
first two suggestion engines support fundamental operations. 
S1 creates a temporary drawing plane to let the user draw 
lines in the air. If the most recently highlighted two lines 
are on a single plane, the system offers it as the next 
drawing plane. If not, the system offers a plane that 
contains the last-highlighted line and is perpendicular to the 
current drawing plane. S1 always returns a suggestion 
unless the resulting plane is identical to the ground plane. 
S2 creates a plate in a planar loop of highlighted lines.  

All modeling operations can be achieved using just the 
basic drawing operations and the two engines just described. 
All the other suggestions can be seen as “assistants” that 
facilitate typical modeling tasks. For example, instead of 

using S4, the user could draw a box by drawing 12 lines and 
making 6 plates manually. We briefly describe the behavior 
of the suggestion engines to supplement the visual 
description in Figure 6.  

S3 and S4 respond to two/three highlighted lines connected 
perpendicularly to one another. S5 and S6 respond to a 
highlighted line that is perpendicular to the plane containing 
all other highlighted lines; S6 responds only when the 
remaining lines form a loop, in which case the top vertex is 
positioned over the loop’s center. S7 responds when the 
last-highlighted line overlaps a line in the highlighted group. 
(A group is a set of highlighted lines and plates connected 
to one another.) S8 responds to two sets of highlighted lines 
when each set lies on a plane and each line in a set has a 
parallel partner in the other set. S9 responds when the 
extrusions from the planar highlighted lines hit an existing 
plate (this is useful, for example, in making the legs of a 
table). S10 and S11 respond to highlighted lines that touch 
the edges of a polyhedron. Specifically, S10 requires that 
the two edges touched by the highlighted line share a vertex 
and that the vertex be shared by three plates. There must 
also be another plate at the opposite side. S11 requires that 
the highlighted lines form a planar loop and that all 
highlighted lines be on plates surrounding a corner. S12 
responds to two parallel highlighted lines, of which one is 
an edge of a plate and the other touches the edges next to it. 
S13 responds to two intersecting lines (this is useful for 
trimming operations). S14 responds when the 
last-highlighted line is isolated from the highlighted group 
and is congruent with a line in the group. S15 is similar, but 
responds when the highlighted line is the mirror copy of the 
corresponding line. S16 responds when two congruent 
groups are highlighted, and therefore appears whenever the 
user has adopted an S14 suggestion. S17 responds to 
sequences of parallel lines such that the gaps between 
corresponding segments are nearly equal. S18 responds 
when three congruent groups or lines are linearly aligned. It 
generates equally spaced copies of the group between the 
external two as hinted by the middle one. S19 responds to 
irregular “stairs” (a repeated sequence of mutually 
perpendicular lines). S20 responds to three lines of equal 
length sharing a vertex when two of the joint angles are 
equal. This engine is useful in drawing regular polygons.  

The particular choice of engines was determined by our 
needs as we experimented with the system and is clearly 
application-dependent. In a plumbing application, for 
example, it would be natural to have engines that created 
standard junctions (tees, unions, couplers, elbows, etc.). 

In the current implementation, engines require exact 
matching in the examination phase. For example, S4 
requires that all three edges to be exactly perpendicular and 
S17 requires that the pairs be exactly parallel. Alternatively, 
one can allow small deviations and beautify them after the 
operation [14]. We did not adopt this scheme in order to 



 

clearly distinguish the role of snapping/prediction and 
suggestions. Our design principle is to use snapping and 
prediction for satisfying basic relations such as congruence 
and parallelism, and to use suggestions for completing 
construction tasks. Another reason is that small deviations 

in the hints can make the result of suggestions ambiguous. 
For example, in the case of S4, the system has three options 
for positioning the resulting box if the three lines are not 
exactly perpendicular each other, and thus must ask the user 
to choose one among them. 

              
S1 creates a drawing plane           S2 makes a plate in a closed loop    S3 creates a rectangle from perpendicular lines 

             
   S4 makes a box from 3 perpendicular lines       S5 extrudes planar lines               S6 creates a pyramid shape 

             
S7 resizes the highlighted group       S8 makes plates between parallel lines      S9 extrudes lines under a plate 

             
S10 makes a chamfer                 S11 cuts a corner of a polyhedron               S12 trims a plate 

             
S13 divides lines at their intersection          S14 duplicates a group               S15 makes a flipped copy of a group 

            
S16 makes the third copy of a group          S17 makes the gaps equal              S18 makes equally spaced copies  

      
S19 makes equally spaced stairs     S20 arranges lines to be rotationally symmetric 
 

Figure 6: Complete list of suggestions implemented in the current prototype (left: hints, right: result). (The dotted lines 
are added for clarity; they do not appear in the actual system.) 



 

To investigate the capability of a pure suggestive interface, 
we intentionally excluded traditional editing operations 
such as translation, rotation, and duplication. However, it is 
natural and useful to provide both command-based and 
suggestion-based operations in a single system. We 
envision that in practical applications, suggestive user 
interfaces will augment command-based interfaces.  

IMPLEMENTATION 
The Chateau system is implemented in Java (JDK1.1.5), 
and uses directX3 for 3D rendering. Suggestion engines 
(Java class files) are implemented as listeners that respond 
to changes in the scene configuration. An engine has an 
input examination part that determines whether it responds 
to the scene, and a suggestion generator that edits a copy of 
the scene to construct an updated scene. When the current 
scene matches an engine’s input pattern, the engine returns 
the updated scene object and a thumbnail image (Figure 5). 
The implementation of suggestion engines is relatively 
simple because standard routines are provided by the base 
system. In the examination part, an engine checks the scene 
based using such criteria as the number of highlighted lines, 
connectivity, and spatial interrelationships. A typical 
suggestion engine’s source code is between 100 and 200 
lines.  

It is essential to design suggestion engines carefully so that 
their input conditions are as mutually exclusive as possible. 
If many suggestion engines match a single scene 
configuration, they will generate many suggestions, 
confusing the user and cluttering the screen. With our 
current choice of engines, the system generates only a few 
suggestions at a time, showing that careful design can help 
prevent suggestion explosion. In the future, we will 
investigate the feasibility of the interface with many more 
suggestion engines.   

 

USER EXPERIENCES 
We have started an informal user study using the prototype 
system. Figure 7 shows examples of 3D models created by 
our test users, all of whom are graduate students in 
computer science. They learned the behavior of the system 
in approximately 30 minutes of tutorial and practice and 
created various models, including those shown in Figure 7, 
within a few hours. Test users were generally satisfied with 
the interface, but they wanted simple direct manipulation 
functions such as “move” and “rotate.” Because of the 
limitations of the current implementation, the system gets 
too slow when the model becomes more complicated than 
these examples. 

 

  
 

  
Figure 7: 3D drawings created by test users using 
Chateau.  

 
We also asked students in an advanced computer graphics 
class (including both graduate and undergraduate students) 
to test the prototype system and to implement their own 
suggestion engines as a part of an assignment. In general, 
they found the idea of a suggestive interface attractive and 
useful, but also felt that the current implementation requires 
substantial improvements. They wanted a better interface 
for controlling temporary drawing planes, appropriate 
feedback for camera control and snapping, the ability to 
turn off/on each feature, keyboard shortcuts for frequent 
operations, and command-based direct manipulation or 3D 
widgets for translation and rotation. This result suggests 
that a pure suggestive interface is not very practical, and 
that suggestion may be most effective when combined with 
traditional interfaces. We also asked them to list suggestion 
engines that they evaluated positively (useful) and 
negatively (useless or difficult to use). Table 1 summarizes 
the results. The basic engines (S1-S6) were popular, but 
other engines received mixed reactions reflecting large 
diversity in personal preferences.   

Table 1: Subjective evaluation of suggestion engines.  
The table shows the number of subjects who 
evaluated each suggestion positively or negatively. Six 
subjects provided answers. 

S 1 2 3 4 5 6 7 8 9 
positive 3 5 6 5 5 3 1 1 0 
negative 0 0 0 0 0 1 2 3 5 
 
10 11 12 13 14 15 16 17 18 19 20
3 3 3 3 2 1 2 0 4 0 1 
3 2 1 1 2 3 2 3 1 2 4 
 
Figure 8 shows some suggestion engines implemented by 
the students. S21 takes a structure on the ground plane and 



 

a vertical line, and hoists the structure. S22 takes two closed 
loops that are not parallel, and makes a tube between the 
loops. S23 takes connected lines and returns a spline curve. 
S24 takes three lines in Y shape and fractalizes the Y. 
Overall, students implemented their own suggestion engines 
successfully, showing that one can extend the system as 
desired with reasonable effort.  

  
S21 hoists structure.        S22 makes a tube. 

  
S23 makes spline curve.    S24 makes fractal Y shapes  

Figure 8: Examples of suggestion engines 
implemented by test users.  

 

LIMITATIONS AND FUTURE WORK 
Suggestive interfaces have some drawbacks: they can help 
promote serendipitous discovery of available operations, 
but they give a user no way to discover all operations 
directly, as “browsing the menus” can in a WIMP interface. 
If the hints given are inadequate, the system never responds 
and it is unclear to the user why the system is failing. A 
visual summary of suggestions, such as shown in Figure 6, 
is necessary for learning and reference. For operations with 
continuous parameters (e.g., shearing), there is no 
opportunity for partial feedback (such as a highlighted 
bounding box or parallelogram) during parameter 
adjustment. These operations may be best supported by a 
traditional direct-manipulation approach such as 3D 
widgets [4]. 

As with any experimental interaction technique, scalability 
is a major concern with the suggestive interface. One 
scalability problem is the complexity of the 3D scene. 
Although the hinting mechanism effectively limits the 
number of candidate suggestions compared with the simple 
search-entire-scene approach [11][14], complicated 3D 
scenes can make it difficult to specify hints and to find the 
desired one among small thumbnails. We need some 
advanced mechanisms such as grouping and locking to deal 
with complicated scenes.  

Another scalability issue is related to the number of engines. 
The current suggestive interface system may not work well 
when hundreds of engines are implemented since the 
system may generate too many suggestions and confuse the 
user. We need refined mechanisms that automatically 

suppress inadequate engines based on the user’s preferences, 
or let the user manually activate/inactivate specific engines. 
We also need to provide traditional command-based 
interfaces to perform complicated tasks. 

The order of suggestion presentation is fixed in the current 
implementation: it is determined by the order in which the 
suggestion engines are implemented in the system, so S1 
always appears first, S2 (if appropriate) second, and so on. 
We could instead first display recently used suggestions, or 
sort the suggestions based on the current context, or 
organize suggestions into a hierarchy. The value of such 
approaches will have to be determined through careful user 
studies.  

In the near future, we will extend the current interface to 
support circles and curves. We plan to implement 
suggestion engines that construct cylinders, revolved 
surfaces, and rounded corners. In the longer term, we hope 
to use a suggestive user interface in a sketch-based freeform 
modeling system [12].  

One advantage of the suggestive interface is extensibility.  
Users can customize the interface by adding their own 
special-purpose engines to the system. In the current 
implementation the user must write Java code, but we hope 
to provide an end-user programming environment, possibly 
an example-based framework [6].  

Suggestive interfaces can be useful in various other 
graphical applications such as 2D bitmap editors and graph 
drawing programs. For example, if the user highlights 
almost-aligned objects in a 2D drawing program, the system 
might suggest an aligning operation, and it would be natural 
in a graph-drawing program to support even spacing of 
nodes or replication of selected subgraphs. Indeed, we 
believe that the ease of describing useful suggestions for a 
variety of applications indicates the promise of suggestive 
interfaces. 

ACKNOWLEDGMENTS 
We would like to thank the Brown University computer 
graphics group, especially Bob Zeleznik and Andy Forsberg, 
for thoughtful discussions, and the CMU stage3 research 
group, especially Dennis Cosgrove, for allowing us to use 
their Jalice scenegraph. We also thank Brown CS224 
students for testing the system and providing valuable 
feedback. 

REFERENCES 
1. Ashlar Vellum Products, Ashlar Inc., 

http://www.ashlar.com/ 

2. E.A. Bier and M.C. Stone. Snap Dragging. Computer 
Graphics, Vol. 20, No. 4, pp. 233-240, 1986. 

3. J.M. Cohen, L. Markosian, R.C. Zeleznik, J.F. Hughes, 
and R. Barzel. An Interface for Sketching 3D Curves. 



 

1999 Symposium on Interactive 3D Graphics, pp. 
17-21, 1999. 

4. D.B. Conner, S.S. Snibbe, K.P. Herndon, D.C. Robbins, 
R.C. Zeleznik, and A. van Dam. Three-Dimensional 
Widgets. 1992 Symposium on Interactive 3D Graphics, 
pp. 183-188, 1992. 

5. A. Cypher. Eager: Programming Repetitive Tasks by 
Example. Proceedings of CHI’91, pp.33-39, 1991. 

6. A. Cypher. Watch What I Do: Programming by 
Demonstration. Cambridge, MA: MIT Press. 1993. 

7. M. Gleicher and A. Witkin. Drawing with constraints. 
The Visual Computer, Vol. 11, No. 1, pp. 39-51, 1994. 

8. M.D. Gross and E.Y.L. Do. Ambiguous Intentions: A 
Paper-like Interface for Creative Design. Proceedings 
of UIST’96, pp. 183-192, 1996. 

9. S. Hudson and C. Hsi. A Synergistic Approach to 
Specifying Simple Number Independent Layouts by 
Example, Proceedings of INTERCHI'93, pp. 285-292, 
1993. 

10. T. Igarashi, S. Matsuoka, S. Kawachiya, and H. Tanaka. 
Interactive Beautification: A Technique for Rapid 
Geometric Design. Proceedings of UIST'97, pp. 
105-114, 1997. 

11. T. Igarashi, S. Matsuoka, S. Kawachiya, and H. Tanaka. 
Pegasus: A Drawing System for Rapid Geometric 
Design. CHI'98 Summary, pp. 24-25, 1998. 

12. T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A 
Sketching Interface for 3D Freeform Design. 
SIGGRAPH 99 Conference Proceedings, pp. 409-416, 
1999. 

13. S. Karsenty, J.A. Landay, and C. Weikart. Inferring 
Graphical Constraints with Rockit, Proceedings of 
HCI’92, 1992. 

14. D. Kurlander and S. Feiner. Interactive 
Constraint-Based Search and Replace. Proceedings of 
CHI'92, pp. 609-618, 1992. 

15. J.A. Landay and B.A. Myers. Interactive Sketching for 
the Early Stages of User Interface Design. Proceedings 

of CHI'95, pp. 43-50, 1995. 

16. J. Mankoff, S.E. Hudson and G.D. Abowd. Interaction 
Techniques for Ambiguity Resolution in 
Recognition-based Interfaces. Proceedings of UIST'00, 
pp. 11-20, 2000. 

17. J. Marks, B. Andalman, P. Beardsley, W. Freeman, S. 
Gibson, J. Hodgins, T. Kang, B. Mirtich, H. Pfister, W. 
Ruml, K. Ryall, J. Seims, and S. Shieber. Design 
Galleries: A General Approach to Setting Parameters 
for Computer Graphics and Animation. SIGGRAPH 97 
Conference Proceedings, pp. 389-400, 1997. 

18. T. Masui. An Efficient Text Input Method for 
Pen-based Computers. Proceedings of CHI'98, pp. 
328-335, 1998. 

19. D. Maulsby, I.H. Witten and K.A. Kittlitz. Metamouse: 
Specifying Graphical Procedures by Example. 
Proceedings SIGGRAPH'89, pp. 127-136, 1989. 

20. T.P. Moran, P. Chiu, W. van Melle, and G. Kurtenbach. 
Pen-based Interaction Techniques for Organizing 
Material on an Electronic Whiteboard. Proceedings of 
UIST'97, pp. 45-54, 1997. 

21. J. Nielsen. Noncommand User Interfaces. 
Communications of the ACM, Vol. 36, No. 4, pp. 83-99, 
1993. 

22. K. Sims. Artificial Evolution for Computer Graphics. 
SIGGRAPH 91 Conference Proceedings, pp. 319-328, 
1991. 

23. A. van Dam. Post-WIMP User Interfaces, 
Communications of the ACM, Vol. 40, No. 2, pp. 63-67, 
1997. 

24. R.C. Zeleznik and A. Forsberg. UniCam — 2D 
Gestural Camera Controls for 3D Environments. 
Proceedings of 1999 Symposium on Interactive 3D 
Graphics, 1999. 

25. R.C. Zeleznik, K.P. Herndon, and J.F. Hughes. 
SKETCH: An Interface for Sketching 3D Scenes. 
SIGGRAPH 96 Conference Proceedings, pp. 163-170, 
1996. 

 



Teddy: A Sketching Interface for 3D Freeform Design

Takeo Igarashi†,  Satoshi Matsuoka‡,  Hidehiko Tanaka†

† University of Tokyo,  ‡ Tokyo Institute of Technology

Abstract
We present a sketching interface for quickly and easily designing
freeform models such as stuffed animals and other rotund objects.
The user draws several 2D freeform strokes interactively on the
screen and the system automatically constructs plausible 3D
polygonal surfaces. Our system supports several modeling
operations, including the operation to construct a 3D polygonal
surface from a 2D silhouette drawn by the user: it inflates the
region surrounded by the silhouette making wide areas fat, and
narrow areas thin. Teddy, our prototype system, is implemented as
a Java™ program, and the mesh construction is done in real-time
on a standard PC. Our informal user study showed that a first-time
user typically masters the operations within 10 minutes, and can
construct interesting 3D models within minutes.

CR Categories and Subject Descriptions: I.3.6 [Computer
Graphics]: Methodology and Techniques – Interaction Techniques;
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling – Geometric algorithms

Additional Keywords: 3D modeling, sketching, pen-based
systems, gestures, design, chordal axes, inflation

1 INTRODUCTION
Although much progress has been made over the years on 3D
modeling systems, they are still difficult and tedious to use when
creating freeform surfaces. Their emphasis has been the precise
modeling of objects motivated by CAD and similar domains.
Recently SKETCH [29] introduced a gesture-based interface for
the rapid modeling of CSG-like models consisting of simple
primitives.

This paper extends these ideas to create a sketching interface
for designing 3D freeform objects. The essential idea is the use of
freeform strokes as an expressive design tool. The user draws 2D
freeform strokes interactively specifying the silhouette of an object,
and the system automatically constructs a 3D polygonal surface
model based on the strokes. The user does not have to manipulate
control points or combine complicated editing operations. Using
our technique, even first-time users can create simple, yet
expressive 3D models within minutes. In addition, the resulting
models have a hand-crafted feel (such as sculptures and stuffed

animals) which is difficult to accomplish with most conventional
modelers. Examples are shown in Figure 2.

We describe here the sketching interface and the algorithms for
constructing 3D shapes from 2D strokes. We also discuss the
implementation of our prototype system, Teddy. The geometric
representation we use is a standard polygonal mesh to allow the
use of numerous software resources for post-manipulation and
rendering. However, the interface itself can be used to create other
representations such as volumes [25] or metaballs [17].

Like SKETCH [29], Teddy is designed for the rapid
construction of approximate models, not for the careful editing of
precise models. To emphasize this design goal and encourage
creative exploration, we use the real-time pen-and-ink rendering
described in [16], as shown in Figure 1. This also allows real-time
interactive rendering using Java on mid-range PCs without

Figure1: Teddy in use on a display-integrated tablet.

Figure 2: Painted models created using Teddy and painted
using a commercial texture-map editor.
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dedicated 3D rendering hardware.
An obvious application of Teddy is the design of 3D models for

character animation. However, in addition to augmenting
traditional 3D modelers, Teddy’s ease of use has the potential to
open up new application areas for 3D modeling. Possibilities
include rapid prototyping in the early stages of design,
educational/recreational use for non-professionals and children,
and real-time communication assistance on pen-based systems.

The accompanying videotape demonstrates Teddy’s user
interface. Teddy is available as a Java applet at the following web
site. http://www.mtl.t.u-tokyo.ac.jp/~takeo/teddy/teddy.htm

2 RELATED WORK
A typical procedure for geometric modeling is to start with a
simple primitive such as a cube or a sphere, and gradually
construct a more complex model through successive
transformations or a combination of multiple primitives. Various
deformation techniques [15,23] and other shape-manipulation
tools [8] are examples of transformation techniques that let the
user create a wide variety of precise, smooth shapes by
interactively manipulating control points or 3D widgets.

Another approach to geometric modeling is the use of implicit
surfaces [3,18]. The user specifies the skeleton of the intended
model and the system constructs smooth, natural-looking surfaces
around it. The surface inflation technique [17] extrudes the
polygonal mesh from the skeleton outwards. In contrast, our

approach lets the user specify the silhouette of the intended shape
directly instead of by specifying its skeleton.

Some modeling systems achieve intuitive, efficient operation
using 3D input/output devices [6]. 3D devices can simplify the
operations that require multiple operations when using 2D devices.

Our sketching interface is inspired by previous sketch-based
modeling systems [7,29] that interpret the user’s freeform strokes
and interactively construct 3D rectilinear models. Our goal is to
develop a similar interface for designing rounded freeform
models.

Inflation of a 2D drawing is introduced in [27], and 3D surface
editing based on a 2D painting technique is discussed in [28].
Their target is basically a 2D array with associated height values,
rather than a 3D polygonal model.

The use of freeform strokes for 2D applications has recently
become popular. Some systems [10,14] use strokes to specify
gestural commands and others [2] use freeform strokes for
specifying 2D curves. These systems find the best matching arcs
or splines automatically, freeing the users from explicit control of
underlying parameters.

We use a polygonal mesh representation, but some systems use
a volumetric representation [9,25], which is useful for designing
topologically complicated shapes. Our mesh-construction
algorithm is based on a variety of work on polygonal mesh
manipulation, such as mesh optimization [12], shape design [26],
and surface fairing [24], which allows polygonal meshes to be
widely used as a fundamental representation for geometric

          

 a) initial state     b) input stroke     c) result of creation  d) rotated view        e) painting stroke   f) result of painting   g) rotated view

     

h) before extrusion   i) closed stroke    j) rotated view    k) extruding stroke  l) result of extrusion  m) rotated view

          

n) before cutting  o) cutting stroke     p) result of cutting  q) result of click     r) extrusion after cutting s) result of extrusion t) rotated view

           

 u) before erasing    v) scribbling     w) result of erasing       x) closed stroke    y) scribbling    z) result of smoothing  z´) rotated view

Figure 3: Overview of the modeling operations.



modeling and computer graphics in general.

3 USER INTERFACE
Teddy’s physical user interface is based upon traditional 2D

input devices such as a standard mouse or tablet. We use a two-
button mouse with no modifier keys. Unlike traditional modeling
systems, Teddy does not use WIMP-style direct manipulation
techniques or standard interface widgets such as buttons and
menus for modeling operations. Instead, the user specifies his or
her desired operation using freeform strokes on the screen, and the
system infers the user’s intent and executes the appropriate editing
operations. Our videotape shows how a small number of simple
operations let the users create very rich models.

In addition to gestures, Teddy supports direct camera
manipulation using the secondary mouse button based on a virtual
trackball model [13]. We also use a few button widgets for
auxiliary operations, such as save and load, and for initiating
bending operations.

4 MODELING OPERATIONS
This section describes Teddy’s modeling operations from the
user’s point of view; details of the algorithms are left to the next
section. Some operations are executed immediately after the user
completes a stroke, while some require multiple strokes. The
current system supports neither the creation of multiple objects at
once, nor operations to combine single objects. Additionally,
models must have a spherical topology; e.g., the user cannot create
a torus. An overview of the model construction process is given
first, and then each operation is described in detail.

The modeling operations are carefully designed to allow
incremental learning by novice users. Users can create a variety of
models by learning only the first operation (creation), and can
incrementally expand their vocabulary by learning other
operations as necessary. We have found it helpful to restrict first-
time users to the first three basic operations (creation, painting,
and extrusion), and then to introduce other advanced operations
after these basic operations are mastered.

4.1 Overview
Figure 3 introduces Teddy’s general model construction process.
The user begins by drawing a single freeform stroke on a blank
canvas (Figures 3a-b). As soon as the user finishes drawing the
stroke, the system automatically constructs a corresponding 3D

shape (c). The user can now view the model from a different
direction (d). Once a model is created, it may be modified using
various operations. The user can draw a line on the surface (e-g)
by drawing a stroke within the model silhouette. If the stroke is
closed, the resulting surface line turns red and the system enters
“extrusion mode” (h-i). Then the user rotates the model (j) and
draws the second stroke specifying the silhouette of the extruded
surface (k-m). A stroke that crosses the silhouette cuts the model
(n-o) and turns the cut section red (p). The user either clicks to
complete the operation (q) or draws a silhouette to extrude the
section (r-t). Scribbling on the surface erases the line segments on
the surface (u-w). If the user scribbles during the extrusion mode
(x-y), the system smoothes the area surrounded by the closed red
line (z-z´).

Figure 4 summarizes the modeling operations available on the
current implementation. Note that the appropriate action is chosen
based on the stroke’s position and shape, as well as the current

Closed Create a new object First stroke

Second stroke

Specify reference

Specify target

Inside of the object, not closed Paint on the surface

Inside of the object, closed

Start and end outside of the object

Specify the area to be extruded/smoothed

Cut the object

Scribbling Erase painted strokes

Normal stroke

Scribbling

Click

Extrude the area

Smooth the area

Quit extrusion

Press “Bend” buttonPress “Init” button

PAINTING

EXTRUSION

BENDINGCREATION

Stroke Action

Legend MODE

Figure 4: Summary of the gestural operations.

         

         

         

 a) snake       b) snail c) cherry  d) muscular arm

Figure 5: Examples of creation operation (top: input stroke,
middle: result of creation, bottom: rotated view).

       

 a) digging stroke b) result  c) rotated      d) closed stroke e) after click

Figure 7: More extrusion operations: digging a cavity (a-c) and
turning the closed stroke into a surface drawing (d-e).

            

            

   a) long         b) thin           c) fat            d) sharp

Figure 6: Examples of extrusion (top: extruding stroke,
bottom: result of extrusion).



mode of the system.

4.2 Creating a New Object
Starting with a blank canvas, the user creates a new object by
drawing its silhouette as a closed freeform stroke. The system
automatically constructs a 3D shape based on the 2D silhouette.
Figure 5 shows examples of input strokes and the corresponding
3D models. The start point and end point of the stroke are
automatically connected, and the operation fails if the stroke is
self-intersecting. The algorithm to calculate the 3D shape is
described in detail in section 5. Briefly, the system inflates the
closed region in both directions with the amount depending on the
width of the region: that is, wide areas become fat, and narrow
areas become thin. Our experience so far shows that this algorithm
generates a reasonable-looking freeform shape. In addition to the
creation operation, the user can begin model construction by
loading a simple primitive. The current implementation provides a
cube and a sphere, but adding more shapes is straightforward.

4.3 Painting and Erasing on the Surface
The object surface is painted by drawing a freeform stroke within
the object’s silhouette on the canvas (the stroke must not cross the
silhouette) [11]. The 2D stroke is projected onto the object surface
as 3D line segments, called surface lines (Figure 3e-g). The user
can erase these surface lines by drawing a scribbling stroke1

(Figure 3u-w). This painting operation does not modify the 3D
geometry of the model, but lets the user express ideas quickly and
conveniently when using Teddy as a communication medium or
design tool.

4.4 Extrusion
Extrusion is a two-stroke operation: a closed stroke on the surface
and a stroke depicting the silhouette of the extruded surface. When
the user draws a closed stroke on the object surface, the system
highlights the corresponding surface line in red, indicating the
initiation of “extrusion mode” (Figure 3i). The user then rotates
the model to bring the red surface line sideways (Figure 3j) and
draws a silhouette line to extrude the surface (Figure 3k). This is
basically a sweep operation that constructs the 3D shape by
moving the closed surface line along the skeleton of the silhouette

                                                  
1 A stroke is recognized as scribbling when sl/pl > 1.5, where
sl is the length of the stroke and pl is the perimeter of its convex
hull.

(Figure 3l-m). The direction of extrusion is always perpendicular
to the object surface, not parallel to the screen. Users can create a
wide variety of shapes using this operation, as shown in Figure 6.
They can also make a cavity on the surface by drawing an inward
silhouette (Figure 7a-c). The current implementation does not
support holes that completely extend to the other side of the object.
If the user decides not to extrude, a single click turns the red stroke
into an ordinary painted stroke (Figure 7d-e).

4.5 Cutting
A cutting operation starts when the user draws a stroke that runs
across the object, starting and terminating outside its silhouette
(Figure 3o). The stroke divides the object into two pieces at the
plane defined by the camera position and the stroke. What is on
the screen to the left of the stroke is then removed entirely (Figure
3p) (as when a carpenter saws off a piece of wood). The cutting
operation finishes with a click of the mouse (Figure 3q). The user
can also `bite’ the object using the same operation (Figure 8).

The cutting stroke turns the section edges red, indicating that
the system is in “extrusion mode”. The user can draw a stroke to
extrude the section instead of a click (Figure3r-t, Figure 9). This
“extrusion after cutting” operation is useful to modify the shape
without causing creases at the root of the extrusion.

4.6 Smoothing
One often smoothes the surface of clay models to eliminate bumps
and creases. Teddy lets the user smooth the surface by drawing a
scribble during “extrusion mode.” Unlike erasing, this operation
modifies the actual geometry: it first removes all the polygons
surrounded by the closed red surface line and then creates an

 a) original  b) reference stroke  c) target stroke  d) result  e) rotated

Figure 11: Examples of transformation (top: bending,
bottom: distortion).

a) cleaning a cavity

b) smoothing a sharp edge

Figure 10: Smoothing operation.

   

   a) biting stroke   b) result     c) rotated view   d) after click

Figure 8: Cutting operation.

a) cutting stroke  b) result    c) rotated  d) extruding stroke e) result

Figure 9: Extrusion after cutting.



entirely new surface that covers the region smoothly. This
operation is useful to remove unwanted bumps and cavities
(Figure 3x-z’, Figure 10a), or to smooth the creases caused by
earlier extrusion operations (Figure 10b).

4.7 Transformation
We are currently experimenting with an additional
“transformation” editing operation that distorts the model while
preserving the polygonal mesh topology. Although it functions
properly, the interface itself is not fully gestural because the modal
transition into the bending mode requires a button push.

This operation starts when the user presses the “bend” button
and uses two freeform strokes called the reference stroke and the
target stroke to modify the model. The system moves vertices of
the polygonal model so that the spatial relation between the
original position and the target stroke is identical to the relation
between the resulting position and the reference stroke. This
movement is parallel to the screen, and the vertices do not move
perpendicular to the screen. This operation is described in [5] as
warp; we do not discuss the algorithm further.

Transformation can be used to bend, elongate, and distort the
shape (Figure 11). We plan to make the system infer the reference
stroke automatically from the object’s structure in order to
simplify the operation, in a manner similar to the mark-based
interaction technique of [2].

5 ALGORITHM
We next describe how the system constructs a 3D polygonal mesh
from the user’s freeform strokes. Internally, a model is represented
as a polygonal mesh. Each editing operation modifies the mesh to
conform to the shape specified by the user’s input strokes (Figure
12). The resulting model is always topologically equivalent to a
sphere. We developed the current implementation as a prototype
for designing the interface; the algorithms are subject to further
refinement and they fail for some illegal strokes (in that case, the
system indicates the problem and requests an alternative stroke).
However, these exceptional cases are fairly rare, and the algorithm
works well for a wide variety of shapes.

Our algorithms for creation and extrusion are closely related to
those for freeform surface construction based on skeletons [3,18],
which create a surface around user-defined skeletons using
implicit surface techniques. While our current implementation
does not use implicit surfaces, they could be used in an alternative
implementation.

In order to remove noise in the handwriting input stroke and to
construct a regular polygonal mesh, every input stroke is re-
sampled to form a smooth polyline with uniform edge length
before further processing [4].

5.1 Creating a New Object
Our algorithm creates a new closed polygonal mesh model from
the initial stroke. The overall procedure is this: we first create a
closed planar polygon by connecting the start-point and end-point
of the stroke, and determine the spine or axes of the polygon using

the chordal axis introduced in [21]. We then elevate the vertices of
the spine by an amount proportional to their distance from the
polygon. Finally, we construct a polygonal mesh wrapping the
spine and the polygon in such a way that sections form ovals.

When constructing the initial closed planar polygon, the system
makes all edges a predefined unit length (see Figure 13a). If the
polygon is self-intersecting, the algorithm stops and the system
requests an alternative stroke. The edges of this initial polygon are
called external edges, while edges added in the following
triangulation are called internal edges.

The system then performs constrained Delaunay triangulation
of the polygon (Figure 13b). We then divide the triangles into
three categories: triangles with two external edges (terminal
triangle), triangles with one external edge (sleeve triangle), and
triangles without external edges (junction triangle). The chordal
axis is obtained by connecting the midpoints of the internal edges
(Figure 13c), but our inflation algorithm first requires the pruning
of insignificant branches and the retriangulation of the mesh. This
pruning algorithm is also introduced in [21].

To prune insignificant branches, we examine each terminal
triangle in turn, expanding it into progressively larger regions by
merging it with adjacent triangles (Figure 14a-b). Let X be a
terminal triangle; then X has two exterior edges and one interior
edge. We erect a semicircle whose diameter is the interior edge,
and which lies on the same side of that edge as does X. If all three
vertices of X lie on or within this semicircle, we remove the
interior edge and merge X with the triangle that lies on the other
side of the edge.

  

a) after creation       b) after extrusion     c) after cutting

Figure 12: Internal representation.

     

a) initial 2D polygon b) result of CDT    c) chordal axis

     

 d) fan triangles     e) resulting spine      f) final triangulation

Figure 13: Finding the spine.

a) start from T-triangle  b) advance     c) stop      d) fan triangles

           
e) advance to J-triangle       f) fan triangles at J-triangle

Figure 14: Pruning.



If the newly merged triangle is a sleeve triangle, then X now
has three exterior edges and a new interior edge. Again we erect a
semicircle on the interior edge and check that all vertices are
within it. We continue until some vertex lies outside the semicircle
(Figure 14c), or until the newly merged triangle is a junction
triangle. In the first case, we triangulate X with a "fan" of triangles
radiating from the midpoint of the interior edge (Figure 14d). In
the second case, we triangulate with a fan from the midpoint of the
junction triangle (Figure 14e-f). The resulting fan triangles are
shown in Figure 13d. The pruned spine is obtained by connecting
the midpoints of remaining sleeve and junction triangles’ internal
edges (Figure 13e).

The next step is to subdivide the sleeve triangles and junction
triangles to make them ready for elevation. These triangles are
divided at the spine and the resulting polygons are triangulated, so
that we now have a complete 2D triangular mesh between the
spine and the perimeter of the initial polygon (Figure 13f).

Next, each vertex of the spine is elevated proportionally to the
average distance between the vertex and the external vertices that
are directly connected to the vertex (Figure 15a,b). Each internal
edge of each fan triangle, excluding spine edges, is converted to a
quarter oval (Figure 15c), and the system constructs an appropriate
polygonal mesh by sewing together the neighboring elevated
edges, as shown in Figure 15d. The elevated mesh is copied to the
other side to make the mesh closed and symmetric. Finally, the
system applies mesh refinement algorithms to remove short edges
and small triangles [12].

5.2 Painting on the Surface
The system creates surface lines by sequentially projecting each
line segment of the input stroke onto the object’s surface polygons.
For each line segment, the system first calculates a bounded plane
consisting of all rays shot from the camera through the segment on
the screen. Then the system finds all intersections between the
plane and each polygon of the object, and splices the resulting 3D
line segments together (Figure 16). The actual implementation
searches for the intersections efficiently using polygon
connectivity information. If a ray from the camera crosses multiple
polygons, only the polygon nearest to the camera position is used.
If the resulting 3D segments cannot be spliced together (e.g., if the
stroke crosses a “fold” of the object), the algorithm fails.

5.3 Extrusion
The extrusion algorithm creates new polygonal meshes based on a
closed base surface line (called the base ring) and an extruding
stroke. Briefly, the 2D extruding stroke is projected onto a plane
perpendicular to the object surface (Figure 17a), and the base ring
is swept along the projected extruding stroke (Figure 17b). The
base ring is defined as a closed 3D polyline that lies on the surface
of the polygonal mesh, and the normal of the ring is defined as that
of the best matching plane of the ring.

First, the system finds the plane for projection: the plane
passing through the base ring’s center of gravity and lying parallel
to the normal of the base ring2. Under the above constraints, the
plane faces towards the camera as much as possible (Figure 17a).

Then the algorithm projects the 2D extruding stroke onto the
plane, producing a 3D extruding stroke. Copies of the base ring
are created along the extruding stroke in such a way as to be
almost perpendicular to the direction of the extrusion, and are
resized to fit within the stroke. This is done by advancing two
pointers (left and right) along the extruding stroke starting from
both ends. In each step, the system chooses the best of the
following three possibilities: advance the left pointer, the right
pointer, or both. The goodness value increases when the angle
between the line connecting the pointers and the direction of the
stroke at each pointer is close to 90 degrees (Figure 18a). This
process completes when the two pointers meet.

Finally, the original polygons surrounded by the base ring are
deleted, and new polygons are created by sewing the neighboring
copies of the base ring together [1] (Figure 18b). The system uses
the same algorithm to dig a cavity on the surface.

This simple algorithm works well for a wide variety of
extrusions but creates unintuitive shapes when the user draws
unexpected extruding strokes or when the base surface is not
sufficiently planar (Figure 19).

                                                  
2 The normal of the ring is calculated as follows: Project the points
of the ring to the original XY-plane. Then compute the enclosed
“signed area” by the formula:
Axy = 0.5*sum(i=0, i=n-1, x[i]*y[i+1]-x[i+1]*y[i])
(indices are wrapped around so that x[n] means x[0]).
Calculate Ayx and Azx similarly, and the vector
v=(Ayz,Azx,Axy) is defined as the normal of the ring.

   

  a) before   b) elevate spines   c) elevate edges d) sew elevated edges

Figure 15: Polygonal mesh construction.

    

     a) projection of the stroke     b) sweep along the projected stroke

Figure 17: Extrusion algorithm.

Figure 16: Construction of surface lines.

    

        a) pointer advancing            b) sewing adjacent rings

Figure 18: Sweeping the base ring.



5.4 Cutting
The cutting algorithm is based on the painting algorithm. Each line
segment of the cutting stroke is projected onto the front and back
facing polygons. The system connects the corresponding end
points of the projected edges to construct a planer polygon (Figure
20). This operation is performed for every line segment, and the
system constructs the complete section by splicing these planer
polygons together. Finally, the system triangulates each planer
polygon [22], and removes all polygons to the left of the cutting
stroke.

5.5 Smoothing
The smoothing operation deletes the polygons surrounded by the
closed surface line (called a ring) and creates new polygons to
cover the hole smoothly. First, the system translates the objects
into a coordinate system whose Z-axis is parallel to the normal of
the ring. Next, the system creates a 2D polygon by projecting the
ring onto the XY-plane in the newly created coordinate system,
and triangulates the polygon (Figure 21b). (The current
implementation fails if the area surrounded by the ring contains
creases and is folded when projected on the XY-plane.) The
triangulation is designed to create a good triangular mesh based on
[22]: it first creates a constrained Delaunay triangulation and
gradually refines the mesh by edge splitting and flipping; then
each vertex is elevated along the Z-axis to create a smooth 3D
surface (Figure 21d).

The algorithm for determining the Z-value of a vertex is as
follows: For each edge of the ring, consider a plane that passes
through the vertex and the midpoint of the edge and is parallel to
the Z-axis. Then calculate the z-value of the vertex so that it lies
on the 2D Bezier curve that smoothly interpolates both ends of the
ring on the plane (Figure 21c). The final z-value of the vertex is

the average of these z-values.
Finally, we apply a surface-fairing algorithm [24] to the newly

created polygons to enhance smoothness.

6 IMPLEMENTATION
Our prototype is implemented as a 13,000 line Java program. We
tested a display-integrated tablet (Mutoh MVT-14, see Figure 1)
and an electric whiteboard (Xerox Liveboard) in addition to a
standard mouse. The mesh construction process is completely real-
time, but causes a short pause (a few seconds) when the model
becomes complicated. Teddy can export models in OBJ file format.
Figure 2 shows some 3D models created with Teddy by an expert
user and painted using a commercial texture-map editor. Note that
these models look quite different from 3D models created in other
modeling systems, reflecting the hand-drawn nature of the shape.

7 USER EXPERIENCE
The applet version of Teddy has undergone limited distribution,

and has been used (mainly by computer graphics researchers and
students) to create different 3D models. Feedback from these users
indicates that Teddy is quite intuitive and encourages them to
explore various 3D designs. In addition, we have started close
observation of how first-time users (mainly graduate students in
computer science) learn Teddy. We start with a detailed tutorial
and then show some stuffed animals, asking the users to create
them using Teddy. Generally, the users begin to create their own
models fluently within 10 minutes: five minutes of tutorial and
five minutes of guided practice. After that, it takes a few minutes
for them to create a stuffed animal such as those in Figure 2
(excluding the texture).

8 FUTURE WORK
Our current algorithms and implementation are robust and
efficient enough for experimental use. However, they can fail or
generate unintuitive results when the user draws unexpected
strokes. We must devise more robust and flexible algorithms to
handle a variety of user inputs. In particular, we plan to enhance
the extrusion algorithm to allow more detailed control of surfaces.
We are also considering using implicit surface construction
techniques.

Another important research direction is to develop additional
modeling operations to support a wider variety of shapes with
arbitrary topology, and to allow more precise control of the shape.
Possible operations are creating creases, twisting the model, and
specifying the constraints between the separate parts for animation
systems [20]. While we are satisfied with the simplicity of the
current set of gestural operations, these extended operations will
inevitably complicate the interface, and careful interface design
will be required.
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   a) flat extrusion       b) wavy extrusion      c) wrapping extrusion

Figure 19: Unintuitive extrusions.

   

  a) before   b) triangulation   c) calculating Z-value    d) result

Figure 21: Smoothing algorithm.

Figure 20: Cutting.

  
   a) flat extrusion       b) wavy extrusion      c) wrapping extrusion

Figure 19: Unintuitive extrusions.



References
1. G. Barequet and M Sharir. Piecewise-linear interpolation

between polygonal slices. ACM 10th Computational
Geometry Proceedings, pages 93-102, 1994.

2. T. Baudel. A mark-based interaction paradigm for free-hand
drawing. UIST’94 Conference Proceedings, pages 185-192,
1994.

3. J. Bloomenthal and B. Wyvill. Interactive techniques for
implicit modeling. 1990 Symposium on Interactive 3D
Graphics, pages 109-116, 1990.

4. J.M. Cohen, L. Markosian, R.C. Zeleznik, J.F. Hughes, and
R. Barzel. An Interface for Sketching 3D Curves. 1999
Symposium on Interactive 3D Graphics, pages 17-21, 1999.

5. W.T. Correa, R.J. Jensen, C.E. Thayer, and A. Finkelstein.
Texture mapping for cel animation. SIGGRAPH 98
Conference Proceedings, pages 435-456, 1998.

6. M. Deering. The Holosketch VR sketching system.
Communications of the ACM, 39(5):54-61, May 1996.

7. L. Eggli, C. Hsu, G. Elber, and B. Bruderlin, Inferring 3D
models from freehand sketches and constraints. Computer-
Aided Design, 29(2): 101-112, Feb.1997.

8. C.Grimm, D. Pugmire, M. Bloomental, J. F. Hughes, and E.
Cohen. Visual interfaces for solids modeling. UIST ’95
Conference Proceedings, pages 51-60, 1995.

9. T. Galyean and J.F. Hughes. Sculpting: an interactive
volumetric modeling technique. SIGGRAPH ’91 Conference
Proceedings, pages 267-274, 1991.

10. M.D. Gross and E.Y.L. Do. Ambiguous intentions: A paper-
like interface for creative design. UIST’96 Conference
Proceedings, pages 183-192, 1996.

11. P. Hanrahan, P. Haeberli, Direct WYSIWYG Painting and
Texturing on 3D Shapes, SIGGRAPH 90 Conference
Proceedings, pages 215-224, 1990.

12. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W.
Stuetzle. Mesh optimization. SIGGRAPH 93 Conference
Proceedings, pages 19-26, 1993.

13. J. Hultquist. A virtual trackball. Graphics Gems (ed. A.
Glassner). Academic Press, pages 462-463, 1990.

14. J.A. Landay and B.A. Myers. Interactive sketching for the
early stages of user interface design. CHI’95 Conference
Proceedings, pages 43-50, 1995.

15. R. MacCracken and K.I. Joy. Free-form deformations with
lattices of arbitrary topology. SIGGRAPH 96 Conference
Proceedings, pages 181-188, 1996.

16. L. Markosian, M.A. Kowalski, S.J. Trychin, L.D. Bourdev,

D. Goldstein, and J.F. Hughes. Real-time nonphotorealistic
rendering. SIGGRAPH 97 Conference Proceedings, pages
415-420, 1997.

17. H. Nishimura, M. Hirai, T. Kawai, T. Kawata, I. Shirakawa,
K. Omura. Object modeling by distribution function and a
method of image generation. Transactions of the Institute of
Electronics and Communication Engineers of Japan, J68-
D(4):718-725, 1985

18. L. Markosian, J.M. Cohen, T. Crulli and J.F. Hughes. Skin:
A Constructive Approach to Modeling Free-form Shapes.
SIGGRAPH 99, to appear, 1999.

19. K. van Overveld and B. Wyvill. Polygon inflation for
animated models: a method for the extrusion of arbitrary
polygon meshes. Journal of Visualization and Computer
Animation, 18: 3-16, 1997.

20. R. Pausch, T. Burnette, A.C. Capeheart, M. Conway, D.
Cosgrove, R. DeLine, J. Durbin, R. Gossweiler, S. Koga,
and J. White. Alice: Rapid prototyping system for virtual
reality. IEEE Computer Graphics and Applications, 15(3):
8-11, May 1995.

21. L. Prasad. Morphological analysis of shapes. CNLS
Newsletter, 139: 1-18, July 1997.

22. J.R. Shewchuk. Triangle: engineering a 2D quality mesh
generator and Delauny triangulator. First Workshop on
Applied Computational Geometry Proceedings, pages 124-
133, 1996.

23. K. Singh and E. Fiume. Wires: a geometric deformation
technique. SIGGRAPH 98 Conference Proceedings, pages
405-414, 1998.

24. G. Taubin. A signal processing approach to fair surface
design. SIGGRAPH 95 Conference Proceedings, pages 351-
358, 1995.

25. S.W. Wang and A.E. Kaufman, Volume sculpting. 1995
Symposium on Interactive 3D Graphics, pages 109-116,
1995.

26. W. Welch and A. Witkin. Free-form shape design using
triangulated surfaces. SIGGRAPH 94 Conference
Proceedings, pages 247-256, 1994.

27. L. Williams. Shading in Two Dimensions. Graphics
Interface ’91, pages 143-151, 1991.

28. L. Williams. 3D Paint. 1990 Symposium on Interactive 3D
Graphics, pages 225-233, 1990.

29. R.C. Zeleznik, K.P. Herndon, and J.F. Hughes. SKETCH:
An interface for sketching 3D scenes. SIGGRAPH 96
Conference Proceedings, pages 163-170, 1996.



 

Smooth Meshes for Sketch-based Freeform Modeling 
Takeo Igarashi 

Computer Science Department, The University of Tokyo 
takeo@is.s.u-tokyo.ac.jp 

John F. Hughes 
Computer Science Department, Brown University 

jfh@cs.brown.edu 

Abstract 
This paper describes a framework for introducing visually smooth 
surfaces into sketch-based freeform modeling systems. An existing 
sketch-based freeform modeling system generates rough polygonal 
meshes with uneven triangulations after each operation. Our 
approach generates a dense, visually smooth polygonal mesh by 
beautifying and refining the original rough mesh. A beautification 
process generates near-equilateral triangles with a near-uniform 
distribution of vertices to mask the noise and bad sampling of the 
uneven mesh. The vertices are distributed on a smoothed surface 
that approximately interpolates the original mesh. Refinement 
generates a smooth, dense mesh by subdividing the beautified 
mesh and moving the vertices to the interpolative surface. The 
smooth interpolative surface is computed via implicit quadratic 
surfaces that best fit the mesh locally in a least-squares sense.  
Keywords: Polygonal Meshes, Subdivision, Beautification, Skin, 
Implicit Surfaces, Sketch-based Modeling. 

1 INTRODUCTION 
Teddy [5] introduced a nice sketch-based modeling interface, but 
the resulting models were rough polygonal meshes. Their 
triangulations were uneven and the models had many undesirable 
small bumps and dents; such artifacts were introduced by almost 
all operations in the system. One could subdivide the mesh [9,20], 
but the resulting shape was not visually smooth because of the 
uneven triangulations. Our goal here is to introduce visually 
smooth surfaces like those seen in parametric and implicit models 
[17] to sketch-based modeling systems for free-form objects. 

Our approach is to beautify and refine the irregular polygonal 
meshes resulting from the original Teddy algorithms (Figure 1). A 
beautification process, based on the Skin algorithm [11], generates 
near-equilateral triangles with a near-uniform distribution of 
vertices on the surface to hide irregularities in the original 
polygonal model; then refinement generates a dense polygonal 
mesh that smoothly interpolates the beautified mesh. 

Beautification and refinement are guided by an implicit smooth 
surface that approximately interpolates the polygonal mesh. We 
compute implicit quadratic surfaces that best fit the mesh locally 
in a least-squares sense, and move the vertices to the surface 
during beautification and refinement. The implicit surfaces only 
approximately interpolate the mesh, and C1 continuity among 
adjacent surface pieces is not guaranteed. This is not acceptable if 
one wants to use the implicit surface as final output, but works 
well for guiding the beautification and refinement of polygonal 
meshes. In addition, our framework is intended to apply to simple 
rotund objects without small details, such as those in Teddy. 

One can smooth meshes with geometric fairing [1,6,14], but 
these methods are designed to remove high-frequency noise from 
dense polygonal meshes with fairly uniform vertex distributions, 
such as those arising from 3D scans; they do not work well for the 

uneven, coarse meshes seen in Teddy. They also tend to make the 
surface drift away from the original mesh. We avoid this problem 
by fitting smooth surfaces to the mesh in a least-squares sense.  

Our framework gives a basis for exploring various modeling 
operations with smooth surfaces. Given the built-in beautification 
mechanism, one can focus on the design of algorithms that 
construct arbitrary polygonal meshes without worrying about 
mesh quality or noise. 

2 ALGORITHMS 
Our basic representation for 3D geometry is a polygonal mesh. In 
response to editing operations, our system first generates an 
irregular polygonal mesh based on the algorithms introduced in 
Teddy [5]. Then we beautify the mesh internally and show the 
smoothly shaded refined mesh to the user. The algorithms have 
parameters that depend on the size of the models. The models are 
scaled to have their largest extent be 1.0. 

2.1 Overview 
The system maintains three polygonal mesh representations for 
each 3D model (Figure 2). The first is the skin mesh, which is the 
primary mesh for representing the target 3D shape. It adjusts itself 
over time through beautification. The second is the skeleton mesh, 
which is the irregular polygonal mesh created directly from the 
input strokes and serves as the reference for guiding the skin mesh 
during beautification. The third is the visible mesh, which is a 
dense, smooth polygonal mesh displayed on the screen as 
feedback to the user. The visible mesh is created from the skin 
mesh by refinement and is rendered using smooth shading. It is 
important to separate the visible mesh and skin mesh for efficient 
computation of the geometry. We describe beautification and 
refinement in detail in the following sections. 

Skeleton mesh Skin mesh

Beautification

User’s edit

Refinement

Visible mesh (smooth shading)Skeleton mesh Skin mesh

Beautification

User’s edit

Refinement

Visible mesh (smooth shading)  
Figure 2: Three mesh representations. 
When the user performs an editing operation, a copy of the skin 

mesh is modified to reflect the new geometry (Figure 3). This new 
geometry (whose triangulation is uneven and contains bumps and 
dents) is used as a new skeleton mesh; a new skin (which starts 
from this new skeleton mesh and gradually beautifies itself) is 
created from it. The user always sees the smooth visible mesh 

a) original mesh b) beautified mesh c) refined mesh d) resulta) original mesh b) beautified mesh c) refined mesh d) result  
Figure 1: Overview of the algorithm. The system (a) constructs 
an uneven polygonal mesh from freeform strokes, (b) 
beautifies the mesh, (c) refines it, and (d) displays the refined 
mesh using smooth shading. 

 



 

obtained through refinement. 
When a modeling task is finished, the system stores the skin 

mesh as output. The user can use the mesh as a lightweight 
polygonal model or as a control mesh for subdivision1, and can 
also store the visible mesh if a dense polygonal mesh is desired. 
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Figure 3: An editing sequence. 
Edges along curves representing sharp ridges and creases are 

labeled as sharp. For example, the edges along the intersection 
loop resulting from a cut are labeled as sharp. We avoid blending 
surface normals of surrounding polygons at sharp edges so that 
smooth shading does not mask the sharp features. The Skin 
algorithm maintains the constraint that the sharp edges remain 
aligned along the curve [11]. 

2.2 Mesh Beautification 
Mesh beautification aims to generate a mesh with near-equilateral 
triangles and a near-uniform vertex distribution while preserving 
some original overall shape, including sharp edges. Our algorithm 
is based on the Skin algorithm [11]. The vertices of our skin mesh 
move as particles around the skeleton, repeatedly adjusting their 
position and connectivity. Each skin vertex is associated with the 
nearest point on the skeleton mesh (called the tracking point). The 
main difference between our representation and that of Skin is that 
while Skin generates a distance surface around the skeleton with a 
certain offset, our beautification process tries to generate a surface 
that approximately interpolates the original skeleton mesh. One 
can obtain similar results simply by setting the offset to zero, but 
in the original Skin algorithm this actually shrinks the mesh 
(Figure 4 top). The amount of shrinkage is small if the skeleton 
mesh is dense, but is still problematic because the shrinkage 
accumulates through repeated edit-beautification cycles. This also 
occurs in other topological fairing techniques [7,16] because they 
insert new vertices on the existing polygonal surface. 

 
Figure 4: Shrinking effect. If Skin particles stay on the 
skeleton mesh, the resulting mesh gets smaller than the 
original (left). To prevent shrinking, the particles must move 
along an interpolative smooth surface (right). 
To address this issue, we move the Skin particles along a 

smooth surface that approximately interpolates the skeleton mesh 
(Figure 4 bottom); we describe this surface in the next section.  

2.2.1. Implicit quadratic surfaces 
The many algorithms for creating interpolative parametric surfaces 
generally exhibit some artifacts due to the lack of global continuity 
[10]. Global optimization techniques can generate beautiful 
surfaces, but they are generally very slow [12]. Variational 
                                                                 

1 The result of subdivision is slightly smaller than the visible mesh. For 
more accurate results, one can optimize the control mesh so that the result 
of subdivision faithfully matches the visible mesh [3]. 

surfaces, represented by radial basis functions, are also globally 
(generically) smooth surfaces [17], but it is difficult to maintain a 
particular topology with them, and they sometimes exhibit 
unintuitive oscillations. Our approach is to compute implicit 
quadratic surfaces that best fit the mesh locally in a least-squares 
sense. This quadratic representation effectively eliminates small 
bumps and dents because of its limited degrees of freedom, and 
the least-squares fitting to neighboring vertices generates an 
aesthetically pleasing smooth surface from a coarse polyhedron. 

Levin’s approach [8] also uses least-squares fitting, but it locally 
computes a parametric surface while we locally fit implicit 
surfaces in 3D space (which makes it possible to fit shapes like 
ellipsoids perfectly). His approach also requires repeatedly solving 
a minimization problem when computing multiple positions on a 
surface. This would be prohibitively expensive when moving the 
skin vertices on the surface. On the other hand, the approach 
avoids the shrinkage problem mentioned above. 

The implicit quadratic surface is computed for each skeleton 
vertex using nearby vertices as fitting targets. The quadratic 
function is formulated as  

f(p) = f(x, y, z) = Ax2+By2+Cz2+Dxy+Eyz+Fzx+Gx+Hy+Iz+J,  
and the surface is implicitly defined as f(p)=0. We use the nearest 
13 vertices around the vertex (including the vertex itself) as targets 
for fitting.2 These are collected by a local search around the target 
vertex, which stops at edges labeled as sharp (Figure 5 left). To 
establish an orientation and to increase robustness, we also include 
extra low-weight constraints in the computation. These are 
obtained by moving each vertex in the direction of its temporary 
normal (the average of the surrounding polygon normals) with 
predefined offsets (±0.05 units). The system tries to fit the surface 
so that f(p) becomes 0 at the target vertices, 1 at outside constraints, 
and –1 at inside constraints (Figure 5 right). Constraints are given 
smaller weights (0.01).  

 

f(x) =  1

f(x) = -1

f(x) =  0

0.05

 
Figure 5: Targets and extra constraints for least-squares fitting. 
Red points indicate target vertices and the green surface 
represents the resulting implicit quadratic surface (left). We use 
13 target vertices and additional in and out constraints (right). 

The objective function for the least-square fitting is formulated as 
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   X = (LWLT)-1LWB 
The actual least-square fitting is done by solving the matrix 

system above, where X denotes the unknown vector of coefficients 
(XT={A,B,C,D,E,F,G,H,I,J}). The weighted overconstrained fitting 
                                                                 

2 In a near-equilateral mesh, they are the vertices of the six triangles 
around the center and those of the six triangles around them. 



 

problem is WLt X = WB; multiplying by L on both sides leads to a 
solvable system. Such a system is solved once per vertex of the 
mesh.  

Once we have the quadratic function for each skeleton vertex, 
we compute the target position for each skin vertex based on its 
tracking point on the skeleton mesh. If the tracking point is at a 
vertex, we simply use the quadratic function associated with the 
vertex. If the tracking point is at an edge, we compute the target 
position using each of the two quadratic functions associated with 
the edge’s end points and linearly interpolate them according to 
the position on the edge. Similarly, the system uses quadratic 
functions associated with the three corners when the tracking point 
is on a triangle. To compute the position on the implicit quadratic 
surface, we apply a simple Newton’s method three times, using the 
tracking point as initial value. This works reasonably well because 
the initial value is already close to the solution. For vertices lying 
on a sharp edge, we compute two implicit quadratic surfaces, and 
then move the vertex to one surface and then to the other in 
sequence using Newton’s method. 
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Quadratic
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Figure 6: Comparison of various interpolations. The original 
mesh is subdivided twice and the vertices are moved to the 
surface defined by each interpolation scheme. Figures are 
rendered using smooth shading.  
Figure 6 demonstrates the advantages of our approach. Local 

parametric interpolation (PN triangles [18]) and interpolative 
subdivision (butterfly subdivision [20]) exhibit small dents near 
the ridge that topological fairing techniques [7,16] cannot hide. 
Interpolation using radial basis functions [17] and our quadratic 
fitting both efficiently recover the smooth surface. An alternative 
solution to the problems arising in this example is to control the 
meshing so that edges are aligned to ridges; then silhouette 
problems are not so evident [19]. But this is difficult to do in 
general, and is in conflict with the behavior of skin. 
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Figure 7: Comparison of various interpolations for the 
original mesh. This figure is generated in the same way as 
Figure 6. Existing schemes interpolate the original mesh 
exactly, which inevitably amplifies the small noise in the 
original mesh.  
The piecewise quadratic surface approach may be unsuitable for 

some applications because of its approximating nature, but it 
works well for our purpose for several reasons. First, it generates a 

smooth surface from an uneven mesh with small bumps and dents; 
other methods are deliberately sensitive to these irregularities 
(Figure 7). Second, it is reasonably fast for interactive operation. 
Third, the implicit representation lets us move particles to the 
desired surface quickly, which can be difficult when using an 
interpolative subdivision scheme [6,9,20]. 

2.2.2. Computation of target edge length 
The skin algorithm requires a target edge length for guiding the 
remeshing process; edges should be shorter at high-curvature 
regions and longer at low-curvature regions. A typical approach to 
computing surface curvature is to use the immediate neighbors of 
each vertex [13,15,16], but this can be unstable when applied to 
uneven meshes. We therefore use the implicit quadratic surface 
described in the previous section to compute the local curvature. 
The curvature for a skeleton vertex p is computed as follows. We 
compute the Hessian matrix Hf(p) – the array of all second partial 
derivatives of f – and then the eigenvalues of  

A =
b1
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b1
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b2
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A =
b1
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tHf(p)b2

b2
tHf(p)b2  

where {b1, b2} is an arbitrary orthonormal basis for the tangent 
plane at p. The principal curvature km is then e1 / ||∇ f(p)|| where 
e1 denotes the larger eigenvalue of A [2, 4]. For vertices along a 
sharp curve, we use the curvature of the curve. Given km, we set 
the target edge length to 0.8/ km . To prevent excessively long or 
short edges, we clamp to a minimum and maximum edge length3. 

This procedure determines the desired target edge length for 
each vertex, but these values may not be appropriate from a more 
global point of view. Figure 8 illustrates the problem. The 
low-curvature point v suggests a long edge length, but the long 
edges at v fail to represent the high curvature region near v. To 
prevent this, we impose the following constraint to the target edge 
length, using L(p) to denote the target edge length at vertex p: “For 
every vertex u whose distance to a vertex v is smaller than L(v), 
L(u) must be equal to or larger than L(v).” To satisfy the constraint, 
the system searches the neigbors U of each vertex v and sets L(v) 
to max (L(u), |v-u|) if L(u) < L(v) and u∈U. We use mesh distance 
as the measure of distance between vertices. 

v
L(v)

u
L(u)

v

L(v)

u

|v-u|

 
Figure 8: Postprocessing for target edge length. 

2.3 Mesh Refinement 
Mesh refinement generates a dense, smooth polygonal mesh from 
the skin mesh as feedback for the user. To do this, we subdivide 
the skin mesh, and then move the vertices to the quadratic surfaces 
fitted to the skin mesh. One can obtain smoother surfaces by 
applying the refinement process repeatedly, but we found that  a 
single refinement generates visually satisfying results as feedback 
during editing operations. 

3 IMPLEMENTATION AND RESULTS 
We are developing a prototype modeling system based on our 
surface representation. The system uses a sketching interface like 
Teddy’s, with some experimental smooth-surface editing 
operations such as filleting, creasing, and smoothly merging 
separate meshes (Figure 9). Filleting smooths the sharp corners 

                                                                 
3 The minimum edge length is set to 0.03 and the maximum to 0.3 in 

the current implementation. In the future we hope to find a way to compute 
these lengths from properties of the overall shape. 



 

resulting from cutting or extrusion. We apply a geometric fairing 
algorithm [13] to the skeleton mesh for smoothing. Creasing puts a 
sharp crease where the user draws a stroke on the object surface. 
This is done by pushing the stroke edges inwards and labeling 
them as sharp [11]. For smooth merging we compute the union of 
the two meshes and put a fillet at the intersection. As in the 
original Teddy system, these operations simply edit the polygonal 
mesh; this is significantly easier to implement than it would be 
with parametric surfaces or implicit surfaces. The accompanying 
video demonstrates the behavior of the system from the user’s 
point of view. 

b) creasea) fillet b) creasea) fillet  
Figure 9: Experimental editing operations.  
The system is implemented in Java™  (JDK1.4) and uses 

directX7 for 3D rendering. It takes a few seconds for skin 
algorithms to converge to a reasonably beautiful mesh after each 
editing operation on a high-end PC (AMD Athlon™ 1.54GHz). 
Figure 10 shows some example 3D models designed using the 
system (they show the visible mesh in our system). The duck’s 
neck is smoothly merged with the head, and the four legs are 
smoothly merged to the octopus body. The palm and the bottom of 
the foot were made by putting fillets at intersections after cutting. 

 

 
Figure 10: 3D models designed in our system. The last one 
was designed by a test user and the others by the author. 

4 LIMITATIONS AND FUTURE WORK 
There are some fundamental limitations in our technique. First, it 
works only for smooth, rounded surfaces. Second, it requires 
several empirically set constants. Third, there is as yet no 
theoretical guarantee of smoothness and robustness. 

Our least-squares fitting finds good quadratic functions in most 
cases, but the resulting surface sometimes has a “discontinuity” in 
the middle of the target fitting area (Figure 11). This is a 
fundamental problem of implicit quadratics and our only solution 
so far is to have more vertices as fitting targets and to use “in” and 
“out” hints. This prevents the problem in almost all cases in our 
experience, but we clearly need a more complete solution.  

The current implementation can represent sharp edges but not 
the tip of a cone, i.e., we handle one-dimensional singularities but 
not zero-dimensional ones. The system automatically rounds off 

sharp tips in our current implementation. Although this might be 
acceptable in most cases, we plan to search for an appropriate 
representation of such points. 

Skeleton mesh

Fitted quadratic function

 
Figure 11: A limitation of quadratic fitting. 
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Abstract 
We introduce a new interface for rapidly creating 3D articulated figure animation, from 2D sketches of the 
character in the desired key frame poses. Since the exact 3D animation corresponding to a set of 2D drawings is 
ambiguous we first reconstruct the possible 3D configurations and then apply a set of constraints and assump-
tions to present the user with the most likely 3D pose. The user can refine this candidate pose by choosing 
among alternate poses proposed by the system. This interface is supported by pose reconstruction and optimiza-
tion methods specifically designed to work with imprecise hand drawn figures. Our system provides a simple, in-
tuitive and fast interface for creating rough animations that leverages our users’ existing ability to draw. The 
resulting key framed sequence can be exported to commercial animation packages for interpolation and addi-
tional refinement. 

 
 
 
1. Introduction 

Traditional animators often begin work by quickly sketch-
ing thumbnails of a character in key poses to capture the 
character's overall motion.1 The characters are drawn as 
stick figures or as simple rectangular and ellipsoidal vol-
umes. Once a coarse version of the motion is on paper, 
they rework and refine the key poses, and fill in the in-
between poses to eventually produce the final animation. 
While this coarse-to-fine motion refinement strategy is also 
used in 3D computer animation,14 the initial step of gener-
ating a coarse set of key poses is far more difficult on a 
computer. 

While existing 3D animation systems provide powerful 
tools, appropriate for precise 3D positioning, they are not 
well suited for rapidly posing articulated figures. In con-
trast, artists can quickly and easily sketch 2D figures and 
professional computer animators often draw key poses on 
paper before building them in the computer.14  

In this paper we present an interface for using these 
sketches to directly infer the 3D pose of an articulated fig-
ure. Since sketches of arbitrary style would be very diffi-
cult to automatically parse, our interface requires the user 
to annotate or overlay their initial sketches with stick fig-

ures. These stick figures require only a few seconds to 
draw, much less time than the initial sketch itself. From the 
simple stick figures, our system automatically extracts the 
2D location of joints and bones and then reconstructs 3D 
poses. These poses are then interpolated to quickly create a 
coarse animated motion that provides a good starting point 
for producing the refined final motion. In addition to al-
lowing experienced 3D animators to quickly create rough 
motions, our interface provides a bridge to the world of 3D 
animation for the millions of artists who are skilled with 
pencil and paper, but lack experience with 3D tools.  

The primary challenge in creating a 3D animation from 
2D images is that many 3D poses may be consistent with a 
given 2D stick figure. As shown in Figure 1, multiple poses 
match the drawing exactly. The imprecise nature of hand 
drawings compounds this difficulty since poses that ap-
proximately match the drawing should be considered as 
well. Since our goal is to aid animators as they initially de-
sign an animation, a completely automated pose recon-
struction system is not appropriate. However, manually 
posing an articulated figure by specifying the location of 
each joint is tedious. Instead, we desire a semi-automated 
method that allows the artist to influence and control the 
resulting animation.  

 



 

 

Davis et al / A Sketching Interface for Articulated Figure Animation 

© The Eurographics Association 2003. 

Our approach is to build an interface that constructs the 
set of poses that exactly match the drawing, automatically 
selects the best guess, and then allows the user to guide the 
system to the desired character pose. Precise reconstruction 
of pose is limited by the imprecision of hand drawings. 
Even skilled artists do not always draw bones with 
geometrically precise foreshortening. Our interface handles 
such imprecision through a process of automated 
refinement and optimization. 

2. Related Work 

The most common interfaces for posing 3D articulated fig-
ures allow users to interactively position the extreme joints 
of a character and use inverse kinematics (IK) to update the 
positions of interior joints.6,26 Yet the power of such inter-
faces can also be a weakness. Novice users can find it par-
ticularly difficult to use such interfaces because every 
parameter is available for continuous manipulation. The 
freedom of motion can overwhelm the ability of users to 
obtain the desired pose. Rather than requiring continuous 
manipulation of 3D widgets as with IK systems, our inter-
face asks users to choose the intended pose from a discrete 
set of possible choices.  

The functionality of our interface complements IK sys-
tems. It acts as an alternate that is appropriate for novice 
users, and which may provide a way for skilled animators 
to quickly rough out motions before refining them with the 
full power of existing IK tools. 

Hecker and Perlin8 developed a sketch based animation 
system using a touch sensitive tablet that is similar in spirit 
to ours. However their system relies completely on the art-
ist to resolve ambiguity, and no provisions for regularizing 
the resulting animation are explored.  

Bregler et al.2 propose a method for capturing the ex-
pressive motion of cartoons and retargeting it onto articu-
lated figures. They require that 3D keyframes 
corresponding to the cartoon motion be manually con-
structed using a traditional animation package. Our method 
complements their work in that we focus on reconstructing 
keyframes, while they provide a method for interpolating 
between them. 

In the domain of static 3D modeling, SKETCH,25 
Teddy,12 and Chateau11 all provide the casual sketch style 
interface we seek. In examining these and other systems we 
have extracted two high-level principles that can be applied 
to many such interfaces: The system should use a set of de-
fault assumptions to automatically resolve ambiguities. 
These assumptions should essentially guess what the user 
desires, without having the user specify every detail pre-
cisely. In addition, the system should provide an interface 
allowing user guidance when the default assumptions are 
wrong. The additional information about the user's intent 
should be used to refine the assumptions and produce a 
new guess from among the possible solutions. 

At the core of an automated solution is some method of 
reconstructing pose from the drawn 2D structure. The 
computer vision community has explored the related prob-
lem of reconstructing 3D poses from a monocular video 
sequence. Several recent surveys provide an introduction to 
the range of methods that have been explored,5,18 and an 
explanation of why this problem is particularly challenging 
for the task of animation is given by Gleicher and Ferrier.7 
Rather than attempting a comprehensive treatment here, we 
discuss broad categories of approaches with a few repre-
sentative samples. 

Model-based tracking and reconstruction methods3,4 
assume that a 3D skeleton is known a priori and that the 
initial 3D pose of this skeleton has been hand-specified so 
that the 3D joints match corresponding 2D image features 
in the first frame. These methods then use fully automatic 
optimization techniques to both track the 2D image fea-
tures and find a set of 3D skeletal joint angles that match 
the 2D image features in the subsequent frames. However, 
these methods often rely on video frame rates and require 
that the user re-initialize the system if large frame-to-frame 
motions cause the tracking to fail. When the frame rate is 
high, these systems provide a useful automation. However, 
when the frame rate is low, reinitialization is common, and 
the problem becomes one of finding a method for quickly 
initializing pose. Since animators often choose to draw 
widely spaced keyframes, our problem is closer to that of 
initializing pose than to that of tracking closely spaced 
frames.  

Another approach to the pose reconstruction problem 
is to use probabilistic techniques10,20 to automatically learn 
the mapping between 2D image features and 3D poses. The 
main drawback of these techniques is that they require 
large sets of training data in which the correspondence be-
tween the 2D image and 3D pose is already known. In our 

Figure 1 Multiple 3D poses can be consistent with a single
2D stick figure. Each foreshortened bone can be pointed
either towards the viewer or away from the viewer. Here
we see three possible reconstructions of the hand drawn 
keyframe on the left. (The viewpoint has been rotated by 90 
degrees about the vertical axis to expose the ambiguity.)
The arrows indicate the joints or bones that have changed.
In the leftmost reconstruction the knee bends inwards and
looks unnatural. We eliminate such reconstructions using
joint-angle constraints. In both the middle and rightmost
reconstructions the raised forearm is within a natural
range, and either pose is equally plausible.  
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case an artist would have to draw each of the training im-
ages and hand-specify the corresponding skeletons before 
applying the method to a new set of stick figures.  

Completely automated solutions, such as those in the 
previous two categories, are attractive to computer scien-
tists. Indeed, they are appropriate and useful in many con-
texts. However, they have an additional limitation: They 
would defeat the artistic intent of our tool. Automated solu-
tions cannot ensure that the correct pose is chosen from 
among the many ambiguous solutions, since the correct 
pose is a matter of artistic intent. A tool designed for art-
ists, such as the one described in this paper, must explicitly 
expose this ambiguity to the artist rather than hide it, 
allowing the user to guide the system interactively to the 
correct solution. Too much control, as in the case of IK 
interfaces, can also be difficult to use. We believe our solu-
tion provides a good balance between these two extremes. 

A final approach for pose reconstruction explicitly ac-
knowledges the existence of multiple solutions and creates 
a large set of all possible poses. This set is then pruned to 
find the desired pose. Lee and Chen16 prune the set using 
joint angle constraints and a strong prior model of walking 
humans. In contrast, Taylor22 relies on the user to select the 
correct pose. Neither the assumption of walking nor com-
pletely manual specification is desirable for our interface. 
However, because this class of methods allows for both 
automation and user guidance it provides one of the critical 
components of our interface.  

Contributions. The primary contribution of this work is a 
method that allows an animator to create rough 3D articu-
lated figure animation almost entirely from 2D sketches, 
with little additional effort. Our approach relies upon a user 
interface that follows the principles of default assumptions 
and user guidance derived from other sketch-based sys-
tems. In addition, we present a novel reconstruction 
method that both allows user guidance and can robustly re-
construct 3D pose from imprecise hand-drawn figures. 

3. User Interface 

An artist creates animations using our system in two stages. 
The artist first annotates a sequence of drawn keyframes 
that represent the desired motion. Since the exact 3D pose 
matching each annotated drawing is ambiguous, the artist 
next guides a semi-automated process to the correct recon-
struction. The details of these interface procedures are 
given in this section. The implementation of supporting al-
gorithms will be described in section 4. 

Draw and annotate keyframes. Many artists prefer to cre-
ate images using pen, paper, and light box, while others 
prefer to create images directly on a digital canvas in a 
computer. We support both styles of work. The artist sim-
ply sketches a sequence of keyframes in any style, and then 
annotates these sketches with the skeletal bone structure of 
the drawing.  

On paper, the stick figures are drawn with thick circu-
lar dots at the joints, and thin lines connecting them as 
shown in Figure 1. These drawings are scanned and then 
automatically parsed by the system to locate joint positions 
and connectivity. When working from a digital canvas, we 
provide a stroke-based interface that allows artists to 
quickly draw the skeletal stick figure directly. New strokes 
automatically snap to previous strokes making it easy for 
the user to ensure that segments properly connect to one 
another. 

After joint positions and connectivity are specified, the 
system automatically labels the stick figure, putting it in 
correspondence with a pre-defined template skeleton.  

A template skeleton is required for 3D reconstruction 
and specifies both connectivity and bone lengths. The artist 
specifies bone lengths for a given character by drawing a 
sketch parallel to the image plane, with no foreshortening. 
For example, humanoid skeletons are typically drawn 
standing straight up with arms fully extended out to the 
sides. As an alternative we have found that bone lengths 
can often be adequately estimated by using the longest ap-
parent length across all the keyframes. The assumption in 
this case is that the bone is fully extended when it is long-
est and therefore parallel to the image plane.  

Although connectivity of the template could theoreti-
cally be extracted from the same sketch that provides bone 
lengths, we have not yet implemented this feature. Instead 
we ask the user to specify this information in a text con-
figuration file. 

Indicate desired 3D pose. The 3D pose of a character is 
not uniquely defined by the annotated keyframe. Given a 
labeled stick figure and the corresponding template skele-
ton we reconstruct all possible 3D poses that match the 

 

Figure 2 Our system provides a suggestive interface that 
allows the user to quickly guide reconstruction of the 
character’s 3D pose. The currently estimated best pose is 
shown above and thumbnails of alternate poses are shown 
below. Clicking on a thumbnail flips the towards/away di-
rection (with respect to the viewer) of a single bone in the 
3D reconstruction. 
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drawing. The set of poses is then culled using joint angle 
constraints. The remaining 3D poses are ranked according 
to a set of heuristics, and the highest ranking pose is set as 
the default.  

Since the default pose may not match the pose intended 
by the animator, our system also suggests a number of al-
ternative poses and allows the animator to pick among 
them. Given a figure with n bones, there are in general 2n 
possible 3D configurations for the figure, as each fore-
shortened bone can point either towards or away from the 
viewer with respect to the image plane. To keep the choices 
manageable, our system suggests just n alternative poses to 
the user, as shown in Figure 2. Each alternative pose is 
chosen so that the direction of a single bone is changed 
with respect to the default pose. The alternatives are dis-
played as thumbnails below the default, and the bone that 
has changed in each thumbnail is drawn in bright green 
with its name underneath. If the change would create a 
pose violating joint constraints, the thumbnail is drawn in 
dark gray. This approach is based on Igarashi and Hughes’s 
suggestive interface 3D modeling system.11 

To change the direction of a bone the user simply 
clicks on the appropriate thumbnail. The pose in that 
thumbnail then becomes the new default pose, and the 

thumbnails are redrawn to reflect all the single-bone 
changes with respect to that new pose. 

A single change may be insufficient to select the de-
sired pose. If additional changes are required the user 
merely continues to click on thumbnails until the correct 
pose is obtained. Although up to n choices could theoreti-
cally be required, we have found that the initial selection is 
often correct and that fewer than two bone direction 
choices are required on average. 

After selecting the intended 3D pose for each key-
frame, the animation can be easily exported to a commer-
cial animation tool for interpolation and further refinement. 

4. Implementation 

The interface presented to the user employs a number of 
behind-the-scenes automations and assumptions. The box 
diagram in Figure 3 presents an overview of the computa-
tional tasks required to implement our interface.  

Extract joint locations. The image-plane locations of 
joints and bones that define a keyframe must be determined 
before 3D reconstruction can take place. Given a scanned 
stick figure representation of the character, joints can be 
located through a sequence of image processing opera-
tions.24 Figure 4(a) shows a stick figure drawing. By itera-
tively applying an image erosion operator to the keyframe 
bones and joints are gradually eliminated. Since joints are 
drawn more thickly, they will remain for a greater number 
of iterations. Figure 4(b) shows the result after several it-
erations of erosion. The process is halted when the number 
of connected regions in the image matches the number of 
joints in the template skeleton. The centroid of each re-
maining connected component is taken as the location of a 
joint.  

In order to determine which joints are connected by 
bones, a linear region connecting each pair of joints in the 
original image is examined. Two examples of this region 
are shown as grey bars in Figure 4(c). If this region con-

 

Hand drawn stick figure

Extract joint locations

Label Features

Reconstruct possible 3D poses

Cull invalid poses

Rank valid poses

User guidance

Optimization 

Interpolation 

Extract model 
parameters

Reconstruct 
individual

3D keyframes

Reconstructed animation 

Relative bone lengths

Template skeleton

Produce 
animation

Figure 3 Overview of system pipeline. Hand-drawn stick
figures are processed by a sequence of stages to produce
the final reconstructed animation. First, 2D model pa-
rameters, joint locations, and connectivity are extracted
from drawings. This information is matched against a
known template skeleton. Then, all possible 3D character
poses are reconstructed from the labeled features and 
skeletal bone lengths. A semi-automated user-guided itera-
tive process specifies the desired pose. The resulting key
poses are optimized and exported for further interpolation
and refinement. 

 

Figure 4 (a) A drawn stick figure before automatic loca-
tion of joints and bones. (b) Image erosion is iteratively 
applied to find the location of joints. (c) Bones are located 
by examining a linear region connecting all possible pairs 
of joints. (d) Regions found to have a single connected 
component are identified as bones. The final joint and 
bone structure is recovered after removing cycles from the 
graph of connected bones. 
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tains a single connected component then the joints are con-
nected, if two or more components are present then the 
joints are separated by white space, and are therefore not 
connected. This process results in a graph of joints and 
their associated connectivity, as shown in Figure 4(d). 
When three or more joints are collinear, a cycle will form 
in the graph, e.g., joints 1, 5, and 8. Since the longest con-
nection is a concatenation of the shorter connections in this 
collinear cycle, we remove the longest component of any 
cycle discovered in the graph. 

Although failure cases exist, such as when joints lie 
atop one another, we have found this procedure to work in 
every instance in which it intuitively seems that it should, 
providing a reliable efficient automation for the process of 
specifying joint locations. 

Label features. The joints in the extracted graph structure 
must be correctly associated with the template skeleton for 
reconstruction to take place. Since we have already deter-
mined the graph structure of our drawn stick figure, the 
joints can be labeled by computing an isomorphic mapping 
between the drawn skeleton and the template skeleton. 
Given two graphs G1 and G2 an isomorphism is a one-to-
one mapping of the vertices that maintains adjacency and 
non-adjacency of the vertices. We use the graph matching 
algorithm of Schmidt and Druffel21 to compute all valid 
isomorphisms between the two skeletons.  

Unfortunately, if the connectivity structure of the 
graphs contains symmetries there will be more than one 
isomorphic mapping between the drawn skeleton and the 
template skeleton. To resolve such ambiguities the system 
chooses the labeling that would result in joint locations that 
most closely match the previous frame. If no previous 
frame is available we label the joints assuming the skeleton 
is facing forward. If the assumptions are incorrect the user 
can quickly cycle through the valid labelings for the skele-
ton by right-clicking near an incorrectly labeled joint. We 
have found that this combination of automation and user 
guidance allows a correctly labeled skeleton to be specified 
quickly. 

Reconstruct possible 3D poses. A set of all possible 3D 
poses can be constructed given the 2D image location of 
each skeletal joint and template bone lengths. We follow 
the reconstruction approach described by both Taylor22 and 
Lee and Chen.16 

Assume a scaled orthographic camera model, which re-
lates image coordinates q=(u,v) to world coordinates 
p=(X,Y,Z) through the following equation: 

1 0 0

0 1 0
s

 
=  

 
q p  ( 1 ) 

Since the X and Y world coordinates can be deter-
mined directly from the image plane observations, all that 
remains is to determine the Z coordinate of each joint.  

Suppose that a bone segment is defined by two image 
points q1 and q2. We can compute the relative distance in Z 
(dZ) between p1 and p2 using the following equation:  

( )22 2
1 2 /dZ l s= ± − −q q  ( 2 ) 

where the length of the bone is given by l, and s is the scale 
parameter relating image and world coordinates. If all key-
frames, and the figure specifying bone length, were drawn 
at the same scale, then the value of s will be 1.0. If key-
frames have been drawn at different scales then the correct 
value of s changes to reflect the nature of the drawings. We 
allow s to either be set by the user or determined automati-
cally using the heuristic given by Taylor.22 

Equation (2) provides two possible answers for dZ, 
representing the pose ambiguity that has been previously 
discussed. We retain both answers, allowing all possible 
poses to be computed. 

The above process is repeated, following the skeletal 
graph structure, until the possible coordinate values of all 
joints have been enumerated.  

Intuitively, if a bone is drawn short in a particular key-
frame, the bone is foreshortened; thus, the value of dZ will 
be relatively large. If a bone is drawn long, then the bone is 
relatively parallel to the image plane, and the value of dZ 
will be small. Hand-drawn animations present an interest-
ing challenge to this intuition. Since dZ should never be 
complex, equation (2) provides an upper bound for the 
drawn length of a bone: 

1 2 s l− ≤ ⋅q q  ( 3 ) 

That is, a bone segment that is drawn too long has no 
physical meaning. However, cartoon figures are impre-
cisely drawn at best, and often actively subjected to squash 
and stretch. The previous algorithms did not deal with such 
imprecision, often adjusting s to force a physically valid in-
terpretation. We take an alternate approach more in line 
with the intent of the animator. If a particular bone is illus-
trated stretched beyond meaning, we simply allow the 
length of the bone, l, to change in the corresponding frame 
of the 3D reconstruction.  

Cull invalid poses. The reconstruction method described 
in the previous section produces the set of all possible 3D 
poses that match the input drawing with the template skele-
ton. It is critical that this set be pruned to the smaller set of 
poses that might reasonably match the artist’s intention. As 
shown in the leftmost reconstruction of Figure 1 where the 
knee bends inwards, some of these poses are impossible. 
We use default assumptions in the form of joint angle con-
straints to identify and cull such invalid poses.  

A number of methods for applying joint angle con-
straints have been proposed.13,23 We choose to follow the 
method of Lee and Chen16 and derive our angle limits from 
the biomechanical measurements of Houy.9  
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The simple template used in this work has 11 bones 
whose orientation are unknown, which amounts to 211, or 
over 2000, possible poses. After joint angle culling, we 
find that approximately 5% remain, equivalent to about 6 
bones whose orientations remain ambiguous. 

Rank valid poses. After culling we rank the remaining 
poses using a set of  preferences. These preferences are 
prior assumptions about the naturalness of a given pose. 
We currently use three types of preferences: preferred joint 
angles, balance, and frame-to-frame coherence. Preference 
values are normalized to lie between 0.0 and 1.0. The rank 
of a given pose is computed as the product of individual 
preference values, aggregated over all joints and preference 
types. 

Even within the range of valid joint angles, some an-
gles are more natural than others. Based on this idea, we 
weight joint angles that fall within the valid range so that 
more natural poses are given a higher preference value. 
Each joint angle constraint is augmented so that it also 
specifies a preferred angle. In practice, we simply set this 
angle to the midpoint of the valid range. We compute the 
preference as inversely related to the angular distance be-
tween the projected bone and the preferred angle.  

For the human skeleton we also compute a balance 
preference. When humans are upright, the spine is usually 
oriented so that the head is in front of the pelvis. When the 
head is behind the pelvis the spine looks hyper-extended 
and the body seems unbalanced. Therefore, we compute 
the angle between the spine and the world-space y-axis and 
if the head is behind the pelvis we reduce its preference 
value based on the angular distance from vertical. 

Since the drawn stick figures represent key poses of a 
figure moving over time, it is expected that some coherence 
exists between neighboring frames. Assuming that the user 
has chosen the desired pose for the figure in frame t, the 
angular difference between bone directions in frame t and 
bone directions for each candidate pose in frame t+1 is 
computed. Candidate poses that are the most similar to the 
previous frame’s reconstruction will receive the highest 
preference from this metric. 

Given the ranked poses, the best one is presented to the 
user, who then guides the system towards the correct pose 
using the interface presented in the previous section. We 
have found our relatively simple preferences sufficient to 
rank the poses, resulting in an average of fewer than two 
user-specified bone reorientations to obtain the desired 
pose.  Although it may be possible to further  improve the 
quality of our pose ranking, we believe that automated  
ranking will never completely remove the fundamental ne-
cessity of user guidance, since the correct pose is a matter 
of artistic intent.  

Optimization. Hand-drawn figures often exhibit distor-
tions that create difficulties for reconstruction methods that 
rely on fixed bone lengths. Such imprecision appears as 
undesirable sliding and wobble in the reconstructed anima-

tions. Using only the reconstruction method presented ear-
lier, the resulting animations are of relatively poor quality. 
Thus, after the user has specified the desired pose for each 
keyframe, an optimization process is invoked to remove 
these undesirable effects. By allowing for small variations 
in the user-specified joint positions and bone lengths, a 
smoother, more natural looking animation can be created.  

Our notation is as follows. The final 3D location of a 
joint is pjf=(Xjf, Yjf, Zjf), where j indexes joints, and f in-
dexes frame number. The drawn 2D location of a joint is 
qjf=(ujf, vjf). The length of a bone is given by lb. The opti-
mization vector is given as p=[p11 p12 … pjf]. Our optimi-
zation objective is posed as a weighted sum of the terms 
described below. 

Since we would like to maintain fidelity to the original 
drawings, our first objective term penalizes joints that 
move away from their drawn location on the XY image 
plane:  

2
1 0 0

0 1 0
s
 

−  
 

jf jfq p   ( 4 ) 

It is important to note that joints are not constrained to 
lie exactly at the location in which they were drawn, as this 
would unnecessarily restrict the final animation. 

The goal of optimization is to smooth out undesirable 
motions caused by imprecision. In order to achieve this 
goal, a second regularization objective is included to en-
force temporal coherence between neighboring keyframes: 

2
( 1)jf j fZ Z +−  ( 5 ) 

Undesirable motions are manifested primarily on the Z-
axis, perpendicular to the 2D drawing. For this reason, we 
chose to penalize motion along this axis, so that each joint 
is encouraged to have more similar values across time.  

The 3D reconstruction process does not necessarily 
maintain adjacencies that were intended by the artist. For 
example, joints that were drawn in nearly the same 2D po-
sition in neighboring keyframes were probably intended to 
remain static along the Z-axis as well. This commonly oc-
curs with feet, which should remain stationary on the floor. 
Similarly, distinct joints, j and k, that are drawn as exactly 
coincident in an individual frame were probably also in-
tended to be coincident in 3D. We add constraint terms to 
enforce both of these conditions: 
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The user-selected key poses can be thought of as a lo-
cal minimum for the optimization function. Each of the 
many ambiguous poses that were rejected by the artist 
represents another minimum within the functional space. 
We would like to ensure that our optimization procedure 
maintains the user’s intention while improving the smooth-
ness of the animation. We therefore penalize joint positions  
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 Weight 
Eqn 4 200 
Eqn 5 1 
Eqn 6 25 
Eqn 7 200 
Eqn 8 slider 

Table 1 Weights for each optimization objective. 

 

that would reverse the desired orientation of bones—i.e., 
the sign of dZ from equation ( 2 ) should not be changed. 
Letting ( , , )jf jf jfX Y Z′ ′ ′ ′=jfp  indicate the initial joint posi-

tion, we have: 
2

( )
max 0,( ) kf jf

jf kf
kf jf

Z Z
Z Z

Z Z

 ′ ′−
 −
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( 7 ) 

An artistic drawing could either be very realistic and 
precise, or contain unintentional distortions, such as squash 
and stretch. In the former case the optimization should pre-
serve the length of bones, interpreting any changes in ap-
parent bone length as foreshortening effects. In the latter 
case, the artistic intent is that bone length should be only 
loosely preserved. We provide a slider with which the artist 
can indicate his or her intent. This in turn specifies the 
weight by which changes in bone length are penalized by 
the following term: 

( )2

bl − −jf kfp p  ( 8 ) 

The solution to the above objectives is given by equa-
tion 9, where Ei is an individual objective, and wi is the 
weight of that objective. We use a publicly available pack-
age to perform this optimization, using finite differences to 
supply gradients.15 

arg min Ei i
i

w∑
p

 
( 9 ) 

While several terms contribute to the optimization ob-
jective, we have found that it is not necessary to provide 
user control over all weights. Our interface contains a sin-
gle slider, to control “squashiness,” which indicates the ar-
tistic precision with which bone lengths were illustrated. 
We find that this slider provides the necessary level of ar-
tistic control, while not overwhelming the user with the al-
gorithm’s full complexity. The values of other weights are 
given in Table 1.  

Following optimization, the animation can be easily 
exported to a commercial animation package for interpola-
tion and further refinement. 

5. Results 

We have created a number of animations using our system. 
Figure 6 shows drawn keyframes as well as the interpolated 
3D motion for a few of these. The included video also 
shows all of the examples. The keyframes were drawn by 
several artists who ranged in experience from novice to 
professional. The relative timing between keyframes was 

adjusted as a post-process in Maya, since keyframes were 
not drawn with uniform time steps. Note that keyframes are 
shown side by side in this figure for clarity. In practice, the 
artist draws these frames atop one another using a lightbox, 
so that the image plane spatial relationship of the figures is 
preserved.   

Table 2 gives statistics on each animation. Note in par-
ticular that it requires an average of fewer than 2 choices 
per keyframe for the artist to specify the desired 3D pose. 
Although we did not explicitly record the user time re-
quired to create each animation, it ranged from 5-15 min-
utes. Of this, a few seconds per keyframe was required to 
annotate each drawing with a stick figure, and 1-2 minutes 
per keyframe was required to browse through alternatives 
and select the intended pose. On average we found that it 
took longer to draw the initial keyframe sketches on paper 
than to reconstruct 3D poses using our interface.  

 
 No. of 

frames 
User 

choices 
Box 4 3 

Throw 7 8 
Karate 5 4 

Shotput 10 3 
Golf 6 14 
Skip 7 9 
Run 6 6 

Table 2 User interaction statistics for  each sequence. 

Animators typically draw such that all intended mo-
tions are visible, and false attachments are avoided. This 
fact was encoded as the optimization constraint described 
in equation 6. Figure 5 shows the visual effects of assum-
ing that joints that appear to be coincident in either space 
or time actually are coincident. The golfer’s feet stay 
planted on the ground, and the hands come together to grip 
the club.  

The included video shows examples of animations created 
both using reconstruction alone and with our optimization 
stage. Note that optimization dramatically improves the re-
sults. The video examples of reduced wobble, as well as 
the improved adjacency of Figure 5, are intended to show 
the success of our interface; however, they point towards 
its limitations as well. A relatively small amount of impre-
cision will result in a small amount of wobble, or a small 
deviation in the adjacency of the golfer’s hands. This is 
corrected in our optimization stage by regularizing or 
smoothing the motion using constraints. As the imprecision 
in drawing grows, so will these distortions. The user will 
eventually be left to choose between too much wobble, and 
too much smoothing.  

The ‘skip’ example in the last row of Figure 6 shows 
the importance of our squashiness slider. Although at first 
glance this example looks precise, the bone lengths are in 
fact subjected to a great deal of squash and stretch. For ex-
ample, the length of the upper leg shortens by nearly half 
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during the ground impact, although no foreshortening ef-
fect is intended. Since the bone lengths have been drawn 
more imprecisely than in the other examples, a higher 
squashiness setting is chosen by the artist. This setting al-
lows for greater variation in the 3D bone length, and thus 
greater regularization, during optimization.  

6. Conclusions and Future Work 

We have presented a novel interface that leverages the ex-
isting drawing skill of artists to construct rough animated 
sequences. By coupling a user-guided pose reconstruction 
algorithm with optimization, we are able to create anima-
tions despite the fact that the source drawings may have 
unintentional imprecision and distortion. Although the in-
dividual algorithms that make this possible are interesting 
and useful in and of themselves, the primary contribution 
of this work is that it allows an animator to create rough 3D 
animation almost entirely from 2D sketches, with little ad-
ditional effort. 

Despite the success of this interface, we feel that future 
enhancement would be beneficial. The method relies on a 
calculation of bone foreshortening to produce 3D pose. In-
herent in this is an assumption that bones remain rigid and 
of approximately constant length. Consequently we ask art-
ists to try to draw realistically. Alternate methods will be 
required to create animations from drawings that contain 
the truly extreme twisting, bending, and stretching that art-
ists sometimes prefer. 

This work originated due to frustration with existing IK 
posing interfaces, and we believe it represents a substantial 
improvement in ease of use for some users. Nevertheless it 
would be desirable to more carefully and objectively com-
pare user performance on posing tasks. 

Finally, we note that the system presented here is de-
signed to construct rough animated sequences. Several re-
cent animation systems including those by Liu and 
Popović17 and Pullen and Bregler19 were designed to start 
with rough animations as input, in order to derive more de-
tailed or expressive animations. It would be interesting to 
join these methods, producing a complete path from sketch 
interface to final detailed animation. 
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Figure 6 Drawn keyframes are shown together with a representation of the final 3D animation. Several rows also show 
skeletal annotation. 
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Figure 5 (Left) Two keyframes from a golfing sequence are shown from the original drawn viewpoint. Note that the feet re-
main fixed and the hands come together. (Middle) The reconstructed 3D poses are shown from a perpendicular view, looking 
down the x-axis. Note that the feet do not remain fixed and the hands are not together. (Right) After optimization, both of the 
coincidence objectives have been satisfied. 

 

 

Figure 6 Drawn keyframes are shown with a representation of the final 3D animation. Several rows also show skeletal annotation. 
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Figure 1: (a) Motion lines as used in a drawing (b) 2D motion sketch and the resulting animation (step, leap, front-flip, shuffle, hop) (c) 3D
motion sketch and resulting animation (walk, flip through window, walk, leap onto building, walk, leap off building)

Abstract

In this paper we present a novel system for sketching the motion
of a character. The process begins by sketching a character to be
animated. An animated motion is then created for the character by
drawing a continuous sequence of lines, arcs, and loops. These are
parsed and mapped to a parameterized set of output motions that
further reflect the location and timing of the input sketch. The cur-
rent system supports a repertoire of 18 different types of motions in
2D and a subset of these in 3D. The system is unique in its use of a
cursive motion specification, its ability to allow for fast experimen-
tation, and its ease of use for non-experts.

Keywords: Animation, Sketching, Gestural Interfaces, Computer
Puppetry

1 Introduction

Animation has existed as an artform for approximately 80 years
and the technology used to create animations has evolved tremen-
dously. Unfortunately, animation tools usable by non-experts re-
main in short supply. In this paper we develop a cursive motion
notation that can be used to “draw” motions. We present an interac-
tive animation system that interprets the notation as it is drawn. The
system is simple enough to be usable by novice animators, includ-
ing children. With an appropriate tailoring of the motion vocabu-
lary, we expect that motion sketching systems may find applications
in film storyboarding, theatre staging, choreography for dance and
sports, and interactive games.

∗email: mthorne,dburke,van@cs.ubc.ca

1.1 Overview

What does it mean to “sketch a motion” for a character? We pro-
pose one possible answer to this question, inspired in part by mo-
tion illustration techniques, such as the use of loops to indicate a
tumbling motion as shown in Figure 1(a).

To begin using our system, the user draws the character they wish
to animate. This is accomplished by drawing the body, head, arms,
legs, and feet, from which a character armature is inferred. Anima-
tions can then be created by drawing motion sketches, which are
interpreted on the fly to yield interactive animated motions. Fig-
ures 1(b) shows an example 2D motion sketch and the resulting an-
imation. A subset of the motion sketch gestures can also be drawn
on top of a 3D image to obtain a 3D character animation, as illus-
trated in Figure 1(c). Significantly, our gestures are highly visual
in nature and thus serve both as a means of motion control and as a
meaningful visual record (notation) of the motion.

A block diagram of the system is given in Figure 2. The path
from sketching a motion to producing the motion itself is imple-
mented as a pipeline in order to allow for animated motion to be
produced while the motion sketch is still ongoing. The drawn
sketch undergoes a multi-stage segmentation process to extract rec-
ognizable motion primitives from the input motion sketch. Having
identified one or more motions, multiple parameters are extracted
from the corresponding portion of sketch, including the start and
end points, timing information, and possibly several other features.
These parameters are passed on to an animation back-end, which in
the current system is based on parameterized keyframe motions.

1.2 Contributions

The primary contributions of this paper are as follows:

• We present the design of a set of continuous (cursive) gestures
for sketching a significant variety of motions, their locations,
and their timing. These gestures are implemented in a sketch-
based animation system and are demonstrated on a variety of
display devices.

• We present a system that allows novices to sketch a 2D char-
acter and then draw a variety of animated motion for it, all
within tens of seconds.

1
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Figure 2: The sketching system.

2 Previous Work

The use of sketching in computer graphics dates back to the
seminal SketchPad system[Sutherland 1963]. More recently, the
sketch-based modeling systems SKETCH[Zeleznik et al. 1996] and
Teddy[Igarashi et al. 1999] are inspired examples of how sketches
or drawn gestures can provide a powerful interface for fast geo-
metric modeling. The notion of “sketching a motion” is less well-
defined than that of sketching an object. Nevertheless, a number of
approaches have been explored. Early work explores an animation-
by-example approach for a single point and fits splines to an in-
put stream of 3D points in order to produce a smoothed version of
the acted trajectory[Balaguer and Gobbetti 1995]. More recently,
a considerably more sophisticated type of animation-by-example
approach has been proposed[Popovic’ et al. 2003], wherein the tra-
jectory (position and orientation over time) of a rigid body can be
specified by example using a 3D tracker and then “cleaned up” au-
tomatically to synthesize the physically-based motion that best fits
the sketched motion. The system we propose is significantly differ-
ent in that we focus on how 2D stylus input can be used to drive
stylized 2D and 3D character motion.

Walking motions can be easily created by drawing a desired path
on the ground plane for the character to follow, with the drawing
also possibly governing the walking or running speed. Given the
path and path timing, the character motion can be implemented in
many different ways[Arikan and Forsyth 2002; Girard 1987; Kovar
et al. 2002; Park et al. 2002; van de Panne 1997]. Our system
supports many types of motion other than walking and allows for
control over additional motion parameters.

Video game interfaces are perhaps one of the most readily-
accessible forms of animation; a joystick and buttons provide the
ability to control the direction and speed of the character as well
as other sets of context-dependent predefined motions. However,
game interfaces cannot fully replicate the control offered by a cur-
sive device such as a stylus – consider for example the difficult task
of cursively writing one’s name with a joystick. Our system ex-
ploits a user’s skills at cursive drawing and offers a greater degree
of control over motions than many game interfaces. In the case
of walking, for example, we offer simultaneous interactive control
over step length, step height, step style, and step time.

A number of character animation systems use some form of act-
ing as their interface. The spectrum of techniques here includes
full-body acting, as used in motion capture or performance anima-
tion; the use of body silhouettes[Lee et al. 2002], various forms of
computer puppetry[Sturman 1998; Oore et al. 2002; Laszlo et al.
2000], and systems that can infer a desired mapping from an ac-
tor or animator to a character using a two-pass imitate-then-modify
process[Dontcheva et al. 2003]. The 2D stylus-based input of our

system differs significantly from the above systems in that it aims
to exploit drawing skills and not acting skills. The drawn input
of our system also serves as a static visual record of the motion,
something that is not available for acting-based interfaces. Labano-
tation[Hutchinson and Balanchine 1987] is an example of a written
motion notation system for dance choreography, which can be au-
tomatically translated into 3D human figure animations[Wilke et al.
2003]. We aim for a written notation system that is much easier to
learn and use, foregoing much of the detailed control that a general
motion notation system can provide.

More distantly-related previous work looks at creating anima-
tions from sequentially-drawn sketches of a character, somewhat
like traditionally-drawn keyframes. With appropriate constraints, a
3D character pose can be inferred for each hand-drawn frame[Davis
et al. 2003].

3 Character Sketching

The two core components of our animation system are a charac-
ter sketching tool and a motion sketching tool, as shown in Fig-
ure 2. We first discuss the character sketching tool, which consists
of sketching the skeletal links comprising the basic character shape,
followed by the optional addition of drawn annotations.

3.1 Sketching the Skeleton

A character sketch begins with drawing the links that will represent
the character’s articulations and basic shape. The system assumes
that this is sketched in a side view using a total of 7 links, one for
each of the head, torso, upper arm, lower arm, upper leg, lower leg,
and foot. Each link is drawn using one continuous stroke, and the
links can be drawn in any order. Links may or may not intersect
when they are drawn and they may or may not contain some sur-
face detail, such as adding in a sketched thumb, pot-belly, or nose.
Figure 3(a) shows an example sketch.

Figure 3: The process of inferring the skeleton from the sketch.
(a) The seven sketched links. (b) Computed major and minor axes.
(c) Oriented bounding boxes. (d) Computed joint locations. (e)
Computed skeleton.

Once skeletal links have been drawn, the system automatically
infers the locations of the joints, labels the links, and creates the
second arm and leg. Recognizing the human form is addressed in
numerous ways in the computer vision literature, but we are solving
a simpler problem, one that benefits from additional constraints.
Individual links do not need to be identified – each recorded stroke
is already known to be a link. Also, the expected connectivity of
the links is known in advance. Users can sketch the character in a
wide range of initial configurations, as shown in Figure 5.

The pseudocode for inferring the skeletal structure from the
sketched links is given in Figure 4. Once all seven links have
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been sketched, the principal axes of each link are computed as
shown in Figure 3(b). Each sketched link outline is treated as a
series of n points Pi, and the principal axes are computed by fit-
ting the points to an anisotropic Gaussian distribution. If M is
the mean of the points, the major and minor axes of the box are
chosen as the unit-length eigenvectors U j of the covariance matrix
Σ = 1

n ∑i(Pi −M)(Pi −M)′. Σ is tridiagonal in 2D, so the QL al-
gorithm with implicit shifting can be used to solve the eigenprob-
lem[Press et al. 1992]. Next, the points are projected onto the axes
to find the intervals of projection [a j,b j] along those axes, in other
words a j = mini|U j · (Pi −M)| and b j = maxi|U j · (Pi −M)|. Fi-
nally, an oriented bounding box is computed from the intervals of
projection, centered at Cbox = M +∑ j

a j+b j
2 U j , where a j+b j

2 are the
extents along each axis.

1. Wait for seven links to be sketched
2. Fit oriented bounding boxes to all links
3. For each link i
4. For each major-axis end-point on link i, P1

i and P2
i :

5. Search all links j 6= i, for the closest point, Pj
6. If links i and j are not aligned
7. create joint Jn at intersection of major axes of i and j
8. else
9. create joint Jn at midpoint of PiPj
10. Identify and remove all duplicate joints
11. Identify links based on connectivity
12. Create duplicate arm and leg segments.

Figure 4: Algorithm for inferring the skeleton from the sketch.

The next step is to determine the connectivity of the links and the
locations of the resulting joints. For this, a closest link is defined
for each major-axis endpoint, measured in terms of the minimal
Euclidean distance from the major-axis endpoint to any point on
another link. Once link j has been identified as being the closest
link for a major-axis endpoint on link i, a joint is created at the
geometric intersection of the extensions of the major axes of links
i and j. However, this will not produce a sensible joint location if
links i and j are nearly parallel. If the major axes are within 20◦
of being parallel, the mid-point of the line segment connecting the
major axis end-points of i and j is used. This joint-creation process
will result the creation of duplicate joints, such as a second ’ankle’
joint being created when processing the major-axis endpoint at the
toe of the foot. These duplicates are trivially removed.

Once the joints and their associated links are known, we resort
to the expected topology of a human figure in order to label all
the links as being the head, the torso, etc. The torso is identified
as being the only link having 3 associated joints. The head link
is identified as being attached to the torso and having no further
joints. The arms and the legs are similarly identified by their unique
connectivity. If the identification process fails, this is reported to the
user. The bones for the underlying skeleton are finally constructed
by connecting the appropriate joints with straight line segments.
The sketched links are then redefined in the local coordinate frame
of the resulting bones. The default reference pose used to start all
animations is given by a standing posture that has all bones being
vertical and the feet being horizontal. Figure 5 is illustrative of the
variety of skeleton sketches that the system can recognize.

There are two additional joints internal to the torso that are not
shown in the figures. They represent bending at the waist and the
upper back, and are added to facilitate tucking during the forward
and backwards somersault motions. The joints are located at fixed
fractions along the torso bone. A joint is also automatically added
at the ball of the foot in a similar fashion.

The current algorithm used for inferring the skeleton will fail if

Figure 5: A variety of skeleton sketches and their inferred skeleton.
D: the original drawing; S: inferred joints and the fitted skeleton;
R: character in the reference pose; A: drawn annotations; P: an
animated pose.

the arms are sketched in a downwards pose parallel to the torso, or
if the character is sketched in a pose such that the hands are located
close to the head, knees, or feet. These types of malformed sketches
or erroneous link assignments could be addressed with some addi-
tional sophistication in the skeleton recognition algorithm. In prac-
tise the algorithm is quite robust in its current form. The system
does not currently allow for the user to refine the skeleton after it is
constructed by the system.

3.2 Adding Annotations

The system allows the user to add annotations which serve to dec-
orate the links of the character. Thus, one can sketch additional
features such as eyes, ears, hands, hair, a hat, a nose, and shoes. All
annotations automatically become associated with the closest link.
In our current version, this will result in annotations that break, such
as for a sleeve that crosses multiple links. There are a number of
known skinning techniques for addressing this problem, although
these have not yet been implemented in the current system.

4 Motion Sketching

Sketching a motion for a character requires a degree of abstraction
not present when sketching geometry. The motion sketch needs to
convey a significant amount of information: (1) the type of motion;
(2) the spatial location and extent of the motion; and (3) the timing
of the motion. In this section we describe the design of the gestures
for the 2D system, how the gestures are segmented and recognized,
how the output animation is generated, and, lastly, how the 3D sys-
tem works.

4.1 A Cursive Alphabet for Character Motions

Our gesture vocabulary was designed with the following principles
in mind: (1) The motion gestures should be cursive, thus allowing
the specification of one motion to smoothly flow into the specifi-
cation of the next motion; (2) Given the limited number of very-
easy-to-draw gestures that are available, the effort to draw the ges-
ture should reflect the effort required to produce the corresponding
motion. Thus, a regular walk should be easier to draw than a stiff-
legged walk, which itself is easier to draw than a one-legged hop.
(3) The gesture should be reminiscent of the corresponding motion,
to the extent this is possible; (4) Gestures related to locomotion
should allow for forwards and backwards motions; (5) Similar mo-
tions should have similar gestures; (6) Gestures should allow for
the generation of stylistic variations where possible.
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Guided by these principles, we developed the gesture vocabulary
shown in Figure 6. These 18 motions gestures (31 when allowing
for backwards-traveling variants) all allow for control over the tim-
ing of the motion by having the animated motions directly reflect
the time taken to draw the gestures. They also allow for control
over the start and end points of the motions, and all but two of the
motions provide control over a height parameter, either the height
of the swing foot during a step or the height of the body center of
mass during a jump.

Figure 6: Gesture vocabulary.

The drawn gestures do not typically act as a direct representation
of the motion of any particular part of the body. For example, the
drawn arcs used for walking and its variations are evocative of the
path taken by the swing foot, but are not an accurate representation
of this motion. The path of the real swing foot begins from the
previous foot-fall location, not the current one. Similarly, the arc
drawn to represent a jump represents the location of the feet at the
start and end of the arc, while the middle of the arc represents an
approximate trajectory for the center of mass.

Because walks and jumps are both specified using arcs, they are
distinguished by the height of the sketched arc. A “jump line” is

overlaid onto the scene during motion sketching and represents the
maximum arc height that is treated as a walking step. Arcs that
pass over this line are treated as jumps or leaps. Additional de-
tails regarding the parsing and recognition of the input gestures are
provided in the next section.

For motions such as a jump with a twist, it is difficult to find a
2D drawing gesture that is evocative of what is fundamentally a 3D
motion. Our system recognizes a class of more abstract gestures in
order to support such motions. The four motions appearing at the
bottom of Figure 6 shows this class of gestures being employed to
control various gymnastic motions.

4.2 Sketch Segmentation

The input sketch is processed in multiple stages. The first tok-
enization stage consists of taking a stream of input points from the
stylus and producing a corresponding list of tokens. Figure 7(top)
shows the six types of tokens that are output by this first stage and
Figure 7(middle) shows an example input sketch which has been
labelled using these tokens. Once the sketch input has been to-
kenized, a parsing stage is used to identify the set of admissable
gestures, as shown in Figure 7(bottom). Lastly, the motion identifi-
cation stage identifies the specific motions to be generated. Seg-
menting and recognizing gestures based on a regular expression
grammar has a number of precedents, a good example being the
framework set out in [Hammond and Davis 2003]. We now de-
scribe the segmentation steps in additional detail.

Figure 7: Segmenting the motion sketch input.

The tokenization stage processes a sequence of time-stamped in-
put points in six steps, as shown in Figure 8. In step one, the input
points are segmented based upon changes in the vertical direction
of motion (thus discerning between rising and descending strokes).
Step two applies a simple corner detection algorithm[Chetverikov
and Szab 1999]. However, corners may be falsely identified for
quickly drawn loops and arcs on slow input devices, resulting in
curves being represented by only a few sparsely-spaced points. If
the stylus velocity as measured by finite differences at a corner point
exceeds 35% of the maximum stylus velocity, then the point is no
longer regarded as a corner point. Step four classifies segments as
being either straight or curved. A straight segment is defined as
having r < 1.2, where r is the ratio of the arc length to the geomet-
ric distance between segment endpoints. Also in this step, colin-
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ear neighboring straight segments are merged. Step five adds seg-
mentation points at locations where the stylus has paused, which
are important for motions such as shuffles and skates. Lastly, step
six assigns one of six tokens to each resulting segment based upon
whether the segment is straight or curved, and, if straight, based
upon the absolute angle of the line segments. Straight lines that
make an angle of less than 30 degrees with the vertical or horizon-
tal are assigned tokens g and h, respectively; otherwise they are
assigned the token e or f , whichever is closer in terms of angle.

Figure 8: Tokenization consists of six steps: (1) Rough segmenta-
tion based on vertical direction of motion; (2) Corner detection; (3)
Corner post-processing; (4) Merge colinear segments; (5) Identify
pauses; (6) Token assignment.

Given an input sketch that has been labelled with tokens, the
parsing stage groups tokens together into the set of admissable ges-
tures shown in Figure 7(bottom). This is accomplished by matching
the regular expressions corresponding to each gesture type. Lastly,
the motion identification stage determines the specific motion to be
executed. In some cases, the identified gestures will map directly to
particular motions. For example, the gesture for a one-legged hop
has a unique interpretation. In other cases, additional criteria are
examined in order to disambiguate the desired motion.

In order to further distinguish between a walking step and a
jump, the maximum height of the arc is used. An arc of height
h > hwalk is determined to be a jump or leap; all others are inter-
preted as some type of walking step. In our current implementation,
a horizontal line is drawn at y = hwalk, thereby providing the ani-
mator with an easy point of reference while sketching.

An additional criteria is employed to avoid impossibly-large
walking steps. Any arc of length greater than a maximum step
length dmaxstep is interpreted as a jump rather than a step. This
avoids the ill-posed inverse-kinematics problems that would oth-
erwise arise in performing such steps. Similarly, if an arc passes
above y = hwalk but does not allow sufficient ground clearance for
the jump to be completed due to the character’s geometry, a vertical
offset is computed for the apex, allowing for a feasible jump.

Tip-toe and stomp walking steps are distinguished from regu-
lar walking steps by examining the relative position of the apex
of the sketched arc with respect to its endpoints, as measured by
α = (xapex − xstart)/(xend − xstart). A tip-toe step is identified for
α < 0.35 and stomp-step for α > 0.65. At present, the system
performs a discrete classification of each step as being a regular,
tip-toe, or stomp step. A final ambiguity exists between shuffle
steps and a slides, which are both represented by horizontal line
segments. A shuffle step is assumed if the length of the step is less
than dmaxstep and otherwise becomes a slide.

If during a sketch the pen remains stationary for more than 0.5s,
the character is brought to a standing posture. A standing long jump

occurs as a result of a sketched jump arc whenever both feet are
together. If this is not the case, such as when a walking step is
followed by a jump arc, the jump is classified as a leap.

Because the user’s sketch is always ahead of the motion seg-
mentation and synthesis, successfully segmented motion actions are
stored in a queue for processing. It is possible that the motion queue
is exhausted while the next gesture is still in the process of being
drawn, in which case a pause is introduced into the output motion.
This pause exists only as an artifact during the original sketching
process and disappears during a motion replay.

Animators can also sketch motions directly in an environment
with other animated objects. This allows for motions that need to
be coordinated with existing animated objects, such as executing
a leap over a falling character or jumping out of the way of a car.
Because we use the time at which a motion sketch was drawn as
the reference timing for the motion, coordination with existing ani-
mated motion is easily accomodated. The character animation pro-
duced during an initial ‘live’ sketch may not be properly synchro-
nized with the action because of the necessary delay in recognizing
gestures. However, a motion replay produces the correctly timed
result.

4.3 Output Motion Synthesis

Once an input gesture has been appropriately identified and mapped
to a particular motion, e.g., “single back flip”, the key parameters
for that motion segment are extracted, and the output motion syn-
thesis can begin. Common parameters to all motions include the
start and end positions, as well as the motion duration. Most other
motions also extract a parameter relating to the location and timing
of the apex of the sketched input gesture. For example, jumps and
leaps are parameterized in terms of duration of ascent, duration of
descent, the maximum height of the jump, and the start and end lo-
cations. Front and back flips have additional parameters describing
the number and direction of rotations. The walk, walk-stomp, tip-
toe, stiff-leg walk, hop, and one-foot shuffle all use the arc height
parameter to control the height of the swing leg during stepping.

Once the type of motion and the related parameters are known,
the desired motion could be synthesized in one of several ways. We
choose to employ a parameterized keyframe-based motion synthe-
sis technique. Motion-capture-retargeting techniques or space-time
optimization techniques could also be considered, but the kind of
physical realism obtained with these techniques is not one of our
goals, nor are they necessarily appropriate for a system which en-
courages experimentation with cartoon-like super-human motions.

Each type of motion is implemented by breaking it into a fixed
number of stages and then applying a number of tools: a keyframe
database, a keyframe interpolator, an inverse-kinematics solver, and
a means to position the center-of-mass at a specified point. As an
example, the stages used to implement jumps are shown in Figure 9.
A detailed description of the stages used for all motions may be
found in [Thorne 2003].

The duration of each stage is determined as a fixed fraction of the
input-sketch times associated with the motion. For example, a jump
motion has both ascent and descent times, which are determined di-
rectly from the input sketch. The first three stages of a jump motion
all determine their duration as a fixed fraction of the input-sketch
ascent time. The durations of the remaining three stages correspond
to fixed fractions of the input-sketch descent time.

All stages of any particular motion have an associated keyframe
that defines target joint angles to be reached by the character at
the end of the stage. A Catmull-Rom interpolant is used between
successive keyframes. The global position of the character is con-
trolled separately from the keyframes. For steps, the root of the
character (located at the hip) is placed halfway between the known
positions of the stance and swing feet. For the airborne phases of
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Figure 9: States and keyframes used for jumps.

jumps, flips, and leaps, the center-of-mass is directly placed at an
appropriate position as determined by two parabolic center-of-mass
curves, one for ascent and one for descent. These curves are fitted
based upon the start, apex, and end locations of these motions.

Once the keyframes have been interpolated to obtain the pose
and the skeleton has been positioned, some stage-specific modifica-
tions are implemented. These can perform a number of functions,
one example being the modifications required to preserve continu-
ity of the center-of-mass velocity upon jump landings, as required
when the center-of-mass transitions from being controlled by the
descending parabolic arc to being controlled by the landing-stage
keyframes. Inverse kinematics is applied to the legs for all anima-
tion frames involving ground contact, such as landing and follow-
through for the jump, or stance during walking.

A key issue in designing motions is making them robust to vari-
ations in the proportions of the character being animated. Thus,
a character with a short torso and long legs will potentially move
very differently than a character with a long torso and short legs.
At present we deal with this issue primarily through the appropriate
use of inverse kinematics during all ground contact phases. Also,
the length of the largest possible step, dmaxstep, is dependent on the
character’s leg length. The remaining aspects of the motion in our
current system are independent of the character proportions, being
driven purely by joint angles. While generally robust, characters
with extreme proportions will occasionally exhibit problems with
body parts passing through the ground.

4.4 Sketching in 3D environments

The basic mechanisms used in the 2D system can be extended to
work in a 3D setting, albeit with some caveats. The addition of
an extra dimension introduces ambiguities into the interpretation of
the 2D input sketch. A motion sketch for a 3D environment begins
by positioning the camera such that it covers the desired workspace
in its field of view. The sketch is then drawn directly overtop of the
image produced by this fixed point of view, as shown in Figure 13.
One can also sketch motion on top of a photograph by creating
proxy geometry for the objects in the photo, as seen in Figure 14.
The 3D character for our system is modelled in advance and not
produced from a 2D sketch.

The sketching of walks, jumps, leaps, and flips can be mapped
to a 3D environment in a relatively straightforward manner. The
sketch is processed to find the start and end points of each gesture,
as indicated by a change in the vertical direction of motion and
the satisfaction of the corner metric. The identified 2D sketch seg-
mentation points are then back-projected into the 3D scene in order
to locate them in 3D. Given known 3D locations of the start and
end points, the remaining 2D sketch points are back-projected onto
the vertical plane V that embeds the 3D start and end points. The
sketch points can now be processed in the 2D coordinate frame of

V as with the 2D system. In this way, a proper apex for the motions
can be extracted for arcs that are drawn “in perspective”.

The above mapping process still results in a number of limita-
tions. Motions moving directly towards the camera or away from
the camera remain difficult to sketch. Additionally, some gestures
become ambiguous when mapped to 3D, as shown in Figure 10.
In-place stomps and stiff-legged walks become confused with the
shuffle and skating motions, given that all these gestures are drawn
with straight lines. There is a further ambiguity involving the di-
rection the character is facing; the gestures for a forward-step and
backwards-step cannot be distinguished in the 3D environment.
Our system makes the particular assumptions shown in Figure 10
in order to resolve these ambiguities. Other assumptions, modes,
use of context, or additional gestures could equivalently be used to
help with disambiguation.

Figure 10: (a) A gesture which can be interpreted as two slides or
an in-place stomp, resolved in favor of the stomp. (b) Ambiguity
regarding the facing direction of the character is resolved by assum-
ing that the character walks forwards.

Synthesizing motion in 3D occurs much as it does in the 2D
case – the same features are extracted from the sketch as with the
2D system. A keyframe database serves as a back-end to fill in
details of the motion that are not provided directly from the sketch
or through inverse kinematics. Our prototype 3D system largely
uses the same set of keyframes as in the 2D system.

There are two aspects in which 3D motion synthesis differs from
its 2D counterpart: foot placement and direction smoothing. In the
2D system, the start and end point of each gesture marks where the
foot (or feet) strikes the ground. In 3D, the feet are offset from the
vertical plane embedding the sketch in order to allow for distinct
left and right foot placements.

The facing direction of a character does not change in the 2D
system but it may do so in the 3D system. A vector from the start
point to the end point of a gesture is used to define the character’s
direction of travel. In order to have this direction change smoothly,
some form of smoothing is required. Our system interpolates the
heading direction over specific stages of each motion. For walking
motions, this gives the character the appearance of rotating on its
heel. For brevity, we refer the reader to [Thorne 2003] for a detailed
explanation of this process.

5 Results and Discussion

Numerous interactive demonstrations of the system are shown in
the video that accompanies this paper. Sketching both a character
and a motion of the type shown in Figure 1(b) is easily done in
under thirty seconds. The system can also be used to draw and
animate mech-bots, as shown in Figure 11. These are drawn using
5 links instead of 7 and are animated using the same motion data
base, except for the reverse knee bend direction and the lack of
arms.

More abstract gestures allow for the system to animate wider
classes of motions. Figure 12 shows the sketch of a gymnastics
tumbling sequence. As with all motion gestures, the motion type,
height, distance, and timing of the individual motions are derived
from the motion sketch.
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Figure 11: Animating a mech-walker: Shuffle walk and front flip.

Figure 12: Sketching a gymnastics tumbling sequence: flip-with-
twist, butterfly, and front-handspring.

The system is well suited for use with a variety of input devices.
We have most commonly used it with a mouse during development,
but other devices are more suited to producing fast and accurate
gestures. Figure 15 shows the system in use on an electronic white-
board and a Tablet PC. The SMARTboard allows the user to directly
draw the desired motion sketch on top of the scene using a finger,
and similarly for the Tablet PC with a stylus. Children found the
system significantly easier to use with these direct input devices.

5.1 Uses of the system

The animation system presented here is not a substitute for the ar-
ray of professional animation tools and techniques that are com-
monly used in film and games. Instead, the motion sketching sys-
tem presents an alternate and highly-accesible means for users to
create a certain class of character animations. The target class of
motions should be tailored with the application in mind. The mo-
tions and gestures implemented in our prototype have been chosen
to illustrate the motions that one might want for a storyboarding
(variety of locomotion and jumping), for gymnastics choreography,
and for motions that are illustrative of what can be done (moonwalk,
flips).

There exist a number of commercial and research animation sys-
tems that are capable of synthesizing motions from a variety con-
straints. The goal of a cursive motion specification language is to
make the specification of the constraints and timing a more trans-
parent process – the users need not be fully aware of the specific
parameters that drive the motion synthesis process. Unlike acting-
based interfaces, the motion gestures provide a meaningful visual

Figure 13: Walking and leaping around a set of trees.

Figure 14: Stunts for a miniature character that have been sketched
on top of an image with modelled 3D proxy geometry.

Figure 15: Sketching motions on a SMARTboard and a Tablet PC.

record of the motion, as well as allowing for “superhuman” unphys-
ical and exaggerated motions.

Over fifty people of all ages have used the system, including chil-
dren as young as three. A number of anecdotal observations were
made. Users rapidly learned the gesture vocabulary and enjoyed
experimenting with the system in many ways. The gesture iden-
tification was occasionally problematic, with some gestures being
interpreted in a fashion that did not reflect the user’s intentions. We
intend to further improve the robustness of the gesture recognition
in order to address this issue.

Young children greatly enjoyed experimenting with the motion
sketching, but found it difficult to understand the restrictions im-
posed on the character sketching, namely the use of seven links
representing a side view of the human figure and the fact that the
principal seven links had to be drawn before annotations could be
added. Perhaps unsurprisingly, children would also put the system
fully to the test by inevitably drawing motion gestures which had
no meaningful interpretation. “Garbage in, garbage out” describes
the behavior of the system in such circumstances.

Adults enjoyed the ability to sketch a character and then be im-
mediately able to animate it. While we have conceived of the sys-
tem as principally targeting novice users, an accomplished animator
remarked that the system provided almost instantaneous satisfac-
tion because of the immediacy of the animated results, something
he felt was missing from present-day animation tools.

5.2 Scalability

Adding a new motion to the system requires the creation of a new
gesture that can be identified by a novel sequence of tokens, as
well as the implementation of an appropriate sequence of states and
keyframes that is capable of generating parameterized versions of
the desired motion. In the future we wish to add gestures for a va-
riety of falling motions as well as interaction with the environment.
The system can potentially be made more scalable through the use
of 3D input devices and the improved use of context in specifying
motions. Such additional controllability would come at the expense
of increased complexity of the interface.

7
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5.3 Limitations

The current system has a number of limitations. The system does
not support the complete gesture vocabulary in 3D due to the am-
biguities introduced by the 3D mapping. These can be overcome
in part by making some motions context-specific or by introducing
user-specified modes to resolve such ambiguities. For example, in a
figure-skating context, drawn loops are probably better reserved for
spins around the vertical axis rather than the head-over-heels flips
that the current system is capable of.

The system is not suitable for animation that requires unique or
detailed motions. A partial solution would be to animate a char-
acter in a series of successive passes with a motion layering ap-
proach[Sturman 1998; Oore et al. 2002; Dontcheva et al. 2003].

A possible improvement on our sketch segmentation scheme
would be to develop a system that can be “trained by example” to
recognize specific desired sets of gestures[Rubine 1991]. However,
the work presented in [Rubine 1991] is not directly applicable to
our problem domain because of the cursive nature of our gestures;
one stroke represents a compound sequence of parameterized (and
therefore variable) gestures instead of a single gesture.

6 Summary

As kinematic and dynamic methods for synthesizing motions from
constraints become increasingly mature, the specification of con-
straints becomes a bottleneck, particularly to novice animators. We
have presented a cursive language for sketching 2D and 3D charac-
ter motions. This is implemented in a system that allows novices to
quickly learn to sketch-and-animate a human or “mech-bot” char-
acter of their own design in tens of seconds. The technique is well-
suited to take advantage of Tablet PCs and electronic whiteboards.
The system is simple enough for children to use, and has other po-
tential applications in storyboarding and the choreography of ath-
letic routines. It is our hope that this method and its future variations
play a role in making animation a more accessible media.
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Abstract 
This paper introduces spatial keyframing, a technique for performance-driven character animation. In traditional 
temporal keyframing, key poses are defined at specific points in time: i.e., we define a map from a set of key times 
to the configuration space of the character and then extend this map to the entire timeline by interpolation. By con-
trast, in spatial keyframing key poses are defined at specific key positions in a 3D space where the character lives; 
the mapping from the 3D space to the configuration space is again defined by interpolation. The user controls a 
character by adjusting the position of a control cursor in the 3D space; the pose of the character is given as a 
blend of nearby key poses. The user thus can make expressive motion in real time and the resulting motion can be 
recorded and interpreted as an animation sequence. Although similar ideas are present in previous systems, our 
system is unique in that the designer can quickly design a new set of keyframes from scratch, and make an anima-
tion without motion capture data or special input devices. Our technique is especially useful for imaginary charac-
ters other than human figures because we do not rely on motion-capture data. We also introduce several applica-
tions of the basic idea and give examples showing the expressiveness of the approach. 

 

1. Introduction 

The most popular approach to character animation is key-
framing, where the designer manually specifies the pose of 
a character as a discrete set of frames (keyframes) and the 
computer synthesizes the poses in the remaining frames. 
However, novice users have difficulty in creating fluid 
motion using this approach and it is very labor-intensive 
work. Other approaches such as motion capture and physi-
cally based simulation are available, but they are expen-
sive to use and are not suitable for designing expressive 
imaginary motions. Furthermore, motion capture is mainly 
designed for human figures and is not directly applicable 
to imaginary characters.  

We describe here a method that lets novice users create 
lively animations for arbitrary 3D characters quickly and 
easily using a standard input device such as a mouse. The 
basic idea is to directly record the user's performance or 
actions, that is, the user's direct manipulation of the char-
acter. We believe that this is much faster and more intui-
tive than traditional temporal keyframing, because the user 
need not mentally translate static keyframes to temporal 
motion during design. In performance-driven animation, 

what you perform and see on the screen during recording 
is what you obtain as the final result.  

 

 

Figure 1: Spatial keyframing with six key poses (top) 
and an example animation sequence using it (bottom). The 
user associates each pose with a location in space (yellow 
markers) in a preparation phase. During performance, the 
user moves the control cursor (red sphere) and the system 
synthesizes an animation sequence by blending nearby 
poses. 
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The problem is that it is difficult to control complicated 
motion of a character in real time using standard input 
devices. A character may have many degrees of freedom 
(DOFs), including position, orientation, and angles at 
many joints, while a typical input device has only two 
DOFs. To control many DOFs in real time with input de-
vices with limited DOFs, our system takes several prede-
fined key poses and blends them in real time during per-
formance. In a preparation phase, the user creates several 
key poses and associates them with specific positions in 
the 3D space (which we call spatial keyframes). During 
performance, the user moves a control cursor in the 3D 
space and the system synthesizes a corresponding pose by 
blending nearby spatial keyframes (Figure 1). 

Synthesizing new poses by blending predefined poses is 
already common practice, and making animations from 
real-time performance is not new. The main contribution 
of this paper is to combine these methods in a practical 
system for making lively character animations from 
scratch without motion-capture data or special input de-
vices. This paper also describes specific methods for 
blending poses to obtain reasonable results with very 
sparse key poses, as well as several extensions to the basic 
idea. We hope that this paper encourages the use of per-
formance-driven approaches for character animation. The 
resulting animations are very different from those created 
using traditional methods, as they make apparent the ani-
mator's natural sense of timing. It is also much easier and 
more fun to create animations this way. 

2. Related work 

Performance-driven animation and puppeteering usually 
rely on a specialized input device or a motion-capture 
system [Stu98]. The direct mapping they assign between 
the character's DOFs and the device's DOFs requires a 
significant amount of training and expertise to control 
fluently. Shin et al. [SLG01] introduced methods for 
retargeting a motion-captured performer's full body motion 
to characters of different sizes. Dontcheva et al. [DYP03] 
proposed layered acting, where the user designs compli-
cated motions by multiple acting passes. Our goal is to 
make performance-driven animation more accessible to 
casual users who lack expensive devices.  

Synthesizing new poses by blending predefined poses is 
already done in many animation systems, but most of them 
are designed for large amounts of motion-capture data. 
Wiley and Hahn [WH97] associated key poses obtained by 
motion capture to a dense grid of points in space and line-
arly interpolated them. Rose et al. [RBC98] interpolated 
motion-capture sequences using radial basis functions to 
express the character's emotions. Kovar and Gleicher's 
system [KG04] automatically constructs a parameterized 
space of motions by analyzing large amounts of motion 
data and synthesizes a new pose by weighed interpolation 
of nearby poses. Our system is designed to work with very 
few key poses and does not require a large motion data set.  

One work closely related to ours is the artist-directed in-
verse kinematics of Rose et al. [RSC01]. They also used 
radial basis functions to interpolate sparse examples in 
space. Our goal differs from theirs in that we focus on 
performance-driven animation authoring from scratch, 
while their focus was on controlling pre-authored motion 
data.  

There are other related interactive systems for animation. 
Ngo et al. [NCD*00] used linear interpolation for manipu-
lating 2D vector graphics. Key poses are embedded in a 
special structure called a simplicial configuration complex. 
Rademacher [Rad99] used interpolation for controlling 
view-dependent geometry. Key geometries are associated 
with specific view directions and are blended according to 
the current view direction. Laszlo et al. [LvPF00] com-
bined interactive character control with physics-based 
simulations. They showed an example in which the hori-
zontal and vertical motions of the mouse were directly 
mapped to the character's individual DOFs. The "motion 
doodle" system lets the user sketch the intended motion 
path; the system then synthesizes an appropriate motion by 
combining pre-authored keyframe animations [TBvP04]. 
Terra and Metoyer used performance for timing pre-
authored key frame animation [TM04]. Donald and Henle 
proposed to use a haptic input device to manipulate motion 
capture data [DH00]. 

3. The User Interface 

Our system consists of two subsystems. One is for design-
ing spatial keyframes and the other is for making anima-
tion using these keyframes. 

3.1 Designing spatial keyframes 

The user's first task is to design a set of spatial keyframes, 
that is, to set poses of a character and associate them with 
positions in the 3D space. The user first imports a 3D ar-
ticulated model into the system. We provide a standard 
direct-manipulation interface for the 3D model. The user 
can change the position of the character by dragging it 
within the space and change its pose by rotating its parts; 
the object can also be moved parallel to the ground by 
dragging its shadow [HZR*92]. 

Once the user is satisfied with a pose, the next task is to 
mark it as a new spatial keyframe by associating it with a 
position in the 3D space. To do so, the user moves the red 
control cursor to the target position and presses the "set" 
button. A small yellow ball now appears at the location of 
the control cursor that indicates the existence of the spatial 
keyframe. A spatial keyframe consists of two elements: (1) 
a character pose (e.g. joint angles) and (2) the xyz cursor 
position that corresponds to that pose. The user defines a 
set of these spatial keyframes by repeating the above proc-
ess and these keyframes define a mapping from the control 
space to the set of the character's poses via an interpolation 
procedure described in the next section. The user can ex-
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amine this mapping at any time by dragging the control 
cursor with the right mouse button down: the system 
blends the neighboring spatial keyframes around the con-
trol cursor and continuously displays the result. This syn-
thesis is not done when the left mouse button is used; the 
left button is reserved for setting new poses. 

The important feature of the system is that the user can 
set spatial keyframes at arbitrary positions in the 3D space, 
and that the user can start testing interesting motions with 
very few spatial keyframes. With only three keyframes, 
the user can make interesting full body motion, as shown 
in Figure 2. This is in contrast to linear interpolation sys-
tems that require many keyframes specified in a grid struc-
ture [WH97; NCD*00]. 

Note that the spatial keyframes are overlayed in the 
same 3D space inhabited by the character. This is in con-
trast to Ngo et al.’s system [NCD*00] in which keys are 
placed in a special configuration space. This makes it pos-
sible to establish an intuitive correspondence between the 
location of a spatial keyfmrame and the associated pose. 
For example, the keyframe for "look left" is likely to be on 
the left side of the screen and "look right" on the right (as 
in Figure 2). This intuitive mapping may be difficult to 
achieve when using automatic mapping such as the method 
introduced in [GMH04].  

 

 

Figure 2: A simple example with three key poses. Three 
key poses are associated with the three yellow balls (left). 
As the user drags the red control cursor with the right 
mouse button down, the system synthesizes a new pose by 
blending the three (right). Note that many joint angles as 
well as the character's position are controlled together. 

3.2 Making animation by performance 

Having set the necessary spatial keyframes, the animator 
can use them to begin performing animations. In this phase, 
the character's pose can no longer be adjusted directly. The 
user moves the control cursor and the system shows the 
synthesized pose on the screen (Figure 3). Recording starts 
when the user starts dragging the control cursor after 
pressing the "record" button and finishes when the mouse 
button is released. The user can watch the resulting motion 
immediately by pressing the "play" button, and can watch 
it from any direction by changing the camera position. 

 

 
Figure 3: Juggling. The user first sets the nine key poses 

as shown on the left. As the user drags the control cursor, 
the character performs a smooth motion as shown on the 
right. 

3.3 Discussion 

In the current system a 2D mouse is used to control the 
position of the 3D control cursor and the control cursor 
moves parallel to the screen during dragging, so the mo-
tion of the 3D control cursor is actually 2D motion. Al-
though interesting animations can be designed with this 
setup, we plan to investigate the possibility of using 3D 
input devices. Three-dimensionally distributed key poses 
may also be helpful for scripting purposes when specifying 
the 3D motion of the control cursor (see Section 5.3). 

Designing animations in this way is really intuitive and 
fast. The spatial keyframe examples in this paper took only 
10 to 20 minutes to design. This includes several iterations 
to adjust the resulting motion. After setting the keyframes, 
the only thing the user needs to do is to drag the control 
cursor. There is no need to directly edit each frame or 
repeat performance, as is required in layered acting 
[DYP03]. The time necessary to make an animation se-
quence is the same as the time to play it. In addition, the 
resulting motion is very lively because the user's direct 
hand motion is (indirectly) present in the animated motion. 
This is in contrast to the unnatural, robotic motion de-
signed by novice users using standard keyframing. This 
idea is similar in spirit to the technique introduced by 
Terra and Metoyer [TM04], but they used performance to 
adjust only the timing of a predefined keyframe animation 
while our system allows the user to control timing and 
pose simultaneously.  

A possible concern is that each mapping is usually spe-
cific to a single motion and thus not very reusable. This is 
true to some extent; the mapping defined for juggling 
makes little sense for other motions. However, our method 
allows the user to easily experiment with and design a 
wide variety of motions within a specific class of motion, 
e.g. in juggling the user can move the ball fast or slowly, 
high or low, clockwise or anti-clockwise. This flexibility is 
missing in traditional temporal keyframing methods and is 
critical for designing convincing motions.   

4. Algorithm 

This section describes the algorithm we use in the current 
implementation. Note that the main purpose of the follow-
ing description is to provide the necessary information to 
implement the system, not to propose a better algorithm 
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for motion blending.  The blending of motion is essentially 
a difficult problem. Many techniques have been proposed, 
such as quaterenions and the exponential map, each with 
its own strengths and weaknesses. We chose this particular 
method because it is easy to implement, works well in 
practice, and satisfies certain reasonable user expectations 
It is our future work to implement and compare other ap-
proaches in detail. 

The system takes the xyz-coordinates of the control cur-
sor and a set of spatial keyframes (the xyz-coordinates of 
anchors and associated character poses) as input and re-
turns a blended character pose. A pose is defined as a set 
of local transformations of the body parts. We currently do 
not allow translation for any part except the root, so we 
have 3×3 rotation matrices for all parts and one xyz trans-
lation vector for the root part. We interpolate each entry of 
the matrix using a radial basis function and orthonormalize 
the resulting matrix.  

4.1 Interpolation using a radial basis function 

Radial basis interpolation is useful for scattered data inter-
polation [Powell87]. We use the interpolation method 
described by Turk and O'Brien [TO02]. Each entry of each 
matrix is treated as a real-valued function on the control 
space, expressed in the form 
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where F(x) is a radial basis function, cj are the marker 
positions, dj are the weights, and P(x) is a degree-one 
polynomial. We currently use F(x) = | x | as a basis func-
tion. We chose this function empirically after several 
experiments, largely because the interpolation result 
follows the control cursor most faithfully. Other functions 
are smoother but show some oscillation effects. 

The system solves for values dj such that f(x) represents 
the given pose at the marker locations: supposing hj=f(cj), 
the constraint is represented as 

)()(
1

i

nj

j
jiji cPccdh +−Φ=∑

=

=

 

Since this equation is linear with respect to the un-
knowns, dj and the coefficients of P(x), it can be formu-
lated as the following linear system:  
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We obtain the interpolation function f(x) by solving the 
above linear system. We need to solve the linear system 
for each entry of the 3×3 rotation matrix. However, the 
large coefficient matrix on the left hand side of the above 
equation is identical for all nine entries, so we only need to 
invert the large matrix once for each joint. For the root part, 
we also compute each entry of the translation vector using 
this method. 

Special care must be taken when there are fewer than 
four spatial keyframes and when the spatial distribution of 
the markers is degenerate (linearly or two-dimensionally 
distributed). In these cases, we apply the interpolation in a 
space of reduced dimensions by mapping the marker loca-
tions to the reduced space before applying the above pro-
cedure. The dimension of P(x) is also reduced accordingly. 
The choice of F(x) must also change to obtain true thin-
plate interpolation [TO02], but we currently use F(x) = | x | 
for all dimensions and it works well. 

4.2 Orthonormalization 

The interpolated matrix obtained by the above procedure is 
not in general an orthonormal rotation matrix; we need to 
orthonormalize it. In some methods for orthonormalization 
such as Gram-Schmidt, the result is not necessarily close 
to the original matrix. We currently use the following it-
erative refinement method to orthonormalize the matrix by 
maintaining the balance between the three axes (Figure 4).  

Suppose we have three basis vectors 
0xr ,

0yr ,
0zr  and want 

to orthonormalize them. We first normalize them. We then 
compute 

000 zyu rrr
×= , 

000 xzv rrr
×= , 

000 yxw rrr
×=  and 

normalize these. Then we compute 2/)( 001 uxx rrr
+= , 

2/)( 001 vyy rrr
+= , 2/)( 001 wzz rrr

+=  and normalize them. We 
repeat the above procedure until the residual 

( ) ( ) ( )222
nnnnnn xzzyyxr rrrrrr

⋅+⋅+⋅=  is below a threshold or the 
number of repetition exceeds a predefined count. We 
currently use 0.000001 for the residual threshold and 10 
for the count. It usually takes fewer than 3 iterations to 
obtain visually pleasing results. The maximum number, 10, 
is sufficient to detect a degenerate case. 

 

 
Figure 4: Orthonormalization process. The system 

gradually makes the basis vectors perpendicular to each 
other. 
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The above method is empirically designed with the goal 
of obtaining reasonable results robustly and quickly with a 
simple implementation. The outcome is satisfactory in our 
experience. It does not work for degenerate cases such as 

0000

rrrr
=== zyx  that can arise, for example, when the con-

trol cursor is in the middle of two key poses that face com-
pletely opposite directions. In that case, the convergence 
fails and a skewed result is shown on the screen. 
Degenerate cases like this are unavoidable when creating a 
sufficiently nice mapping from 2-space or 3-space to the 
rotation group (“Sufficiently nice” in this case means that 
if two control points correspond to nearby rotations, then 
the line segment between them must correspond to a path 
near the geodesic path between these two rotations, which 
is meant to match user expectations). However, the answer 
is not well defined anyway in such cases from the user’s 
point of view. The user naturally understands the existence 
of the degeneracy and avoids it during performance. 

The method also has the nice mathematical property that 
if R is a rotation and M is a small perturbation to R that’s 
orthogonal to the manifold of rotation matrices, considered 
as a submanifold of the manifold of all 3×3 matrices, then 
our process, applied to R + tM, yields a matrix that agrees 
with R to second order in t, i.e., it’s esentially an 
orthogonal projection onto the rotation group, a property 
not shared by Gram-Schmidt, for instance, as can be seen 
by perturbing the identity by a small multiple of   
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4.3 Why not angular parameterization? 

One might ask why we do not use angular parametriza-
toins such as euler angles, quaternions [Sho85], or the 
exponential map [Gra98] for the interpolation. Our short 
answer is that our domain is three-dimensional space and 
not sequential time, as is often the case when the typical 
interpolation happens. We describe two example issues 
that arise in this domain. Note that we only claim here that 
straightforward application of other approaches does not 
work well in our target domain. It may be possible to ob-
tain similar results to ours by elaborating angular parame-
terizations [PSS02][BF01]. We leave further discussion to 
future publications.  

The first issue is that simple angular parameterization 
does not behave as expected for extrapolation in our sys-
tem (Figure 5). Suppose we have the two keyframes on the 
left. As we move the control cursor to the right, the head 
continues to turn if we use angular parameterization. In 
contrast, our method naturally keeps the head looking at 
the cursor. This is a design issue rather than a theoretical 
problem, but the basic idea behind spatial keyframing is to 

associate the pose with a position in space and angular 
parameterization breaks the natural mapping.  

0 degrees 30 degrees 180 degrees?

Key Poses Synthesis Result

 
Figure 5: An example synthesis result with straightfor-

ward angular parameterization. As the user drags the 
control cursor, the character rotates continuously. With 
our approach the character appropriately looks at the 
control cursor. 
 
The second issue is that there is a discontinuity when a 
part rotates 360 degrees. When using euler angles, the 
discontinuity is apparent. Even when using quaternions, 
the pose at 0 degrees and 360 degrees are located at oppo-
site poles of the unit sphere in 4D space. This is not a 
problem when using a linear parameter space such as time, 
but we are working in two- or three-dimensional continu-
ous parameter space. Figure 6 shows what happens when 
we apply angular parameterization naively.  Suppose we 
have the four spatial keyframes shown on the left. If we 
move the control cursor between the first and last marker, 
the resulting pose is something between the second and 
third key pose on the left, because there is a discontinuity 
in angular parameter space between the first and last spa-
tial keyframe. It might be possible to design methods that 
avoid this problem by elaborating on angular 
parameterization, but we believe that our approach 
(directly interpolating the rotation matrix) is more 
straightforward and easier to implement for our particular 
application domain.   

0 degrees 30 degrees 180 degrees 270 degrees 135 degrees?

Key Poses Synthesis Result

 
Figure 6: Another synthesis result when using straight-

forward angular parameterization. If we have the four key 
poses shown on the left and places the control cursor at 
the place as shown on the right, the result is the blend of 
the four angles as shown on the right. Our system returns 
natural results by interpolating each component independ-
ently. 
 

Previous pose interpolation systems used angular 
parameterization [WH97; RSC01]; this was a reasonable 
decision because these systems were designed primarily to 
blend existing motions and the problems described above 
do not arise. However, our goal is the creation of a new 
motion from scratch by performance and it is crucial to be 
able to support dynamic behavior such as that shown in 
Figure 1.  
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5. Extensions 

This section describes some extensions to the basic 
framework. These extensions are applications of existing 
ideas for spatial keyframing and we do not claim signifi-
cant novelty here. We describe them here in order to show 
the possibilities of our technique and to inspire further 
exploration. 

5.1 Inverse kinematics 

Inverse kinematics (IK) is the process of determining the 
joint configuration required to place a particular part of an 
articulated character at a particular location in space. The 
most popular approach is to incrementally update the joint 
angles to satisfy the given constraints using Jacobian itera-
tion [G M85; WW92]. In other words, the system 
gradually pulls the grabbed part to the target location. This 
means that the resulting pose is dependent on the previous 
pose, which can easily lead to very unnatural poses. Many 
solutions to this problem have been proposed, for instance 
using biomechanics knowledge [GGL96], constraint solv-
ing [YN03], and example-based optimization [GMH04]. 
However, they require manual encoding of various low-
level constraints or large motion-capture datasets. 
Furthermore, it is difficult to include artistic control in the 
process.  

Our spatial keyframing can be useful in adding artistic 
control to the inverse kinematics process. The algorithm is 
very simple. Instead of starting Jacobian-based refinement 
from the previous frame, we start the process from the 
synthesis result using spatial keyframing (Figure 7). This 
makes the resulting pose very stable. Regardless of the 
pose in the previous frame, the resulting pose is always the 
same for a given control cursor position. Our method can 
be seen as a subset of the one presented in Rose et al. 
[RSC01]. A similar technique is also used in [YKH04]. 

 

   

Figure 7: Initial pose (left), standard IK result (middle) 
and IK with spatial keyframing (right). Standard IK can 
produce very strange poses after continuous operation. In 
contrast, IK with spatial keyframing returns stable results 
regardless of previous pose. 

5.2 Locomotion 

Basic spatial keyframing is designed for controlling the 
character's pose at a fixed base position, and does not work 
well for animation involving travel or locomotion. The 
user can certainly represent a small positional change by 
setting the character in different places as independent 

spatial keyframes (as in Figure 1), but a long traveling 
sequence, such as walking, requires too many spatial key-
frames.  

One way to address this issue is to automatically change 
the character's position with respect to its body motion. 
We were inspired by interactive character control by 
Laszlo et al. [LvPF00], in which the user controls the 
character's limbs and the locomotion is generated as a 
result of a physically-based simulation. We would like to 
test similar physically-based simulation in the future, but 
currently use a simple rule to generate horizontal position 
change from the character's poses; at each point in time, 
the lowest point of the character is fixed relative to the 
ground, and the character's base position slides to satisfy 
the constraint [OTH02] (as it is too time-consuming to 
check all vertices, we manually mark the tip of each toe 
beforehand and use these marks for computing locomo-
tion). When the lowest part is above the ground, the base 
position travels according to inertia; the system remembers 
the horizontal traveling speed just before the lowest point 
leaves the ground and continues to slide the ground with 
the same speed until another point touches the ground. The 
camera is fixed relative to the character's base position 
during recording.  

It is possible that some point on the free leg dips lower 
than the supporting leg. In this case, the contact point sud-
denly switch, causing the character to start moving back-
wards. This problem can be serious if we consider all ver-
tices of the mesh as possible contact points, but we can 
avoid most of the problem by using manually marked ver-
tices only. In practice, we do experience some “waddling” 
motion when creating various walking motions, but the 
result is acceptable for novice users to quickly create sim-
ple animations. It is also very easy to interactively fix the 
problem by adjusting key poses and cursor trajectory when 
a problem occurs. 

 

 

Figure 8: Walking. Four key poses (top) and a walking 
animation using them (bottom). Observe that the ground 
slides along with the foot on the ground. 



 
 

T. Igarashi, T. Moscovich, and J. F. Hughes / Spatial Keyframing for Performance-driven Animation 

© The Eurographics Association 2005. 

Figure 8 shows an example. It has four key poses that 
represent a walking cycle. As the user moves the control 
cursor counterclockwise, the character makes a walking 
motion and the ground slides with the lower foot. The 
faster the user moves the cursor, the faster the ground 
slides, ensuring that foot-skating artifacts do not occur. 
Figure 9 shows another example. The three key poses rep-
resent a galloping motion. The system slides the ground to 
simulate inertia when the character is in the air.  

 

 

Figure 9: Galloping. Three key poses (top) and a gal-
loping animation using them (bottom). Observe that the 
ground slides along with the foot on the ground. 

5.3 Scripting 

We developed spatial keyframing primarily for interactive 
puppetry and animation authoring by direct performance. 
However, the central idea behind it is to create a compact, 
low-DOF representation for high-DOF character poses, 
which should be useful for applications other than direct 
manipulation via a control cursor. One possibility is to use 
simple scripting for animation authoring. When using 
scripts to control a standard articulated character, individ-
ual joint angles must be specified explicitly. But using 
spatial keyframing, one can control rich character move-
ment just by specifying the behavior of the control cursor 
in a script. Scripting with spatial keyframing is also useful 
for controlling mutually interacting characters.  

We imagine that a set of spatial keyframes would be de-
signed for each character, and that they would be packaged 
together (like the model and "rigging" of characters in 
animation studios). Then, the script authors would import 
the character with the spatial keyframe set and start writ-
ing scripts that select appropriate spatial keyframes and 
control the control cursor. In traditional scripting systems  
authors usually directly specify each joint angle [CDP00], 
so the spatial keyframe technique can significantly lower 
the bar and enrich the resulting animations. This is similar 
to a blend-shape interface where a character model is 
shipped with many adjustable control parameters, but our 
spatial keyframing is unique in that the control cursor lives 
in the same space as the character. 

6. Implementation and Results 

The current prototype system is implemented in Java 
(JDK1.4) and uses DirectX8 for 3D rendering. It currently 
uses articulated 3D models consisting of multiple rigid 
parts embedded in a hierarchical structure. Freeform sur-
faces guided by embedded bones are not currently sup-
ported, but it is straightforward to apply spatial keyfram-
ing to such bone structures. We use an extension to the 
Teddy system [IMT99] as a primary 3D modeling system, 
in which the user can design a painted articulated 3D 
character very rapidly (~10 minutes). Figure 1 and Figure 
10 show example animations designed by the author. 
Acting with spatial keyframing is useful for expressing the 
characters' rich emotions in these simple actions. 
 

Shaking Nodding 1 Nodding 2  

Figure 10: An example animation. Using the six key 
poses (top), one can design an animation sequence in 
which the bear shakes his head, makes a small nod, and 
makes a large nod in turn seamlessly. 

 
Figure 11 shows an example of a highly articulated 

character. We experimented with various motions and 
found that our algorithm works well for these kinds of 
characters especially when the target animation is a gen-
eral whole body motion such as dancing and gesturing. If 
the target animation requires precise placement of end-
effectors, it might be better to interpolate the position of 
the end-effectors first and then apply inverse kinematics as 
in [YKH04]. It is our future work to implement this and 
compare the results. 

 

 

Figure 11: An example of a highly articulated character.  

 
We have asked two professional artists to try the proto-

type system, one with extensive experience in 3D graphics 
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and the other mainly in 2D animations. They both under-
stood the concept quickly and started creating animation 
within 30 minutes. Examples are shown in Figure 12 and 
13. They commented that the system was fun to use and 
the experience was very novel. However, the current im-
plementation is still preliminary and the test revealed its 
limitations. The 2D artist had difficulty in setting individ-
ual poses with a mouse. Both wanted a mechanism to pre-
pare multiple sets of spatial keyframes for different mo-
tions and switch from one motion to another to create 
meaningful stories. They noted that the system might not 
be immediately useful for professional production because 
they need precise control for each frame. They suggested 
that the system could be useful for real-time performance 
in front of audiences and for novice users. 

 

 

Figure 12: An example spatial keyframes designed by a 
3D expert with experience using standard keyframing. He 
found that spatial keyframing is much more fun to use, and 
that the resulting motion is very different from those cre-
ated using existing methods. 

 

 

Figure 13: An example animation created by a 2D artist. 
He found the system very fun to play with and inspiring but 
also found that it is still difficult to specify individual 3D 
poses with a mouse. 

7. Limitations and Future Work 

The main limitation of our technique is that spatial key-
framing is not directly applicable to some kinds of motions. 
It is very natural and effective for motions that are seman-
tically associated with specific points in space, such as 
gazing and object manipulation, but is difficult to apply to 
more complicated motions such as speaking in sign lan-
guage. Another problem is that spatial keyframing can 
represent only one type of motion at a time. We found that 
reasonably interesting animations can be designed with a 

single set of spatial keyframes by carefully distributing the 
key poses in space, but there certainly is a limit. To ad-
dress these problems, we plan to investigate mechanisms 
for combining multiple spatial keyframe sets and achiev-
ing smooth transitions between them. How well a typical 
user can remember the different mappings is still an open 
question which we hope to answer in future research. 

Spatial keyframing can easily be combined with existing 
methods for animation authoring. One can design more 
complicated motion by using spatial keyframing in layered 
acting [DYP03]. It is also straightforward to combine it 
with interactive physically based simulation to generate 
realistic motion automatically [LvPF00]. Motion doodles 
can be used to specify the trajectory of the character's lo-
comotion while using spatial keyframing to control its 
pose [TBvP04].  

Spatial keyframing can be seen as supplemental infor-
mation added to a rigged character; skilled designers de-
sign a 3D character with predefined spatial keyframing 
and end users quickly author their own motion with it. We 
plan to develop tools to support widespread use of this 
framework. Examples include plug-ins for commercial 3D 
modeling and animation systems, 3D animation players 
that supports spatial keyframing, and a library of 3D ar-
ticulated characters with pre-authored spatial keyframes. 
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Abstract
We present a system for quickly and easily designing three-dimensional (3D) models of botanical trees using free-
hand sketches and additional example-based editing operations. The system generates a 3D geometry from a two-
dimensional (2D) sketch using the assumption that trees spread their branches so that the distances between the
branches are as large as possible. The user can apply additional gesture-based editing operations such as adding,
cutting, and erasing branches. Our system also supports example-based editing modes in which many branches
and leaves are generated by using a manually designed tree as an example. User experience demonstrates that
our interface lets novices design a variety of reasonably natural-looking trees interactively and quickly.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Tech-
niques - Interaction Techniques

1. Introduction

3D models of botanical trees are important in geographical
landscape simulation, cityscape design, virtual reality, con-
sumer games, and other fields of 3D graphics. However, de-
signing tree models is challenging because trees have enor-
mous structural complexity.

There are two major methods for obtaining tree models.
One is a rule-based approach, such as L-systems, and the
other method places predefined generic models in a library
or modifies their parameters. Rule-based systems allow users
to design a wide variety of realistic trees. However, it is diffi-
cult for novice users to design trees of the desired appearance
using rule-based systems because the inputs to such systems
(rules and parameters) are very different from their output
(3D geometry). Moreover, while one can quickly obtain typ-
ical trees by using predefined generic models, it is often dif-
ficult or impossible to design a desired tree by modifying
predefined models.

This paper proposes a system for designing 3D botani-
cal trees based on a sketching interface and example-based
control. Sketch-based interfaces [ZHH96][IMT99] facilitate
the rapid construction of 3D models and programming-by-
example interfaces [Cyp91][MWK89] by automating repeti-
tive operations. Our contribution is to propose intuitive mod-

eling interfaces for trees, which free the user from compli-
cated rules or parameters. The modeling process in rule-
based systems can be seen as a deductive process, in that
the final 3D geometry is derived from abstract production
rules. Our sketch-based method can be seen as an inductive
process, in that the user specifies the 2D appearance of the
model directly and the system then generates a 3D structure
by inferring hidden parameters.

The main purpose of our system is to construct 3D tree
geometries from users’ 2D sketches based on the simple as-
sumption that botanical trees tend to spread their branches
in such a way that the distances between branches are as
large as possible. This enables the user to design 3D tree
geometries intuitively using standard 2D input devices. This
assumption is an overly simplistic description of the growth
process of real trees, but it is fast and general enough
for quickly designing reasonable-looking trees from typi-
cal sketches. Our algorithm also considers the fact that most
users draw branches that extend sideways and omit those that
extend toward or away from the screen.

In addition to the sketching interface, our system also sup-
ports three example-based editing modes: branch multiplica-
tion, leaf arrangement, and branch propagation. These edit-
ing modes allow the user to construct complicated trees by
providing a few examples and free the user from drawing

c� The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.
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Figure 1: Simple 2D sketches of botanical trees (above) and 3D polygon models, which are a red young tree, a zelkova, and a
maidenhair tree (below). The initial 3D trees were created from the 2D sketches automatically using our algorithm. Additional
branches and leaves were then attached to the trees using our prototype system. Each process took several minutes.

all individual branches or specifying rules or parameters di-
rectly. Figure 1 shows sample 2D sketches and the resulting
3D trees created using our system.

Our goal is not to simulate the principles of nature, but
to assist the user’s creative design process. Our system sup-
ports several semi-automatic modeling functions that simu-
late some of the morphological properties of natural trees,
but the user’s intention expressed in the input sketch always
has higher priority. Our current prototype system is designed
only for trees, but many of the proposed interfaces can be
used to design other 3D plants, such as flowers.

2. Previous Work

2.1. Modeling Plants

Lindenmayer proposed the formalism of L-systems [Lin68],
and Prusinkiewicz improved them [PHHM96]. Subsequent
research has expanded L-systems for simulating a wide
range of interactions between a plant and its environment
[PJM94][MP96], and for increasing realism and support-
ing the interactive modeling process by using positional in-
formation [PMKL01]. Boudon proposed a method to cre-
ate trees more intuitively and interactively taking advan-
tage of L-systems and demonstrated their method by creat-
ing models of bonsai trees [BPF�03]. Some other rule-based

approaches have also been proposed to address the limita-
tions of older L-systems [AK84][WP95]. Deussen and Lin-
termann developed the Xfrog system in order to combine
the power of a rule-based approach with the intuitiveness of
generic tree methods [DL97][LD99]. Deussen also proposed
a non-photorealistic rendering method for 3D trees [DS00]
that represents leaves as simple particles.

Other research has attempted to reconstruct 3D tree ge-
ometry from multiple photographs. Sakaguchi derived 3D
volume data from multiple photographs of a tree and recon-
structed 3D tree geometry by growing it upwards from its
roots [SO99], but this method can produce undesirable ge-
ometries and needs some heuristics. Shlyakhter proposed a
method that uses a visual hull to construct a trunk and ma-
jor branches and an L-system for finer branches [SRDT01].
Reche proposed a method to capture a real-world tree as a
volume with opacity and color values [RMMD04]. Maier-
hofer and Tobler proposed a user interface that makes it
easier to specify modeling parameters by replacing numer-
ical parameters with a more intuitive set of graphical mod-
eling primitives [MT02]. Ijiri adopted the notion of floral
diagrams and inflorescences, and proposed a method to de-
sign flowers, while preserving correct botanical structures
[IOOI05].

c� The Eurographics Association and Blackwell Publishing 2005.
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2.2. Sketch-based 3D Modeling

Many researchers have proposed methods for construct-
ing 3D models from user-defined 2D drawings. These in-
clude the reconstruction of rectilinear models covered by
planar faces by solving constraints [EyHBE97] or using
optimization-based algorithms [SL96a][SL96b], the recon-
struction of the 3D geometry of a 3D curve using en-
ergy minimization [PK89], and using symmetric relations
[TNT89].

Our particular interest is an interactive sketching inter-
face for designing 3D models using 2D gestures. The Sketch
system [ZHH96] is for designing 3D scenes consisting of
simple primitives, and the Teddy system is for designing
freeform models [IMT99]. Several extensions of the origi-
nal Teddy system have recently been proposed [ONOI04].

2.3. Example-based Interfaces

The user interface research community has been investi-
gating example-based user interfaces in which the com-
puter automates some of the repetitive tasks by observing
a user’s example operation [Cyp93]. The Eager system de-
tects repetition in the user’s operation and suggests automa-
tion [Cyp91]. In the Metamouse system, the user explicitly
trains the system by demonstration [MWK89]. Igarashi et
al. [IMKT97][IKTM98] implemented a prediction mecha-
nism on top of their beautification-based 2D drawing sys-
tem. Their system predicts the user’s next drawing operation
based on the drawing already in the scene and displays the
predicted results as multiple candidates. This helps the user
to design relatively complicated scenes without drawing all
of them manually. This idea has been extended to 3D-model
design [IH01]; like the 2D version, this system suggests op-
erations that the user is likely to do next.

3. User Interface for Modeling Trees

3.1. Overview

First, we overview the process of modeling a typical 3D tree
(Figure 2). The user begins to model a 3D tree by sketch-
ing a simple 2D tree using a mouse or pen tablet (Figure 2
(a)). After sketching a tree, the user presses the "3D" but-
ton and the system constructs 3D tree geometry from the
2D sketch (Figure 2 (b)). This process takes several sec-
onds. Now the user has a 3D tree, and manually adds or
removes branches with simple gestures. The user can also
apply example-based editing modes to generate complicated
trees. The user switches between modes by pressing the
corresponding buttons. In branch multiplication mode, the
user can add more child branches to a designated parent
branch using the existing child branches as examples (Fig-
ure 2 (c)). The leaf-arrangement mode lets the user place
leaves around a branch following typical leaf arrangement
patterns by providing a few examples (Figure 2 (d)). Finally,

branch-propagation mode copies the child branches of a par-
ent branch to other parent branches (Figure 2 (e)). The user
can undo or redo any actions while modeling a tree by press-
ing the "Undo" or "Redo" button.

(a) 2D Sketch (b) 3D Construction (c) Multiplication

(e) Propagation(d) Leaf-arragement

Figure 2: (a) The user draws a 2D sketch of a tree; (b) the
system generates a 3D tree when the user presses the 3D but-
ton; (c) a denser 3D tree model is obtained in multiplication
mode; (d) leaves are added to a branch in leaf-arrangement
mode; and (e) leaves are propagated to other branches in
propagation mode.

3.2. Sketching a 2D Tree

The user begins to model a 3D tree by sketching simple 2D
strokes that represent branches or leaves. An open stroke
makes a branch and a loop stroke makes a leaf polygon as a
bounding box for the stroke (Figure 3). An incoming stroke
is connected to the nearest existing branch and becomes its
child branch or leaf. When a branch is attached to a parent
it changes its form so that it is connected to its parent pre-
cisely. The base point moves to the nearest point along the
parent branch; the terminal point remains fixed; and the dis-
placements of the intermediate points are interpolated.

(a) (b) (c) (d)

Figure 3: Drawing a branch (a-b) and drawing a leaf (c-d).

When the user draws a branch using a single stroke, the
system applies default geometry (varying radii along the
branch) to the branch. Optionally, the user can draw a pair
of almost parallel strokes to define the detailed shape of the
branch. The two strokes correspond to the silhouette of the
branch (Figure 4). The system sweeps a circle along the two
strokes to construct the branch geometry. After a detailed
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geometry has been specified using a pair of strokes, that ge-
ometry becomes the default setting and is then applied to
subsequent branches drawn as single strokes.

(a) (b)

Figure 4: Two strokes representing a branch’s silhouette (a)
and the resulting 3D branch geometry (b).

The user can edit branches using two gestural editing op-
erations: cutting and erasing. An editorial stroke intersecting
a branch once cuts the branch. The distal end of the branch is
erased, as are all the descendant nodes spawned on that side.
An editorial stroke intersecting a branch two or more times
erases the branch. In this case, all the descendant nodes are
erased.

3.3. Creating a 3D Tree from a 2D Sketch

The system constructs a 3D tree when the user finishes draw-
ing a 2D tree and requests its construction by pressing the
"3D" button. (This takes several seconds.) After construc-
tion, the user can rotate the tree and see it from different
viewpoints. Figure 5 shows some examples. The basic strat-
egy is to make trees spread their branches so that the dis-
tances between them are as large as possible. The system
also gives detailed depth modulation to each branch. The al-
gorithm is described in Section 4.

Figure 5: The upper snapshots are freehand sketches, and
the lower snapshots are the results of 3D construction.

After constructing a 3D tree, the user can add a branch or a
leaf by drawing a stroke as in the 2D case. The 2D strokes are
projected onto a plane that is parallel to the screen and passes
through the base point on the parent branch. The user can

also edit branches or leaves by drawing cutting and erasing
strokes.

3.4. Example-based Branch Multiplication

In this editing mode, the user can click a branch to increase
the density of its child branches, while preserving the overall
appearance of the tree. Each click adds a new branch to the
parent branch; the user can add as many branches as desired
by successive clicking. Figure 6 shows an example. The de-
tailed algorithm for computing the position, orientation, and
shape of the new branch is given in Section 4.3.

(b)(a)

Figure 6: The user adds child branches to a branch by suc-
cessive clicking.

3.5. Example-based Leaf Arrangements

This mode allows the user to place leaves according to
typical leaf-arrangement patterns (alternating patterns and
whorled patterns). The interface is similar to the user in-
terfaces proposed by Igarashi and Hughes [IH01]. The user
adds a few sample leaves manually and the system infers
possible arrangement patterns from these examples.

The system then generates further leaves based on the in-
ferred patterns and shows the results as thumbnail previews
(Figure 7). When the user likes a result, he or she clicks the
corresponding thumbnail to use it. If the user does not like
the result, he or she can ignore it and proceed to the next
operation. The current implementation supports three sug-
gestion engines. One adds leaves to the base of a given set of
whorled leaves. Figure 8 shows an example. When the sys-
tem observes a set of leaves at the same base position, it in-
fers that the user wants to use the whorled pattern and adds a
leaf to the set. The system also rearranges the existing leaves
so that they are distributed around the parent branch equally.
The user can increase the number of leaves by clicking the
corresponding thumbnail successively (Figure 8).

Another engine extends the whorled leaves along the par-
ent branch (Figure 9). When the system observes a set of
whorled leaves attached to a base position and a leaf at a
different position, it infers that the user wants to add more
sets of whorled leaves with the given spacing. The system
fills the remaining region of the parent branch with sets of
whorled leaves.

The final engine extends alternate leaves along the parent
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Figure 7: Thumbnails are presented to the user. The user
can adopt a prediction result by clicking the corresponding
thumbnail.

Figure 8: Increasing the number of leaves in a set of whorled
leaves.

branch (Figure 10). When the system observes two leaves
placed at different positions, it infers that the user wants to
use the alternating pattern and adds additional leaves along
the parent branch. The system uses the rotational angle be-
tween the sample leaves to place new branches, generating
spirally arranged leaves.

3.6. Example-based Branch Propagation

This editing mode lets the user propagate the local arrange-
ment of branches and leaves to the entire tree. When the
user clicks a branch (reference branch), the system copies
the child branches and leaves of the reference branch and
pastes them on all other branches (target branches) on the
tree. The current system supports two types of propagation;

Figure 9: Extending whorled leaves along the parent
branch.

Figure 10: Extending alternating leaves along the parent
branch.

the user switches between them using a toggle button on the
screen.

(a) (b) (c)

Figure 11: The original state of a tree (a), propagation with
scaling (b) and propagation without scaling (c).

One type of propagation is that with scaling (see Figure 11
(b)). When the system pastes the child branches and leaves
on a target branch, it scales them so that the reference branch
matches the target branch. This mode is useful for propa-
gating detailed branching to other branches. In propagation
without scaling (Figure 11 (c)), the system pastes the child
branches and leaves without scaling. The tip of the refer-
ence branch is placed at the tip of the target branch. If the
target branch is shorter than the reference branch, the sys-
tem uses only the child branches and leaves near the tip of
the reference branch. This mode is useful for propagating
leaves around the reference branch because all the leaves are
of similar size and spacing all over the tree.

3.7. Reproduce a Tree from Overall Sketching

Once the entire modeling process is completed, the user
can duplicate the finished model using two strokes rep-
resenting the trunk and the silhouette of the new one
(see Figure 12 and Figure 19). Several previous sys-
tems take advantage of silhouettes to specify the over-
all shape of a tree, and these inspired our user interface
[BPF�03][PJM94][PMKL01][WP95]. The system changes
the shape of the trunk and adjusts the length of each seg-
ment to fit into the silhouette, while other properties, such as
the branching structure or the number of segments, remain
fixed. This operation is useful for generating multiple trees
that have the same structure, but different appearances.
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Figure 12: The original tree (left) and a tree reproduced
by sketching the trunk (orange) and the overall shape
(blue)(right).

4. Algorithm

This section provides a detailed explanation of the al-
gorithms used to compute 3D tree geometries based on
sketches and examples. We focus on only the most relevant
aspects, omitting the explanation of relatively straightfor-
ward processes because of space limitations.

4.1. Creating a 3D Tree from a 2D Sketch

The task here is to compute the depth information for the
branches. The goal is to make the tree look similar when
viewed from all angles, preserving the appearance from the
original viewpoint. Our basic strategy is to adjust the ori-
entation of a branch so that the distances between it and
other branches are as large as possible (Figure 13). We
use a greedy approach (adding branches one by one) in-
stead of computing a globally optimal branch placement.
The order of processing sibling branches is random. Ide-
ally, we would construct a 3D volume whose voxels con-
tain the distance to the nearest branch and then place the
branch whose voxels have maximum distance values. Un-
fortunately, it is too computationally expensive to update the
volumetric distance field for each added branch. Therefore,
we project all branches to the ground and construct a 2D dis-
tance field, computing distances from the projected branches
to each pixel (Figure 13, bottom). Our current implementa-
tion, which uses a 128�128 distance field, makes an exhaus-
tive search for the optimal placement.

The projection of 3D branches onto the screen must fit
the 2D sketch. This means that if we extended a branch in
the direction almost perpendicular to the screen, the distance
field alone could not prevent branches from protruding ex-
cessively from the overall silhouette (the maximum distance
value is a branch of infinite length). To prevent this, we re-
strict the search to within a 3D hull constructed from a 2D
convex hull around the given sketch. To construct the 3D
hull, we simply sweep a circle along the 2D convex hull,
starting from the bottom and ending at the top, and enlarge it
by a constant value (

�
2) (Figure 14). Magnification is nec-

Figure 13: Computing the depth information for branches
with the 2D distance field.

essary in order to give the branches that touch the hull the
freedom to move away from the original plane.

(a) (b)

Figure 14: A 2D convex hull of the original sketch (a). The
resulting 3D convex hull after magnification (b).

Our algorithm also constrains the lengths of branches, be-
cause a branch is generally shorter than its parent branch.
We use the formula introduced in Weber and Penn [WP95]
to calculate the length of a child branch. To relax the con-
straint, we magnify the calculated value using a constant
(the current implementation uses 1.2). We use this constraint
over branches other than the trunk and its child branches.
Our algorithm further constrains the angles between a parent
branch and its child branches. We first calculate the maxi-
mum angle between a parent branch and its child branches
in the 2D sketch. Then, we compute a limit angle by multi-
plying the maximum angle times a constant (we use 1.2). Fi-
nally, we constrain the angles between the parent branch and
its children to be smaller than the limit angle. During this
process, for simplicity and efficiency we treat each branch
as a straight-line segment that connects the base and termi-
nal points. After constructing a 3D tree consisting of straight
branches, we assign depth modulation to the curves shown
in the original 2D sketch. For depth modulation, we adopt
the algorithm described in [IOOI05], which was proposed to
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add appropriate depth to a user-drawn 2D stroke in an inflo-
rescence editor.

4.2. Extension of the Basic Algorithm

People tend to draw branches that extend sideways and omit
branches extending toward or away from the screen. How-
ever, our basic algorithm tries to spread branches in all di-
rections uniformly, and the resulting 3D tree looks very dif-
ferent when viewed from the side (Figure 15).

front 
view

side 
view

Figure 15: The resulting tree is strange when viewed from
the side.

To solve this problem, we assume that the user draws only
branches that extend sideways, and we make the system au-
tomatically add branches that extend toward and away from
the screen. We do this by constraining the direction of a
branch within specific angles relative to the viewing direc-
tion (we use angles between 45 and 135 degrees). The sys-
tem constructs two 3D trees using the algorithm described
above, rotates one of them 90 degrees around the vertical
vector, and merges it with the original tree, except for the
main trunk (Figure 16). The two trees are slightly different
because our algorithm spreads sibling branches in a random
order. This simple ad hoc trick works very well and is an in-
dispensable tool in the system. The merged tree looks similar
when viewed from both the front and the side (Figure 17).

basic 
algorithm

rotating
90 degrees

merging

basic 
algorithm

Figure 16: The system adds branches to the front and the
back. Snapshots, except for the first sketch, are seen from the
top.

4.3. Example-based Branch Multiplication

This operation adds a new branch to a given parent branch
using the existing child branches as examples. To add a

front 
view

side 
view

Figure 17: The merged tree looks similar when viewed from
both the front and the side.

branch, the system must determine its position, length, ori-
entation, and shape. Position, length, and shape are simple:
the system places the new branch between the most sepa-
rated pair of neighboring branches. The length of the branch
is the average of the neighboring sibling branches. As for the
shape, we randomly choose one of the sibling branches on
the parent branch and copy it.

Orientation is a bit more complicated. The system first as-
signs consistent local coordinate systems along the parent
branch using the "turtle" of L-systems [PHHM96]. The ori-
entation of a child branch is determined by two angles in
this local coordinate system: a "rotation angle" defined in
the plane perpendicular to the parent branch, and a "down
angle", which is the angle between the parent branch and the
child branch (Figure 18).

Parent branch
(head vector)

Up vector

Left vector

Child 
branch

Rotation angle

Down angle

Figure 18: A direction vector of a new child branch consist-
ing of a rotation angle and a down angle.

The rotation angle is calculated so that the new child
branch spreads uniformly when seen along the head vector.
Since a natural branch tends not to grow downward because
of tropisms, we mimic the effect by calculating the rotation
angle so that the child branch does not make an angle larger
than 120 degrees with the upward vector perpendicular to
the ground. A down angle is calculated as the average of the
down angles of the neighboring sibling branches, as is the
case with length.

4.4. Reproduce a Tree from Overall Sketching

The user-guided duplication algorithm is as follows:
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� Generate a new trunk that follows the user-drawn trunk
stroke.

� The user-drawn silhouette stroke is converted into a 3D
convex hull, using the algorithm described in Section 4.1.

� The length of the first-generation branches is adjusted so
that they touch the 3D convex hull. The ratio is stored in
each first-generation branch.

� Modify the length of second-generation or younger
branches using the ratio stored in the ancestral first-
generation branch. If the resulting length is longer than
the 3D convex hull, adjust the length so that it touches the
hull.

Since first-generation branches tend to decide the overall
shape of a tree [WP95], they are processed differently from
subsequent-generation branches.

5. Results

Figure 1 and Figure 20 show 3D tree models designed by
the authors. In Figure 1, the young red tree consists of 7,900
nodes (branches and leaves), the zelkova consists of 30,000
nodes, and the maidenhair tree consists of 4,900 nodes. We
spent less than 10 minutes on average to design each of these
models. We created broadleaf trees mainly from a 2D sketch
and by propagating branches and leaves. The automatic mul-
tiplication was useful for designing branches of an acicular
tree.

We performed a user study to test the usability of our pro-
totype system. The subjects were seven students in the Com-
puter Science department who were novice users of our sys-
tem. After having them read a tutorial and learn how to use
our system, we asked them to create as many 3D trees as
they liked. Most subjects spent approximately 1 hour on the
study, while one subject was fascinated by the system and
spent a day playing with it. Figure 21 shows tree models
designed by four users and the time to complete each tree
model. Some of these model trees are not natural in appear-
ance, but they are what the users wanted. These unique trees
might be difficult to design using rule-based systems or by
modifying predefined tree models.

We also performed another informal study to compare our
system with existing methods. We used cpfg [PMKL01] as
an example of a text-based system and Xfrog as an exam-
ple of a graphical system. We recruited three novice users
to join the study and asked them to create 3D trees like the
target shown in Figure 22 (a). Figure 22 shows the resulting
tree models created using cpfg (b), Xfrog (c), and our system
(d and e). Two test users worked together for approximately
60 minutes to create the cpfg model. Another test user spent
30 minutes to create the Xfrog model. Finally, each test user
worked individually using our system and took 10 minutes
to create their models. These results show that our system
is good at reconstructing the major branching structures of a
tree, while the other systems are good at reconstructing de-

tailed structures. We would like to combine these two com-
plementary approaches in the future.

6. Limitations and Future Work

Our system allows the user to design various interesting tree-
like shapes quickly. This rapid construction is possible be-
cause we ignore some natural principles. As a result, the final
models sometimes exhibit artifacts not seen in conventional
tree-modeling systems. In the future, we plan to explore
methods to fill the gap between speedy systems and systems
that adhere to the processes of nature. For example, the cur-
rent implementation does not handle tropisms explicitly. We
plan to estimate tropisms from user-defined branches and ap-
ply them to system-created branches. We have designed our
prototype so that it uses linear workflow, except for undo or
redo. To make the system usable for practical applications, it
should be able to edit trees. In the future, we plan to develop
more sophisticated 3D interactions in our prototype system,
which would allow the user to move, rotate, or bend indi-
vidual or groups of branches on a completed tree without
destroying leaves.

Our user interfaces can be applied to 3D plants other than
trees by implementing some additional interfaces. For ex-
ample, we plan to implement sketch-based 3D interfaces for
generating more complex leaf and flower models. We also
plan to develop more leaf-arrangement engines, to handle
other leaf patterns.

The current system is designed to construct a single tree.
We are also interested in the construction of similar, but
slightly different, trees to create a forest, and are experiment-
ing with algorithms that generate slightly different trees by
tweaking the parameters used in the construction process.

(a) (b)(a) (b)

Figure 19: An example of reproduction of a tree. (a) an orig-
inal tree, (b) the reproduced version.
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Abstract 
 
We present a system for modeling flowers in three dimensions 
quickly and easily while preserving correct botanical structures. 
We use floral diagrams and inflorescences, which were developed 
by botanists to concisely describe structural information of 
flowers. Floral diagrams represent the layout of floral components 
on a single flower, while inflorescences are arrangements of 
multiple flowers. Based on these notions, we created a simple user 
interface that is specially tailored to flower editing, while 
retaining a maximum variety of generable models. We also 
provide sketching interfaces to define the geometries of floral 
components. Separation of structural editing and editing of 
geometry makes the authoring process more flexible and efficient. 
We found that even novice users could easily design various 
flower models using our technique. Our system is an example of 
application-customized sketching, illustrating the potential power 
of a sketching interface that is carefully designed for a specific 
application.  
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1 Introduction 
 
Flowers pose an interesting and important challenge for 
three-dimensional (3D) computer graphics modeling. They have a 
great number of components, such as petals, stems, and pistils, 
which take on highly varied 3D shapes and which are connected 
with intricate structures. To create a flower, users must design 
each component as a freeform surface and lay them all out in 3D 
space. The geometric and structural complexity makes this a 
difficult and time-consuming task even for experienced users; for 
novice users, creation of beautiful and biologically plausible 
flowers using traditional tools is almost impossible. 
 
Various botanic modeling systems have been created to support 
the design of plants. These can be classified into two groups 
according to their purposes. The first group concentrates mainly 
on visual plausibility rather than botanical correctness [Deussen 
and Lintermann 1999]. This type of modeler tends to offer a 
simple user interface, but its underlying method is to use a 
predefined library, and it is therefore difficult to design models 
that are not in the library. The second group tries to build a 
theoretical framework based on biological knowledge. For 
example, the L-System, one of the best known plant modeling 

systems, defines plant structures using a set of rewriting rules 
[Prusinkiewicz and Lindenmayer 1990]. However, it is very 
difficult to encode and decipher the behavior of real-world plants 
in such a simple form, and users must also have specific 
biological knowledge about plants. Furthermore, while an 
L-system encodes various characteristics of the gross structure of 
a plant, the actual geometry of the individual components; leaves, 
petals, stems, etc. remains to be determined by the user.  
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Figure 1: Lily model. The structural information is given as a 
floral diagram (a) and an inflorescence (b). The floral diagram 
consists of one pistil, six stamens, and six petals. The 
inflorescence pattern is raceme. The geometry models are 
designed in the sketch-based editor (c). The user creates a 
flower (d) and the entire model (e) of a lily combining the 
structural information and the geometries. 

 
Our goal is to strike a balance between these two approaches to 
modeling, that is, to provide an easy-to-use interface, while 
allowing users to model a wide variety of biologically plausible 
flower models. When guiding the modeling process, we 
incorporate floral diagrams and inflorescences as general and 
compact frameworks to describe most real-world flowers. A floral 
diagram is an iconic description of a flower’s structural 
characteristics (Figure 1a); we use it to design individual flowers. 
An inflorescence is a branch with multiple flowers and its 
branching pattern is represented in a pictorial form; we use it to 
design models that consist of many flowers, such as bostryx, 
lavender, and lilies (Figure 1b). These two frameworks define the 
structure of a flower model; it is also necessary to specify the 
geometry of each component, such as the floral receptacle, pistil, 
stamen, petal, and sepal. To make geometric modeling intuitive 
and efficient, we use a customized freeform sketching interface.  
 
This paper describes the user interface of our prototype flower 
modeling system based on these ideas. The structure editor 
consists of two sub-systems: one is for individual flowers, driven 
by floral diagrams, the other for arrangements of multiple flowers, 



based on inflorescences. The geometry editor also has two 
sub-systems: one for floral elements, the other for inflorescences. 
We believe that this separation of structure editing from geometry 
editing is applicable to general modelers, simplifies the modeling 
process, and achieves high configurability and reusability. 
Without this separation, it is very difficult to change a basic 
structure after details have been completed. Using our system, 
once a whole model has been created, it is possible to apply the 
model to different geometry to create a new model with the same 
or a similar structure. 

 
Figure 2: Examples of floral diagrams. A: axis, Bra: bract, O: 
ovary, Pe: petal, Se: sepal, St: stamen, Sp: sepal adnate to 
stamen, R: floral receptacle, Up: petal connate to petal.  

Note that our contribution is in simplifying the process of flower 
modeling, not in improving the final results. The resulting flower 
models can be replicated by existing modeling systems, but the 
process is different. With customized and well-designed 
high-level editors for particular classes of objects, the modeling 
process becomes much more intuitive and efficient. 
 
We describe the user interface of these editors in the following 
sections after discussing related work and the basic background. 
Our results show that users can design interesting flower models, 
such as the one shown in Figure 1, with little training. A user 
spent only 30 minutes creating this model from scratch. 
 
2 Related Work 
 
Lindenmayer [1968] formulated the L-System and Prusinkiewicz 
and Lindenmayer [1990] later introduced it to the computer 
graphics community. The L-System has been extended to simulate 
a wide variety of interactions between plants and their 
environments [Mĕch and Prusinkiewicz 1996; Prusinkiewicz et al. 
1994; 1996]. Prusinkiewicz et al. [2001] also proposed using 
positional information to control parameters along a plant axis. 
Boudon et al. [2003] proposed an L-system-based process for 
designing Bonsai tree models; it uses decomposition graphs to 
make it easier to manipulate various parameters. 
 
Deussen and Lintermann [1997; 1999; Lintermann and Deussen 
1996] developed the Xfrog system, which combines the power of 
a rule-based approach and intuitive user interfaces using a graph 
representation. Users design a graph representing the branching 
structures of a plant with 11 node types. This system offers an 
intuitive user interface and the resulting models are highly 
realistic, but the graph is designed heuristically and is too general 
for flower modeling (i.e., the graph can create structures other 
than plants). Furthermore, the graph representation includes 
geometric components such as FFD, so it is not possible to 
separate structural and geometric definitions completely. 
 
Over the past decade, sketch-based modeling has become popular; 
instead of creating precise, large-scale objects, a sketching 
interface provides an easy way to create a rough model that 
quickly conveys a user’s intentions. The main focus is on inferring 
3D shapes from two-dimensional (2D) sketches. Previous work 
has reconstructed rectilinear models covered by planar faces by 
solving constraints [Pugh 1992; Eggli et al. 1997] or by using 
optimization-based algorithms [Lipson and Shpitalni 1996]. The 
SKETCH system [Zeleznik et al. 1996] allows users to design 3D 
scenes consisting of simple primitives, while the Teddy system 
allows users to design freeform models [Igarashi et al. 1999]. 
Generating 3D curves through sketching is also a rich research 
domain; Pentland and Kuo [1989] generated a 3D curve from its 
2D projection using energy minimization, while Tanaka et al. 
[1989] used symmetric relations. Another strategy for defining a 

3D curve is to draw strokes twice, for example, a screen 
projection of a curve and its shadow [Cohen et al. 1999; Tobita 
and Rekimoto 2003]. 

Figure 3: Examples of inflorescence patterns. The two on the 
left are indeterminate inflorescences: raceme(a) and corymb(b). 
The next two are determinate inflorescences: dichasium(c) and 
drepanium(d). The last is a compound inflorescence: 
compound-raceme(e). 

 
2.1 Floral Diagrams and Inflorescences 
 
Floral diagrams and inflorescences are technical representations 
used in the study of plant morphology, which uses plant structure 
to explore their evolution, ecology, and systematics [Hara 1994; 
Shimizu 2001; Bell 1991]. 
 
A floral diagram pictorially represents the layout of four kinds of 
floral elements on a receptacle (the base of a flower): pistils, 
stamens, petals, and sepals (Figure 2). A floral diagram also 
describes additional information, such as the stem cross-section, 
number of ovules, and whether petals are connate. However, it 
does not describe the 3D geometry of floral components or their 
relative sizes. There is no universal definition of a floral diagram, 
and various forms of floral diagram exist. 
 
An inflorescence represents a branch bearing multiple flowers. In 
an inflorescence, flowers are generally arranged in one of a fixed 
number of patterns specific to their species. There are three 
inflorescence groups: indeterminate, determinate, and compound. 
In indeterminate inflorescences, lower flowers bloom first and 
higher flowers follow. In determinate inflorescences, top or 
central flowers bloom first and lower or lateral flowers follow. 
Compound inflorescences are a mixture of the other two patterns. 
Simple 2D figures can be used to represent all branching patterns 
(Figure 3). Here, black lines represent the central axis and its 
branches, red circles represent flowers, and green crescents 
represent bracts. Larger circles indicate older flowers. 
 
3 Overview of the Modeling Process 
 
Our system consists of a set of independent editors, which can be 
basically categorized into two groups: structure editors and 
geometry editors. The structure editor consists of a floral diagram 
editor and an inflorescence editor. Users can alternate between 
these two editors. A typical scenario is as follows (Figure 4). 



 
The user first defines the flower’s structure in the floral diagram 
editor by editing the layout of the floral components. The user 
then models the shapes of the floral receptacle and floral 
components using the sketching interface in the geometry editor. 
The resulting receptacle model appears at the bottom of the floral 
diagram editor and the component thumbnails are listed on the 
right side of the window. Next, the user associates geometries of 
floral components with corresponding elements in the floral 
diagram using drag-and-drop operations. The system 
automatically places geometric objects on the receptacle model. 
The user can interactively adjust the angle of attachment, size, and 
shape of the components in the geometry editor. The user can also 
modify layout using the floral diagram editor. 
 
After designing individual flowers, the user models the 
inflorescence. The user first defines the structure in the 
inflorescence editor, choosing one pre-defined inflorescence 
pattern from the list and making basic adjustments to various 
parameters. Then the user defines the central axis geometry by 
drawing a freeform stroke in the geometry editor. The system 
creates a three-dimensional inflorescence along the axis. The user 
adjusts the angles of flower and branch attachment using the 
geometry editor and can adjust parameters such as branching 
angle, branch length, etc. using the inflorescence editor. 
 
4 Structure Editors 
 
4.1 Floral Diagram Editor 
 
A standard floral diagram represents not only the structure of a 
flower but also some geometric information. However, our floral 
diagram editor focuses on the layout of floral components, and 
geometries are modeled separately in the geometry editor. Floral 
components (pistil, stamen, petal, and sepal) are represented as 
icons (Figure 5b). Users first specify the number of parts by 
typing the number, then specify layout by dragging and moving 
icons in the diagram. 
 
Floral components are often arranged in radial symmetry, so our 
editor provides a function to arrange them in radial symmetry. 

There are four circular regions in the diagram editor and users can 
modify their size by dragging borders. If users press the “layout” 
button, the system distributes the parts uniformly in each region. 
Some species (e.g., Ranunculus acris) have an indefinite number 
of components. In this case, a specific region of the flower is 
filled by as many corresponding components as possible. In our 
system, if users check the “indefinite” box, the corresponding 
region is filled by as many icons as possible (Figure 5c). We use a 
filling algorithm introduced by Prusinkiewicz et al. [2001]. 

Figure 5: A snapshot of the floral diagram editor (a) and 
examples of floral diagrams: Brassica rapa (b) and Ranunculus 
acris (c). Pi: pistil, St: stamen, Pe: petal, Se: sepal. 
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Figure 4: Overview of the modeling process 

 

 
Figure 6: Mapping the 2D diagram onto the 3D receptacle. A 
stamen object on a floral diagram (a) and its position in 3D (b).

A floral diagram is a 2D representation of a layout, so in order to 
construct the final 3D flower, the system has to convert the 2D 
layout into a 3D composition of geometric objects. A floral 
receptacle is represented as a surface of revolution, the outline of 
which is drawn by the user. The system uses a polar coordinate 
system on this surface, shown in Figure 6b. In our implementation, 
the receptacle’s 3D view is located underneath the floral diagram 
view (Figure 5a). A change using the floral diagram editor is 
immediately reflected in the 3D view. We currently do not allow 
users to use the 3D view to directly manipulate the layout; this 
remains for future work. 
 
4.2 Inflorescence Editor 
 
In the inflorescence editor, users select a branching pattern from 
the list and modify parameters by dragging handles in the visual 
pattern display (Figures 7b, c). We have implemented 8 of 22 
patterns reported in the literature [Bell 1991]. The variety of 
adjustable parameters depends on the pattern selected. Figure 13 
shows all patterns and their parameters. Using a raceme as an 
example, branch angle, branch length, and flower size at the top 
and bottom of the axis can be modified using the handles (Figure 
7c). Values between the top and bottom are linearly interpolated. 
Parameters such as the existence of tropism or stem hardness are 
specified in dialog boxes, since these parameters are difficult to 
represent in a 2D illustration. In future research, we plan to allow 
for more flexible positional control [Prusinkiewicz et al. 2001]. 



To determine each branch’s 3D direction, the system must 
compute branch angle to the stem; we call this the rotation angle 
(Figure 7a). In certain inflorescences, branches have one rotation 
angle value, which can be described as follows: 
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This formula produces the following values: 180, 120, 144, 135, 
138.45, 137.14, and 137.65, covering almost all species [Bell 
1991]. These values are listed, and users can simply choose the 
desired value. Users can also specify an arbitrary angle when 
necessary. 

 
Users associate flower models (created in the floral diagram 
editor) with inflorescence branch terminals. Aging of a flower is 
represented simply by multiple flower models; as shown in Figure 
8a, users import multiple models of different ages into the 
inflorescence editor top row in ascending order of age. The age is 
also linearly interpolated depending on the pattern (see section 
2.1). For instance, when two flower models are provided for an 
indeterminate inflorescence pattern, the lower half is associated 
with the old flower model and the upper half is associated with the 
young flower model (Figures 8b, c). 
 
After adjusting parameters, users add geometric information to the 
inflorescence in the geometry editor. If desired, users can return to 
the structure editor and adjust parameters. The system provides 
immediate visual feedback to the 3D inflorescence model during 
the parameter adjustment process. 
 
There are special inflorescence patterns called head and spadix. A 
head is a pattern in which small flowers cover a base called a disc, 
e.g. sunflowers. A spadix is a pattern in which many flowers are 
densely arranged on a thick stalk, e.g. Lysichiton camtschatcense. 

These inflorescence patterns can be compactly represented in 
floral diagrams, so we work with them in the floral diagram editor, 
allowing users to arrange flowers on the receptacle as well as 
arranging standard floral components. 

 
Figure 7: (a) Down angle and Rotate angle. (b) Inflorescence 
editor. (c) Inflorescence pattern of a raceme with various 
parameters. 

 
5 Geometry Editors 
 
Flower model components are 3D freeform shapes. We use a 
sketch-based interface to allow quick and intuitive modeling. 
Sketch-based modeling systems [Zeleznik et al. 1996; Igarashi et 
al. 1999] allow users to design interesting 3D geometry by 
drawing strokes on the screen; by contrast, traditional modeling 
systems require users to work with menus and many control 
points. A key aspect of sketch-based systems is that they make 
strong assumptions in interpreting user input to maintain a simple 
user interface. Our system simplifies the interface by providing a 
customized modeling interface for each floral component. 
Traditional modeling interfaces are generally suitable for careful 
editing by expert users; sketching interfaces are suitable for quick 
exploration by novices or casual users. 
 
5.1 Floral Receptacles and Floral Components 
 
In the geometry editor, users can create the geometries of the 
floral receptacle, pistil, stamen, petal, and sepal.  
 
A floral receptacle is defined as a surface of revolution, the profile 
of which is given by a user as a freeform stroke. A pistil is 
modeled using an inflation algorithm similar to “extrusion” in the 
Teddy system [Igarashi et al. 1999]. A stamen is defined as the 
sweep surface of a circle along a central axis drawn by the user. 
The user then draws another stroke to describe the axis of the 
stamen’s anther and the system creates a mesh by warping an 
ellipsoid along this stroke. 

 
Figure 8: (a) Bud and blooming flower models (A and B) are 
specified. (b) (c) Buds are placed on the higher (younger) half 
of the branches. Blooming flowers are placed on the lower 
(older) half of the branches. 

 
The petal and sepal share a common user interface (Figure 9). A 
user first draws three strokes to represent the outline and central 
vein of the petal (the central stroke may be omitted). The system 
returns a flat petal object (Figure 9a). Next, the user draws 
modifying strokes; these strokes are interpreted as cross-sections 
of the object (Figures 9b, c, d). Modifying strokes have two 
modes: global and local. In the global mode, a modifying stroke 
deforms the entire object, while in the local mode, only part of the 
object is deformed (Figure 9d). Users can switch between the two 
modes by selecting a button. To add realism, users can also add 
noise and texture.  

 
Figure 9: Petal modeling. (a) Initial creation. (b) Transforming 
an object along the center vein. (c) Transforming an object in 
global mode and (d) in local mode. 



Figure 11: The geometry editor for inflorescences. The user 
draws the axis of the inflorescences freehand and the system 
provides the real time feedback during drawing. 

A petal object is implemented as a B-spline surface. When the 
initial three outline strokes are drawn, the system generates 
control points of the B-spline surface, shown in Figure 10a. We 
parameterize the surface using u and v coordinates, where the 
u-axis corresponds to horizontal direction and the v-axis 
corresponds to vertical direction. The system saves the plane on 
which the initial surface lies as a base plane. Modifying strokes 
move control points perpendicular to this base plane. If a user 
draws a modifying stroke in the u direction, the system first finds 
the control point nearest to the stroke’s starting point on the screen. 
Control points that have the same v value as the base point are 
marked as target control points. The system projects the stroke on 
a plane that passes through target control points and is 
perpendicular to the base plane (Figure 10b). Next, the system 
moves target control points to the projected stroke (Figure 10c). In 
the global mode, the system moves all control points on the 
surface, and in the local mode it moves only neighboring points 
(Figure 10d). The displacement amount smoothly decays toward 
the petal’s top and bottom. When a modifying stroke is drawn in 
the v direction, the system projects the stroke to a plane containing 
the central axis, perpendicular to the base plane (Figure 10e). The 
system then moves control points so that all points with the same 
v-coordinates move the same amount. In this case, there is no 
difference between global and local modes. 

Figure 10: Petal modeling. (a) Initial creation. (b) (c) The 
system maps the 2D stroke. (d) Resulting geometry in global 
and local modes. (e) An example of a modifying stroke along 
the vertical direction. 

 
5.2 Inflorescence 
 
The interface for modeling the geometry of an inflorescence is 
very simple. After selecting an inflorescence pattern and adjusting 
its parameters in the structure editor (Figure 7), the user draws the 
selected inflorescence’s central axis as a 2D freeform stroke. The 
system then creates the 3D geometry of the inflorescence, 
displaying the curves that represent the axis and branches during 
the drawing operation. When the user completes drawing the 
stroke, the system creates a mesh for the stem and places the 
flower objects on branch terminals (Figure 11). 
 
Our system automatically adds appropriate depth to a user-drawn 
2D stroke. Typical existing approaches first define a work plane 
that is almost perpendicular to the view direction and project the 
user-drawn stroke onto it [Cohen et al. 1999; Tobita and Rekimoto 

2003]. A drawback of this approach is that it cannot create the 
typical shapes of stems such as spirals, and it requires that strokes 
be drawn twice. Our approach requires input of a single stroke and 
generates a 3D curve with a similar appearance regardless of 
viewing direction around the axis. For example, when a user 
draws a sine curve, it creates a 3D spiral stroke. We achieve this 
effect by adding depth to the curve, so that the resulting curve has 
a constant curvature in 3D space (Figure 12). Our algorithm is a 
specialized version of the energy-minimizing curve reconstruction 
proposed by Pentland and Kuo [1989]. The detailed algorithm is 
as follows. 

 
Figure 12: (a) A stroke drawn by the user and the resulting 3D 
geometry models. (b) The model viewed from the right side. (c) 
The model viewed from higher perspectives. 

 
We assume that a user draws a stroke on the x-y plane and that the 
viewing direction is in the positive z direction. The initial stroke is 
represented as follows: 

( ){ }0,,, === iiiiii zzyxvvstroke  

where the y-axis corresponds to the vertical direction. We 
resample the input stroke so that vertices are equally spaced along 
the y direction. Our algorithm receives the stroke with x and y 
values as input and returns a new stroke with appropriate z values. 
To achieve this, our algorithm assumes that the resulting stroke 
has a constant curvature in 3D space along the y-axis, i.e.: 
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We compute z values by solving this equation. We first decide the 
constant value by taking the maximum squared value of the 
second derivatives of x along the axis. Given the constant value 
and the second derivatives of x, we can calculate absolute values 
of the second derivative of z by solving the above equation. 
 
Direct solution of this formula yields only absolute values. The 
next task is to determine the signs of the second derivatives of z. 
We assume that the second derivative of z0 is positive and 



determine the signs sequentially, so that successive signs change 
when the first derivatives of x cross zero. 
 
Given the signed second derivatives of z, we calculate values for z 
by integrating them twice. We set z0 to be 0 and adjust the first 
derivative of z0 (the initial branch slope in the depth direction) so 
that the last z also becomes zero. 
 
6 Discussion 
 
In this paper, we propose a system for efficiently modeling 
flowers with correct botanical structures. We introduce floral 
diagrams and inflorescences, which were developed by botanists 
to describe structural information about flowers. We also propose 
a specialized sketch-based geometry editor for floral elements. 
Our current implementation supports eight inflorescence 
branching patterns, shown in Figure 13. These are typical patterns 
selected from three inflorescence groups: indeterminate, 
determinate, and compound. Our results show that we can model 
plants successfully using these patterns, and it is probable that 
other branching patterns can be supported in a similar manner. 
 
Figure 14 shows flower models designed using our system with 
the corresponding floral diagrams and inflorescence patterns. 
Since our system provides a simple, intuitive user interface for 
defining complex structures and geometries, it took less than 40 
minutes to design these complete flower models from scratch. We 
also performed a preliminary user study to test the usability of our 
prototype system. We tutored four university students who were 
novice users for less than 20 minutes, and then asked them to 
create 3D flower models. Subjects were allowed to consult books 
to learn the structure of the target plants. It took less than 40 
minutes for them to design the complete flower models shown in 
Figure 14 from scratch. 
 
One limitation of the current system is that our inflorescence 
editor is not able to support the creation of a gradual progression 
of developmental flower stages. In addition, there are a few 
shapes that our geometry editor cannot create; for example, it is 
impossible to create petal-like shapes that do not have an elliptical 
outline. 
 
The basis of our approach is the importance of separating 
structure editing from geometry editing. Our approach could be 
useful for modeling other targets with complicated structures and 
geometry, such as trees, insects, four-footed animals, etc.; in the 
future we would like to deal with these targets. Another 
interesting direction would be to extend our system to support 
entire plant structures. We are also interested in creating a flower 
arrangement application; this application would require a 
combination of biological and artistic knowledge, and would 
therefore be an interesting challenge. 
 
We consider this work to be an example of an 
application-customized sketch-based interface; the success of the 
interface depends in part on balancing correct choice in expressive 
interface components against application needs: too-general 
components may allow users to make mistakes easily; too-limited 
ones may restrict user ability to reach goals, and may require a 
greater variety of components, which will be difficult to learn. 
The proper design rules for making such choices have yet to be 
elucidated; we hope that our system provides an instance from 
which such rules may someday be drawn. 
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Figure13: Inflorescence patterns and their parameters in our current implementation. The parameters with the superscript '*' are pair of 
numbers to be linearly interpolated along the stem. There are also some common parameters that are not shown in the figure: 
phototropism direction, stem hardness, stem width, rotate angle, and the number of branches. Dichasium and Drepanium patterns have 
additional “ratio” parameters for all parameters that determine the ratio of a child branch’s parameter values to those of a parent branch. 

(a) Lycoris radiate (40 min) (b) Cimicifuga acerina (30 min) (c) Hydrangea (40min)

(e) Saxifraga
stolonifera (15min)

(d) Sun flower (40min) (f) Allium roseum
(30min)

(g) Clematis terniflora
(30min)

(h) Brassica rapa
(30min)

Figure 14: Example models and the approximate time to complete each model. (a), (b), (d), and (e) are modeled by the author. (c), (f), (g), 
and (h) are designed by the test users. 
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Figure 1: Three examples of garments of various styles, respectively generatedfrom the sketch on their left using our approach.

Abstract

We present a method for simply and interactively creating basic garments fordressing virtual characters in ap-
plications like video games. The user draws an outline of the front or back of the garment, and the system makes
reasonable geometric inferences about the overall shape of the garment (ignoring constraints arising from physics
and from the material of the garment). Thus both the garment’s shape andthe way the character is wearing it are
determined at once. We use the distance from the 2D garment silhouette to thecharacter model to infer the vari-
ations of the distance between the remainder of the garment and the character in 3D. The garment surface is
generated from the silhouette and border lines and this varying distance information, thanks to a data-structure
that stores the distance field to the character’s body. This method is integrated in an interactive system in which
the user sketches the garment over the 3D model of the character. Ourresults show that the system can be used
to create both standard clothes (skirts, shirts) and other garments that may be worn in a variety of ways (scarves,
panchos).
Key words; Sketch-based interfaces, virtual garment, shape modeling.

Categories and Subject Descriptors(according to ACM CCS):
I.3.5 [Computational Geometry and Object Modeling]: Modeling packages
I.3.6 [Methodology and Techniques]: Interaction techniques

1. Introduction

Nowadays, 3D virtual characters are everywhere: in video
games, feature films, TV shows... Obviously, these charac-
ters need clothing: when we encounter a person, we instantly
notice his or her clothes, and feel that these tell us some-
thing about the person. Thus clothing on virtual characters

provides a way to easily advance the story being told to the
viewer.

The range of approaches used for clothing virtual char-
acters is large: for incidental characters, the clothing may
be no more than a texture map. For lead characters in feature
films, full-fledged physical simulation of detailed cloth mod-
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els may be used. And in the midrange, simple skinning tech-
niques, combined with texture mapping, are common, pro-
viding some deformation of clothing as the character moves,
but no physical realism. There are three problems one can
associate with clothing virtual characters: the design of the
clothes (tailoring), placing them on the character (dressing),
and making them look physically correct (typically through
simulation).

The process of tailoring, for human beings, involves
choosing cloth and fitting it to the body, often making ad-
justments in the patterns of the cloth to adapt it to the par-
ticular person’s form, and then sewing it. For virtual charac-
ters, clothing often has no "patterns" from which it is sewn,
instead being represented by a simple polygon mesh that’s
constructed to fit the body. It’s currently tedious to construct
such meshes even without the issues of patterns and stitch-
ing. It’s sometimes done by directly incorporating the cloth
mesh into a character’s geometric model, so that the charac-
ter doesn’t actually havelegs, for instance, but justpants. In
this case physical simulation is no longer a possibility, and
when a character needs new clothes, it must be largely re-
modeled. An alternative approach involves drawing pattern
pieces for a garment and positioning them over the naked
form of the character, defining stitching constraints, etc. This
can be tedious, especially when the character is not impor-
tant enough to merit this level of effort; it also requires an
understanding of how cloth fits over forms, although the ac-
tual pattern-and-stitching information may not be relevant
after the tailoring is completed (except in the rare case where
the physical properties of the cloth — was it cut on the bias?
Does the cloth resist folding along one axis? — are later used
in a full-fledged physical simulation).

Our approach combines tailoring and dressing into a sin-
gle step to create a mesh that’s suitable for later simulation
or skinning approaches. The idea is to make it easy to gen-
erate simple garments that are adapted to an existing model.
We believe that most people know better how to draw gar-
ments than the patterns which are needed to sew them. The
aim of this work is thus to explore the use of a sketch-based
interface for quickly constructing 3D virtual garments over a
character model. This paper describes simple solutions to the
problems ofshape generationandplacementof the clothing.
The resulting system is so easy to use that it takes only min-
utes to create a simple garment.

1.1. Related work

Current interactive systems [HM90, WMTT93, BGR02] for
designing garments and dressing virtual actors with them
can be quite tedious: typically the user must draw each pat-
tern piece on a planar virtual cloth, specify the edges to be
stitched together, position the pieces around the virtual actor,
and then finally run a simulation to obtain a convincing rest
shape for the garment around the character model.

Sketch-based modeling systems such as

[ZHH96, EyHBE97, IMT99, FBSS04] have became
popular for interactively generating 3D geometry from
sketches. Most of them only generate solid objects, as
opposed to such surfaces as garments.

Two works have combined the idea of sketching with the
goal of designing clothes: Bourguignon [BCD01] provided a
3D sketching method and used it to design garments over vir-
tual actors. The sketch could be viewed from arbitrary view-
ing angles, but no 3D surface was reconstructed for the gar-
ment. Igarashi [IH02] described a sketch-based method for
positioning garment patterns over a 3D body, but the user
could not use the system for directly sketching the desired
garment and still must know which pattern shapes will re-
sult in the garment he desires. That is to say, they addressed
thedressingproblem through sketching, but not thetailoring
problem.

1.2. Overview

This paper presents a method for reconstructing the 3D ge-
ometry and placement of garments from a 2D sketch. As
in [BCD01], the user sketches the garment directly on the
3D virtual actor body model. However, our method outputs
a full 3D geometry for the garment, using the distance from
the 2D garment silhouette to the character body model to in-
fer the variations of the distance between the garment and
the character in 3D.

More precisely, the reconstruction is performed in 3 steps:
the lines of the 2D drawing are first automatically classified
either assilhouettes(lines that do not cross the body) or as
border lines(lines that do cross the body). A distance-to-the-
body value is computed for each point of a silhouette seg-
ment and these distances are then used to determine desired
point-to-body distances for the border lines. This distance
information is then propagated in 2D to find desired point-
to-body distances, which are then in turn used to determine
the 3D position of the garment.

2. Sketch-based interface

2.1. Typical user interaction

To give a sense of the system’s performance, we describe
a typical interaction, in which a user sketches a skirt on a
female model. The user first draws a line across the waist
(see figure2 (left)), indicating the top of the skirt, and then a
line down the side, indicating the silhouette of the skirt, then
a line across the bottom in a vee-shape indicating that he
wants the front of the skirt to dip down, and finally the last
side. A simple corner-detection process is applied to break
the sketch into parts; one extra corner is detected by acci-
dent (at the bottom of the vee) and the user can delete it
with a deletion gesture. He could also add new breakpoints
as well, but none are necessary. Breakpoints play an impor-
tant role in the 3D positioning process, since they determine
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Figure 2: (left) The user has drawn a few lines to indicate
the shape of the skirt; the corner-detector has detected a
breakpoint that the user does not want. The user will make a
deletion gesture (a curve in the shape of anα enclosing the
mistaken point) to delete it.(middle) The user has deleted
the breakpoint, and the lines have been classified: thesil-
houettesare in red and thebordersin yellow. (right) The
surface inferred by the system once the user has required a
reconstruction.

Figure 3: (left) The user drew the outline of the skirt with-
out sharp corners at the bottom, and the corner-detector
failed to put breakpoints there. The user therefore makes
gestures (overdrawn in green here) to indicate the need for
new breakpoints.(middle) The new breakpoints have been
inserted.(right) The skirt is reconstructed.

the global 3D position of the cloth with respect to the body.
The way they are used is detailed in Section4.3. The two
lines on the sides are classified as silhouettes, and the others
are classified as border lines, as shown in the figure.

Now the user asks to see the garment inferred by the sys-
tem; a surface matching the drawn constraints, but adapted
to the shape of the underlying form (look near the waistine,
for instance) appears almost instantly (see figure2 (right)).

Sometimes, as in figure3, the breakpoint-inference fails
to detect all the points the user wants; in this case she or he
can make a gesture to add new breakpoints.

In the current state of our system, only the front of the gar-
ment is generated; the back would have to be generated in a
second pass, possibly through a simple mirror image of the
silhouette strokes and user-applied modification of the bor-
der strokes. There’s no texture on the surface, no indication
of how a surface of this form could be constructed from flat
cloth, no method for indicating that the front and back should
be joined. Thus the current interface concentrates simply on
the way that shape and placement can be inferred from sim-
ple strokes, not on the entire tailoring and dressing process.

2.2. Gestural interface components

The user’s marks are interpreted as gestures, with the de-
fault being the construction of silhouette and border line
segments. Other gestures add breakpoints for the classifi-
cation process, delete breakpoints, delete a segment or an

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4: The gestures in the interface; the model is drawn
in thick lines, prior strokes as medium lines with dots at
breakpoints, and new strokes with thin lines; the arrowhead
on the new-stroke lines is not actually drawn by the user, but
merely indicates the direction in which the stroke is drawn.
(a) adding a segment;(b) deleting a segment (stroke must
intersect the segment at least five times);(c) deleting several
segments (the stroke must intersect more than one segment,
and intersect segments at least five times. If the stroke in-
tersects segments from two different chains, both chains are
deleted entirely.);(d) clearing all segments (the stroke must
intersect some segment and count at least fourty intersec-
tions) (e) adding a breakpoint(f) deleting a breakpoint (the
stroke must intersect the segments on either side of the break-
point, and intersect itself once).

entire chain of segments, and clear all segments, as shown
schematically in figure4. (Our gestures are similar to those
of Tsang et al. [TBSR04]).

The breakpoint-deletion gesture matches well with the
standard typsetting deletion-mark; the other deletion ges-
tures require multiple intersections with existing strokes to
prevent accidental deletions.

3. Interpreting sketches of garments: basic ideas

For the sake of clarity, we’ll assume that the character is
aligned with thexy-plane, viewed along thez direction.

The user draws the contours of the 2D projection of
the garment in the(x,y) plane over the rendered character
model. From these, we need to infer thez-information at
every point of the contour and the interior of the garment.
Clearly this problem is under-constrained; fortunately, by
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considering the special nature of clothing, we can gener-
ate a plausible guess of the user’s intentions. In particular,
silhouettes of clothing not only indicate points where the
tangent plane to the cloth contain the view direction; they
usually occur as the clothing passes around the body, so we
can estimate thez-depth of a silhouette edge as being thez-
depth of the nearest point on the body (or, for a body placed
fairly symmetrically about thexy-plane, simply usez= 0 as
a quicker estimate). Moreover, the distance from a silhouette
to the body helps us to infer the distance elsewhere, since a
cloth which tightly fits the body in the(x,y) plane will also
tend to fit it in thez direction, while a loose cloth will tend
to float everywhere.

3.1. Overview of the algorithm

Our algorithm, whose different steps will be detailed in the
following sections, develops as follows:

1. Process the 2D sketch of the garment:

• Find high-curvature points (breakpoints) that split the
contours into segments;

• Let user add and/or delete breakpoints.
• Classify segments of curve between breakpoints into

border lines(which cross the character’s body) orsil-
houette lines.

2. Infer the 3D position of silhouette and border lines:

• For each breakpoint that does not lie over body, find
distance to body,d, and set the point’s depth,z, to the
depth of the closest point on the body.

• For each silhouette line, interpolatez linearly over
the interior of the line, and use interpolatedz-values
to computed-values (distance to the body in the 3D
space) over the interior of the line.

• For each border line, interpolated over interior lin-
early to establish a desired distance to the model and
set azvalue for each point on the line;

3. Generate the interior shape of the garment:

• Create a mesh consisting of points within the 2D sim-
ple closed curve that the user has drawn, sampled on
a rectangular grid in the(x,y) plane.

• Extend the values ofd, which are known on the
boundary of this grid, over the interior.

• For each interior grid point(x,y), determine the value
of z for which the distance from(x,y,z) to the body is
the associated value ofd.

• Adjust this tentative assignment ofz values to take
into account the surface tension of the garment be-
tween two limbs of the character.

• Tesselate the grid with triangles, clipped to the bound-
ary curves, and render the triangles.

3.2. Pre-computing a distance field

To accelerate steps 2 and 3 of the algorithm above, a dis-
tance field to the character’s model is pre-computed when
the model is loaded: for each point of a 3D grid around
the model, we determine and store the distance to the near-
est point of the model, using the octree-based algorithm
in [JS01].

The distance field will be used each time we need to find
thezcoordinate to assign to a pointp(x0,y0) so that it lies at
a given distance from the model. This can easily be done by
stepping along the rayR(z) = (x0,y0,z) and stopping when
the adequate distance value is reached (we interpolate tri-
linearly to estimate distances for non-grid points). When this
computation is performed during a sweeping procedure, the
stepping starts at thez value already found at a neighbour-
ing pixel, which ensures the spatial coherence of the result
and efficiency. Else, the process starts near the near plane of
our rectangular frustum, in which the distance field has been
computed.

The quality of the results depends directly on the resolu-
tion of the 3D grid storing the distance field, as does compu-
tation time. The size of the 3D grid is user-configurable, but
we have generally used a 32×32×32 grid.

4. Processing of contour lines

4.1. 2D processing

First, one must classify the parts of the user’s sketch. As the
user sketches, a new line that starts or ends near (within a few
pixels of) an endpoint of an already-sketched line is assumed
to connect to it. When the sketch is complete (i.e., forms a
simple closed curve in the plane), we classify the parts:

• First the sketched lines are broken into segments by de-
tecting points of high (2D) curvature (breakpoints) (this is
actually done on-the-fly, as the user draws the strokes).

• Each segment is classified as a silhouette or border line:
border lines are ones whose projection meets the projec-
tion of the body in thexy-plane, silhouettes are the others.
The mask of the body’s projection is pre-computed and
stored in a buffer called thebody mask, in order to make
this classification efficient.

• The resulting segmentation is visible to the user, who
may choose if necessary to add or delete breakpoints indi-
cating segment boundaries, after which segments are re-
classified.

4.2. Distance andz-value at breakpoints

Breakpoints that are located over the body model (which is
tested using the body mask) are used to indicate regions of
the cloth that fit very tightly to the body. They are thus as-
signed a zero distance to the model, and theirz value is set
to the body’szat this specific(x,y) location.
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To assign a distance valued to a breakpoint that does not
lie over the body, we step along the ray from the eye in
the direction of the breakpoint’s projection into thexy-plane,
checking distance values in the distance field data structure
as we go, and find thez-value at which this distance is min-
imized. We assign to the breakpoint the discoveredz andd
values, thus positioning the breakpoint in 3D.

4.3. Line positioning in 3D

Our aim is to use the 3D position of the breakpoints we just
computed to roughly position the garment in 3D, while the
garment’s shape will mostly be inferred from distances to
the body along the sketch silhouettes.

To position the silhouette lines in 3D, we interpolatez
linearly along the edge between the two breakpoints at the
extremities of the silhouette. We then set thed-values for
interior points of the silhouette to those stored in the pre-
computed distance field. (We could instead interpolated
directly, and compute associatedz-values, but if the body
curves away from the silhouette curve, there may be noz
value for which the interpolatedd-value is the distance to
the body; alternatively, we could computed directly for each
interior point and then assign thez-value of the closest body
point, as we did with the breakpoints, but in practice this
leads to wiggly lines because of the coarse grid on which we
pre-compute the approximate distance-to-body.)

Having established the values ofz andd along silhouette
edges, we need to extend this assignment to the border lines.
We do this in the simplest possible way: we assignd linearly
along each border line. Thus, for example, in the skirt shown
above, thed-values at the two ends of the waistline are both
small, so thed-value for the entire waistline will be small,
while thed-values for the ends of the hemline are quite large,
so the values along the remainder of the hemline will be large
too.

5. 3D Reconstruction of the garment’s surface

5.1. Using distance to guess surface position

As for the contour lines, the interpolation of distances to the
body will be our main clue for inferring the 3D position of
the interior of the garment. The first process thus consists
into propagating distance values inside the garment. This is
done in the following way:

The 2D closed contour lines of the garment are used to
generate a(x,y) buffer (sized to the bounding box of the
sketch) in which each pixel is assigned one of the values
‘in’, ‘out’ or ‘border’, according to its position with respect
to the contour. A border pixel is one for which some contour
line intersects either the vertical or horizontal segment of
length one passing through the pixel-center (see figure5);
other pixels are inside or outside, which we determine using
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Figure 5: Each grid point represents a small square (solid
lines). If a contour (heavy line) meets a small vertical or hor-
izontal line through the pixel center (dashed lines), the pixel
is classified as a boundary; boundary pixels are marked with
a “B” in this figure. Others are classified as inside (“I”) or
outside (“O”) by winding number.

a propagation of ‘out’ values from the outer limits of the
buffer.

The distance values already computed along the silhou-
ette and border lines are assigned to the border pixels. The
distances for the ‘in’ pixels are initialized to the mean value
of distances along the contour.

Then, distance information is propagated inside the buffer
by applying several iterations of a standard smoothing fil-
ter, which successively recomputes each value as an evenly
weighted sum (with coefficients summing to 1) of its current
value and those of its “in” or “boundary” orthogonal or di-
agonal neighbours (see figure6). The iterations stop when
the maximum difference between values obtained after two
successive iterations is under a threshold, or if a maximum
number of steps has been reached. Convergence generally
seems to be rapid, but we have not proven convergence of
the method in general.

We then sweep in the 2D grid for computingz values at
the inner pixels: as explained in section3.2, the z value is
computed by stepping along a ray in thez direction, starting
at thez value we already assigned for a neighbouring point,
and taking thez the closest to the desired distance value, as
stored in the pre-computed distance field.

5.2. Mimicking the cloth’s tension

The previous computation gives a first guess of the garment’s
3D position, but still results in artefacts in regions located
between two limbs of the character: due to surface tension,
a cloth should not tightly fit the limbs in the in-between re-
gion (as in figure7 (top)), but rather smoothly interpolate the
limb’s largesz value, due to its surface tension.

To achieve this, we first erode the 2D body mask (already
mentioned in section4.1) of a proportion that increases with
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Figure 6: The arrows indicate which neighboring pixels
contribute to a pixel during the smoothing process: only
neighboringboundaryor insidepixels contribute to the av-
erage.

Figure 7: Surface reconstruction without(top) versus with
(bottom) taking tension effects into account. The part of the
surface over the body mask is shown in green in the left im-
ages. At bottom left, the body mask has been eroded and
Bézier curves used to infer the z-values between the legs.
The resulting z-buffers are shown in the middle images and
the reconstructed surfaces on the right.

the underlyingd value (see figure7) (bottom left)). We then
use a series of Bezier curves in horizontal planes to interpo-
late thez values for the pixels in-between. We chose hori-
zontal gaps because of the structure of the human body: for
an upright human (or most other mammals), gaps between
portions of the body are more likely to be bounded by body
on the left and right than to be bounded above and below.

To maintain the smoothness of the garment surface near
the re-computed region, distances values are extracted from
the newz values and the distance field. Some distance prop-
agation iterations are performed again in 2D, before re-
computing thez values int the regions not lying over the
body that haven’t been filled with the Bezier curves, as was
done previously (see figure7 (right)).

A B

C

Figure 8: When a segment ends in a pixel’s box, the pixel
center gets moved to that endpoint as in the box labelled
“A.” If more than one segment ends, the pixel center is
moved to the average, as in “B”. Otherwise, the pixel center
is moved to the average of the intersections of segments with
vertical and horizontal mid-lines, as in “C”.

We finally add a smoothing step on thez values in or-
der to get a smoother shape for the parts of the cloth that
float far from the character’s model. This is done comput-
ing a smoothed version of the z-buffer from the application
of a standard smoothing filter, and then by taking a weighed
average, at each pixel, of the old and smoothedz-values, the
weighing coefficients depending on the distance to the model
at this pixel.

5.3. Mesh generation

Finally, the triangles of the standard diagonally-subdivided
mesh are used as the basis for the mesh that we render
(see figure8): all “inside” vertices are retained; all out-
side vertices and triangles containing them are removed, and
“boundary” vertices are moved to new locations via a simple
rule:

• If any segments end within the unit box around the ver-
tex, the vertex is moved to the average of the endpoints
of those segments. (Because segments tend to be long, it’s
rare to have more than one endpoint in a box).

• Otherwise, some segment(s) must intersect the vertical
and/or horizontal mid-lines of the box; the vertex is
moved to the average of all such intersections.

6. Results

The examples presented in figure1 and figure9 were drawn
in no more than 5 minutes each. We want to point out that the
jagged appearance of the strokes in the drawings is simply
due to the use of a mouse instead of a more adequat graph-
ics tablet as the input device. The gallery includes simple
clothes such as pullovers, skirts, robes and shirts, but also
less standard ones such as an “arabian like” pair of trousers
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Figure 9: Gallery of examples of garments created with our system.

along with basic jewelry, or exantric outfits that would cer-
tainly fit nicely in a Haute couturecollection. This wide
range of types of cloth gives an idea of the expressivity our
system provides the user with.

7. Discussion

We have presented a method for dressing virtual characters
from 2D sketches of their garments. We used the distance
from the 2D garment silhouette to the character model to in-
fer the variations of the distance between the garment and the
character in 3D. The garment surface is generated from the
silhouette and border lines and this varying distance infor-
mation, thanks to a data-structure which stores the distance
field to the character’s body. This method has been integrated
in an interactive system in which the user can interactively
sketch a garment and get its 3D geometry in a few minutes.

There are other approaches that could be used as well: one

could imagine a parametric template for shirts, for instance,
and a program that allowed the user to place the template
over a particular character and then adjust the neckline, the
overall size of the shirt, etc. But this limits the realm of de-
signs to those that exist in the library of pre-defined tem-
plates (how could one design an off-one-shoulder shirt if it
wasn’t already in the library), and limits it to standard forms
as well: dressing the characters in a movie likeToy Storybe-
comes impossible, since many of them are not human forms.
Nonetheless, the model-based approach is a very reasonable
one for many applications, such as a “virtual Barbie Doll,”
for instance.

The automated inference of the shape is simple and easy-
to-understand, but may not be ideal in all cases, and we have
not yet provided a way for the user to edit the solution to
make it better match the idea that she or he had when sketch-
ing.

c© The Eurographics Association 2004.
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8. Future work

To infer the shape of a full garment, we could use symmetry
constraints around each limb to infer silhouettes for the in-
visible parts, and ask the user to sketch the border lines for
the back view, for instance.

We’d also like to allow the user to draw folds, and take
them into account when reconstructing the 3D geometry, so
that even for a closely-fitting garment, there can be extra ma-
terial, as in a pleated skirt.

Most cloth is only slightly deformable, so the garment
we sketch should be locally developable into a plane every-
where. We did not take this kind of constraint into account in
our model, but this would be an interesting basis for future
work, including the automatic inference of darts and gussets
as in [MHS99].

Finally, we have sketched clothing as though it were sim-
ply a stiff polygonal material unaffected by gravity. We
would like to allow the user to draw clothing, indicate some-
thing about the stiffness of the material, and see how that
material would drape over the body. The difference between
silk (almost no stiffness), canvas (stiff), and tulle (very stiff)
can generate very different draping behaviors. In the much
longer term, we’d like to incorporate a simulator that can
simulate the difference between bias-cut cloth and straight-
grain, the former being far more “clingy” than the latter.
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ABSTRACT 
This paper presents interaction techniques (and the 
underlying implementations) for putting clothes on a 3D 
character and manipulating them. The user paints freeform 
marks on the clothes and corresponding marks on the 3D 
character; the system then puts the clothes around the body 
so that corresponding marks match. Internally, the system 
grows the clothes on the body surface around the marks 
while maintaining basic cloth constraints via simple 
relaxation steps. The entire computation takes a few 
seconds . After that, the user can adjust the placement of the 
clothes by an enhanced dragging operation. Unlike standard 
dragging where the user moves a set of vertices in a single 
direction in 3D space, our dragging operation moves the 
cloth along the body surface to make possible more flexible 
operations. The user can apply pushpins to fix certain cloth 
points during dragging. The techniques are ideal for 
specifying an initial cloth configuration before applying a 
more sophisticated cloth simulation.  

KEYWORDS: User Interface, Clothing. 

INTRODUCTION 
Putting clothes on a 3D character is often a tedious, 
time-consuming task. A typical approach is to place parts of 
the clothes around the target body as rigid thin plates and 
use a simulation to enforce “stitch-together” constraints and 
show the effects of gravity [23]. The 3D character may be 
placed in a particular pose (e.g., arms outstretched) and then 
some “throwaway” animation may be used to get the 
character into a desired pose [3]. However, placing thin 
plates in free 3D space using a 2D input device is difficult, 
and it is not very flexible for exploring various nonstandard 
ways of wearing clothes . Recent fast cloth simulation 
systems enable real-time manipulation of clothes: the user 
can grab a piece of clothing and drag it around in 3D space 
[7,8]. But this  is like manipulating clothes with chopsticks; 
it’s not ideal for putting clothes on a 3D character.  

In this paper we introduce a set of intera ction techniques 
for putting clothes on a 3D character (here called the body) 

quickly and intuitively using 2D input devices. The 
techniques are designed for specifying an approximate 
initial cloth configuration before applying a high-quality 
cloth simulation to obtain a final, good-looking cloth shape 
or animation. The intention is that the interface should also 
be useful for exploring various cloth configurations quickly 
during the design process , both in 3D character design and 
real-world fashion design. The interaction techniques are 
supported by an underlying approximate simulation 
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Figure 1: Wrapping. The user paints pairs of freeform 
marks on the target body and on the clothes (left); the 
system places the clothes on the body so that the 
corresponding marks match (right). The result appears 
almost instantly.  (The mark numbering has been added by 
hand to clarify the correspondences.) 

 

 

Before dragging    Vertex dragging   Surface dragging 

Figure 2: Surface  dragging. A typical vertex-dragging 
operation moves only one vertex explicitly, causing large 
local distortion. Surface dragging explicitly propagates 
motion across the clothes, enabling global manipulation. 
The pushpin on the shoulder blocks further propagation. 

 



 

technique whose details we describe briefly, particularly as 
they relate to the interactions, but which could be replaced 
by any other sufficiently rapid simulation. Our sole 
requirement is that both the clothing and the 3D character 
be represented as polygonal manifold meshes.  

The first technique, wrapping, is for putting the clothes 
on the body from scratch. The user paints freeform marks 
on the clothes and corresponding marks on the body, and in 
a few seconds the system places the clothes on the body in 
such a way that the corresponding marks match (Figure 1). 
The second technique, surface dragging, is for adjusting the 
configuration of clothes already on the body. While a 
typical cloth-dragging operation moves a set of vertices in a 
single direction in 3D space, our dragging operation moves 
the cloth along the body surface (Figure 2). The user can 
also place pushpins to hold some clothing parts fixed during 
dragging. We describe the user interface of the system first 
and describe the implementations of those operations later.  

RELATED WORK 

The computer graphics community has been interested in 
cloth modeling for decades [14,23]. Early approaches were 
purely geometric [24], but recent systems use physically 
based simulations for generating realistic pictures and 
animations [2,5,6]. Some systems also allow real-time cloth 
manipulation [8]: the user can drag the cloth around in a 3D 
space with appropriate cloth-like behavior, and can even get 
haptic feedback [7]. 

Cloth simulation is common in commercial 3D computer 
graphics programs today [20,22]. The typical interface for 
putting clothes on a 3D character is to set the character in a 
canonical dress-up pose, place the clothes around it as rigid 
objects, and then start a simulation to let the clothes fall into 
a natural position. Some systems let the user specify various 
constraints or motion paths for specific cloth vertices to 
control the simulation.  

The garment-design industry has been using 2D pattern 
design programs (apparel CAD) for years [10,17], and 
recently started incorporating 3D features [1,9]. They use 
predefined mappings between 2D cloth patterns and a 3D 
mannequin surface, where the manipulations in the 2D 
editor appear simultaneously in 3D space. 

Our interface is motivated by the recent sketching 
interfaces for 3D modeling [12,25]. These tools are 
designed for exploratory  design and for communication 
during discussion; they are designed to support ease of use 
in rapid model creation rather than the refined kinds of 
modeling needed in the final design stages. Our goal is to 
develop similar easy-to-use design tools for clothes.  

THE USER INTERFACE 

The system has  two windows: the pattern -design window 
for editing 2D cloth patterns and the 3D window for 
manipulating cloth on a 3D character (the body)(Figure 3). 
The user first edits a 2D cloth pattern in the pattern-design 

window and then puts the clothes on the body  using the 
wrapping operation. The user can then manipulate the 
clothing using surface dragging and pushpins.  

 
Figure 3: A screen snapshot of the system. Pink is the 
inside surface of the cloth, green is the outside, and the 
small gray lines indicate sewing constraints applied by 
the user. 

The 2D pattern editor is a specialized 2D drawing 
program. The user draws pieces of cloth as closed polygons 
that can be freely moved and scaled. Each piece has distinct 
front and back sides, and the user can flip a piece to see its 
other side. The user can also indicate that two edges from 
different pieces are to be connected by specifying sewing 
constraints. The system ma intains equality of the lengths of 
connected edges during pattern editing. We also provide 
simple editing operations such as  duplication of pieces and 
making a piece horizontally symmetric. The 
implementation of the pattern editor is straightforward and 
hence not described here. 

The 3D viewing window works as a typical 3D object 
viewer. The user can rotate and move the body 
three-dimensionally using the right mouse button [15].  

Wrapping 
To put 2D clothes on the body, the user paints freeform 
marks on the cloth pattern and the body using the left 
mouse button (Figure 1). The marks are numbered 
internally based on the order of painting independently on 
the clothes and the body, and marks with corresponding 
numbers are associated with each other.  

After painting the marks, the user presses the “wrap” 
button. The system calculates the desired 3D cloth 
configuration on the body and shows  the result in the 3D 
window. For the examples shown in the figures  here, 
wrapping takes a few seconds in our current 
implementation. After presenting the initial result, the 
system continuously refines the cloth configuration via a 
relaxation operation. Similar mark-based interaction 
technique is used in a feature-based image morphing [4]. 

Wrapping is a best-effort operation. The system tries for 
a reasonable result satisfying the constraints specified by 
the user, but undesirable results can be generated depending 



 

on the configuration of marks. If the problem is small, the 
user can adjust the cloth placement via the surface dragging 
operation. However, if the result has serious topological 
problems such as the body penetrating the cloth, the user 
must cancel the wrapping operation and adjust the 
configuration of marks. 

For the user’s convenience, the system includes a 
“laser-paint” mode [11] in which the user’s mark is 
automatically painted on both the front and back sides of 
the body. In the pattern-design window a laser-painted mark 
is painted on the front-facing cloth piece and the underlying 
back-facing piece (if any). 

Wrapping can also be used to adjust the configuration of 
clothes on the body (called rewrapping) (Figure 4). 
Pushpins may be used to restrict the rewrapped area. 
Rewrapping is especially useful for edits involving 
topological changes (Figure 4 right). 

 
Figure 4: Rewrapping clothes already on the body.  The 
pushpins limit the rewrapping region. 

 

 
Figure 5: Examples of wrapping. In the first, laser-paint 
is used to duplicate marks  front and back; in the 
second, we put a scarf on an octopus. 

Figure 5 shows two examples of wrapping. The system 
generally returns the desired results, but the user must 
provide enough marks to avoid undesirable effects. For 
example , both the front and back sides must be painted to 
put a sleeve around an arm. Otherwise the cloth stays on 
one side of the arm. It is difficult to see the correspondence 
between pairs of marks in a still picture, but is easy for the 
user, who can paint corresponding marks on the pattern and 
the body alternately. 

 

Surface Dragging 
After putting clothes on the body, the user can adjust the 
placement of the clothes using surface dragging . The user 
clicks and drags the clothes using the right mouse button. 
This operation is superficially the same as the typical 
dragging operations in interactive real-time cloth-simulation 
systems . 

In typical cloth-simulation systems [8], a user’s dragging 
operation applies a force to a single vertex, and the system 
simulates  the consequent forces on the rest of the cloth to 
create a larger-scale effect. This approach (which we call 
vertex dragging) is useful for adjusting very local cloth 
shape, but is  inconvenient for more global cloth 
manipulations such as revolving a skirt around a body or 
pulling the sleeve upwards (see Figure 6). Single vertex 
dragging induces large deformations near the vertex,  since 
other vertices resist the motion because of the friction 
against the body. In addition, vertex dragging can only pull 
the cloth and cannot push it – if the user tries to push the 
cloth, flips and folds result near the vertex. Finally, vertex 
dragging is often implemented as an unconstrained 3D 
movement and is therefore difficult to control with 2D input 
devices. Some commercial systems allow the simultaneous 
modification of multiple points, possibly with an 
attenuation factor to ease out the deformation, but these 
vertices are all moved in the same direction in 3D space and 
so it is still cumbersome to move clothing along the body 
surface. 

 
Figure 6: Limitations of conventional vertex dragging: it 
causes large stretch and folds instead of the desired 
upward slide or horizontal rotation of the entire cloth.  

Our surface-dragging operation explicitly propagates the 
user’s input motion across the clothes along the body 
surface to create a global effect. For example, if the user 
drags a vertex upwards, the system explicitly moves the 
surrounding cloth vertices upwards at the same time, and if 
the user drags the front side of a skirt to the right, surface 
dragging actually rotates the skirt horizontally around the 
body (Figure 7). Just as in wrapping, we apply a relaxation 
step after each dragging step to maintain the basic cloth 
constraints. 



 

 
Figure 7: Various dragging approaches: vertex 
dragging (left), rigid dragging (center), surface dragging 
(right). 

Surface dragging is constrained to directions parallel to 
the associated body surface and the user cannot pull the 
clothes away from the body1. The mouse cursor is projected 
onto the tangent plane to the body surface at the click point. 
This makes dragging with a 2D input device much simpler 
and easier than completely free 3D motion. This constraint 
caused us no practical problems during typical operations 
(Figure 8). 

 
Figure 8: Surface dragging. The third example uses two 
pushpins on the back to block propagation. All 
examples run at a few frames per second.  

Pushpins 

The user can control the behavior of the clothes during 
surface dragging and the subsequent relaxation steps by 
putting pushpins on the clothes  (Figure 9). The user places 
or removes a pushpin by clicking on the clothes with the 
                                                                 

1 Note that gravity can pull the clothes away from the body during the 
relaxation steps.  

left mouse button. A pushpin fixes a cloth vertex at some  
position on the body, thus helping in local cloth adjustments 
by blocking the propagation of motion during surface 
dragging. Pushpins are especially useful because dragging 
is a single-mouse operation—pushpins are often necessary 
to perform operations that require two hands in the real 
world. 

  
Figure 9: Surface dragging with pushpin. 

ALGORITHMS 

This section describes the algorithms for calculating the 
cloth configuration during manipulations. First the 
immediate goal position for each cloth vertex is computed 
in response to user input, and then relaxation steps adjust 
the positions to preserve basic cloth constraints such as 
prevention of penetration and limiting stretch. These two 
phases are actually closely integrated, but we describe them 
separately for clarity. We first discuss how to calculate 
immediate goal positions for cloth vertices during wrapping 
and surface dragging, and then describe how to preserve the 
cloth constraints.  

The body and the clothes are represented as standard 
triangular meshes, and each cloth edge has an associated 
rest length . The parameters defining the behavior of the 
algorithms must be set accordingly to the characteristics of 
the target polygonal models. Our current implementation 
uses body models of 1.0~2.0 units in height and width that 
consist of a few thousand polygons.  

Wrapping 

Wrapping tries to put the clothes on the body so that  the 
freeform marks on the clothes match the corresponding 
marks on the body. We begin by triangulating the cloth2, 
since each cloth piece is initially a single polygon. Then we 
construct a single continuous mesh structure by combining 
the pieces of cloth according to the sewing constraints. 
Finally, we compute the geometry of the clothes by building 
a piecewise-linear map f from this mesh to 3-space by 
mapping the vertices one at a time (Figure 10). We’ll say 
that an edge is mapped  if both its vertices have been 
mapped, and that a triangle is mapped if all three of its 
vertices are mapped. The steps are 

                                                                 
2 We start with a constrained Delaunay triangulation and refine it 

iteratively, as in the “skin” algorithm [19]. An alternative triangulation 
algorithm [21] could work as well. The triangles must be small enough 
faithfully to represent the geometry of the body. We use a triangle edge 
length of 0.07~0.08 units. 



 

1 Paste the clothes around the marks by defining f on the 
root edges, i.e., edges that cross marks on the clothes. 

2 Grow the clothes by repeating the following process 
until all triangles are mapped: 

(1) Find triangles with one unmapped vertex;  
(2) Order the unmapped vertices; 
(3) Map the vertices, performing relaxation after 

each. 

To define f on a vertex v of a root edge e that crosses a 
mark m on the cloth corresponding to a mark M  on the body, 
we first find the point p where e  intersects m. The point p is 
some fraction of the way along the mark m; we find the 
point P that’s a corresponding fraction of the way along M 
(we’ll call this a proportional correspondence between m 
and M). The edge e makes some angle a with the tangent 
vector to the mark m at p, and the vertex v is some distance 
d from the mark m. We construct a ray tangent to the body 
at P with angle a  to the tangent to M at P  (see Figure 11) 
and walk3 a distance d in this direction; the resulting point 
is defined to be f(v). If v is an endpoint of multiple root 
edges, this calculation is carried out for each edge and f(v) 
is defined to be the average of the result.4  

   
a) user input   b) triangulation c) root edges d) growing 
the mesh 

Figure 10: Overview of the wrapping process. 
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Figure 11: Mapping root-edge endpoints. 

The remaining task is to grow the cloth mesh starting 
from the already mapped root edges (Figure 10d). For each 
triangle that is already mapped, we check whether the 
vertices around the triangle (i.e., the vertices of triangles 
that share an edge with this one) are already mapped or not. 
                                                                 

3 The “walk” in a given direction is found by traversing the mesh, as 
shown in Figure 11. 

4 The average is computed in space and the skin algorithm’s surface 
tracking is used to find a closest surface point to this result.  

If a vertex is not mapped yet, the system marks it as ready 
(Figure 12) and places it in a priority queue with priority 
given by mesh distance to the nearest mark5. The system 
dequeues the lowest-priority vertex, maps it to the 3D body 
space (see below), and updates the queue based on the 
result. This process is repeated until all cloth vertices are 
mapped. We apply this procedure to the merged cloth mesh; 
sewn edges are treated as a single edge and the clothes grow 
across the sewn edge as usual. 

a
b

c

d

 
Figure 12: Growing process. Blue points and triangles 
are mapped vertices and triangles, red points are ready 
vertices. Vertex a  has one parent triangle and b  has 
two parents. Vertices c and d will become ready once b 
is mapped. 

The position of a newly mapped vertex in the 3D space 
is calculated based on the triangles (which we call parent 
triangles) around the vertex that are already mapped. We’ll 
describe the computation done for each parent triangle; the 
final value is the average of the results .  

Let P be the parent triangle, sharing an edge e with 
another triangle T whose other vertex v needs to be mapped. 
Because the vertices of P are already mapped, there’s a 
plane H in 3-space that contains f(P). Consider the segment 
f(e ) in the plane H oriented so that f(T) lies to its right 
(Figure 13). The basepoint of an altitude from v  to e lies 
somewhere along the line containing e; the distance from v  
to this point is some number d. Find (using a proportional 
mapping) the corresponding point on the line containing 
f(e ), and go a distance d to the right of the directed segment 
to find the point f(v) where the vertex v is mapped relative 
to this parent.  

in 3D space

f(P)

f(T)

d f(v)

f(e)

in 2D space

P

Te

d
v

 
Figure 13: Calculating the position of a newly mapped 
vertex based on a parent triangle. The vertex is placed 
on the plane that contains the parent triangle in the 3D 
space. 

                                                                 
5 The mesh distance, computed by finding the shortest sequence of 

edges between two points, is used instead of geodesic distance because it 
can be computed quickly. 



 

After each vertex is mapped, we apply a relaxation 
process (described below) that tries to keep the edge lengths 
of the already mapped mesh close to the corresponding 
“rest” lengths and prevents flipping of triangles on the body 
(i.e., tries to ensure that the map is orientation-preserving).  

This growing algorithm extends the clothes  using the 
already mapped vertices as guide and ignoring the body as 
long as the cloth does not collide with the body (the 
relaxation step detects and fixes such intersections). An 
alternative is to grow the cloth using the body as guide (see 
Figure 14). We experimented with this, but rejected it 
because of undesirable artifacts such as that shown in 
Figure 15. In general, body-guiding tends to create visually 
distracting folding and overlapping that are difficult for 
relaxation process to fix. 

 
Figure 14: Two possible approaches for growing: 
current approach (left) and growing-on-the-body 
approach (right). 

 
a) current approach     b) growing-on-the-body approach 

Figure 15: Putting a loose sleeve around an arm. The 
growing-on-the-body approach causes undesirable 
folds. 

Surface Dragging 

As discussed before, surface dragging explicitly propagates 
the dragging effect across the cloth vertices (Figure 7). At 
the beginning of a dragging operation, the system constructs 
a dependency graph whose root is near the click-point. Then 
as the user drags the grabbed vertex the system propagates 
the motion vector across the cloth according to the 
dependency graph. The system inserts a relaxation step after 
each dragging step. 

Dependency graphs for surface dragging look similar to 
those for wrapping, but have two major differences. First, 
the dependency graph for surface dragging starts from a 
single root vertex, while that for wrapping starts from 
multiple root edges. Second, each vertex is dependent on 
multiple parent vertices  in surface dragging, while each 
vertex is dependent on parent triangles in wrapping.  

We build the dependency graph incrementally: we start 
with the grabbed vertex as the root, and insert its neighbors 

in a priority queue, with priority given by the distance to the 
root. Distances are calculated based on the edges’ target rest 
lengths (i.e., the lengths of the corresponding edges in the 
cloth mesh). Now vertices are extracted from the priority 
queue and processed until the queue is empty. To process a 
vertex v, we first insert it into the graph and then examine 
its neighbors: if the neighbor vertex n is already in the 
graph, we add a directed edge from n to v. If not, we add the 
length of the edge nv to the priority of v to get a priority for 
n, which we insert in the queue. This process generates a 
directed acyclic graph of vertices with the grabbed vertex as 
the root. 

We now describe how to propagate a motion vector from 
the root node to all other nodes. Just as in the wrapping 
algorithm, we compute a motion vector for each vertex 
from the motion vector for each of its parent vertices  and 
then average the results  to get the true motion vector (which 
may be zero).  

There are two ways to propagate the motion over the 
clothing, one based on the body geometry and the other 
based on the cloth geometry. Figure 16 illustrates the 
difference between the two. The first approach works better 
when the clothes are close to the body surface, but causes 
undesirable motion when the clothes are far from the body. 
The second approach works better when the clothes are 
away from the body, but can be unstable because of its 
recursive nature, especially if significant wrinkles are 
present. Our current implementation uses the first approach 
because of its stability. In addition, the system slightly pulls 
the clothes near the body towards the body at each surface 
dragging step to make it stable (currently, a cloth vertex 
moves towards the nearest body surface so as to halve the 
distance when the distance is less than 0.036). 

 
a) along body geometry     b) along cloth 

geometry 

Figure 16: Two possible approaches to surface 
dragging. Our current implementation uses the first 
one. 

We now describe how to compute a child vertex’s motion 
vector from that of its parent vertex. We first define a local 
coordinate system for each vertex. We use the normal 
vector of the corresponding body surface as the z-axis; we 
let u

r  be a unit vector along the directed edge from the 
parent to the child, and use zzuu

rrrr )( ⋅−  as  the direction of 
the x-axis and the cross product of the two as the y-axis. 
The motion vector for the child vertex is defined as the 
parent’s motion vector mapped from the parent’s coordinate 
system to the child’s. 



 

Pushpins 
Pushpins provide additional control for surface dragging. A 
naïve approach to implementing them is simply to fix the 
pinned vertex and move the other vertices normally, but this 
generates  large distortions around the pinned vertex (Figure 
17). 

naive approach

desirable effect

before dragging

 
Figure 17: Pushpin effect. Naïve  approach causes 
distortion. 

To obtain the desirable effect in Figure 17, we attenuate 
the dragging vectors at the cloth vertices near the pushpin 
and diminish them on the other side of the pushpin (Figure 
18a). This is done by calculating an attenuation ratio for 
each cloth vertex at the beginning of surface dragging; for 
each cloth vertex v, the system computes the mesh distance 
a to the grabbed vertex g, and the mesh distance b to the 
pinned vertex p (see Figure 18b). The system also computes 
the distance c between g and p. 

a b

c p
g

 
a) attenuation of vectors    b) calculation of distances  

Figure 18: Calculating the attenuation ratio. 

Given these distances, the attenuation ratio for the vertex 
is defined as 

1             if      a – b = –c, 
(c – a + b) /  2c  if  –c < a – b < c, 
0             if   c = a – b 

where 1 means full motion and 0 means no motion. 

If multiple pushpins are used, the system calculates the 
attenuation ratio for each pushpin and uses their minimum6. 
The user can conveniently block the surface dragging effect 
by putting in a few pushpins in a row.  

Pushpins are also important in controlling rewrapping 
(see Figure 4). Rewrapping first removes the cloth triangles 
from the 3D scene and then pastes them back around newly 

                                                                 
6 It is possible to use a blend function or the product of pin 

attenuations, but our simple approach shows satisfying results and we opt 
for the simplicity.  

placed marks. But the removal of triangles is blocked by the 
pushpins – the system does not move vertices whose 
distance from the mark is greater than the distance between 
the mark and the pushpins.  

Keeping Clothes on the Body 
We now describe the algorithms for maintaining basic cloth 
constraints during wrapping and surface dragging. This 
section describes the algorithm for handling cloth-body 
collision, and the next section describes the algorithm for 
preventing excessive stretching and folding.  

Collision detection is the most time -consuming part in 
cloth simulation in general [14,23]. In addition, exact 
collision detection can impede placing cloth in the intended 
position. To achieve real-time operation, we ignore 
cloth-cloth collision and handle cloth-body collision in a 
limited way, by simply preventing cloth vertices from 
sinking into the body at each step and ignoring collisions 
between cloth edge and body edge. The sys tem also ignores 
possible collisions during transitions. This simplified 
strategy obviously exhibits flaws in some situations, but it 
is fast and works well for our purpose.  

To detect collisions between a cloth vertex and the body 
surface efficiently, the system keeps track of the nearest 
point on the body surface (track point ) for each cloth vertex 
(this is the strategy used in the skin algorithm [19] for 
tracking the nearest skeleton surface for each skin vertex). 
Whenever a cloth vertex is moved, the system updates its 
track point by locally searching the body surface (Figure 19 
left). Given the track point, detecting collision is a 
straightforward. If the cloth vertex is inside the body 
surface, the system pushes the cloth vertex back to above 
the body surface (Figure 19 right). The system actually 
keeps the cloth vertices a bit away from the body so that 
cloth edges do not penetrates the body surface (the current 
offset is 0.012). A vertex also shares information with its 
immediate neighbors so as to jump from a local solution to 
a distant solution (Figure 20). This migration feature is 
important when a garment spans separate body regions such 
as an arm and a torso.  

This simple approach cannot detect collisions with body 
parts approaching from above or with separate body parts 
that were not covered by the cloth before. This causes no 
practical problems in our experience, but the current simple 
approach must be extended to handle more complex cases 
(see “Additional Algorithm Details ” section). 

 
Figure 19: Each cloth vertex is associated with the 
nearest body surface. A vertex inside of the body is 
pushed back to the body surface. 
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Figure 20: Cloth vertices share information with their 
neighbors. This enables vertex a to find the true 
solution d instead of being stuck with local solution c. 

Relaxation Steps 

Relaxation steps are inserted during wrapping and surface 
dragging to keep the clothes visually plausible by 
preventing excessive stretch and folds. Note that the 
purpose of this relaxation step is to move the cloth towards 
a class of desirable static configurations. Our goal is to add 
useful behavior to cloth so as  to help the user put clothes on 
characters, not to mimic physically realistic behavior. For 
example, our relaxation steps automatically unfold flipped 
clothes, which does not happen in the real world. 

A relaxation step has four parts. First, we try to make 
each edge’s length closer to its rest length to prevent stre tch 
and shrinkage. Second, we try to recover flipped triangles to 
prevent folds. Third, we try  to flatten the cloth at each edge 
of triangle; this corresponds to a dihedral-angle spring and 
helps generate attractive wrinkles. Finally, we mimic the 
effects of gravity and friction.  

Preventing stretch and flip The system addresses  the first 
two goals  simultaneously by adjusting vertex positions so 
that each triangle T  recovers its rest shape (called the 
reference triangle) on the body surface. The reference 
triangle is uniquely defined by the rest length of the edges. 
The system places a copy U of the reference triangle as 
close to T as possible, and moves each vertex of T towards 
its corresponding vertex in this copy of U (Figure 21). U is 
placed in a plane (described below) with the centers of 
gravity, O and O’, of T and U aligned, and is rotated as 
follows . The system computes B'' by rotating B by ∠B'OA' 
around O, and computes C'' by rotating C by ∠C'OA' 
around O. The system rotates U so that 'OA  parallels 

'''' OCOBOA ++ . A similar technique is used in automatic 
texture coordinate optimization [18].  
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Figure 21: Matching a triangle and its  reference 
triangle. 

We’ve found that this triangle-based strategy works 
faster than an edge-based strategy (e.g. [8]) and generates 
better results for our purpose. In addition, it automatically 

recovers flipped triangles if we place the reference triangle 
front-face up. “Face up” is determined by a “temporary 
normal vector.” The temporary normal is the body surface 
normal when the cloth is near the body surface (distance < 
0.012), but is the cloth surface normal when the cloth is far 
from the body (distance > 0.08); the normals are blended in 
the intermediate region. The triangle-based relaxation is 
done on the plane perpendicular to this temporary normal: 
the system projects T to that plane, applies the above 
method above, and then moves the vertices according to the 
resulting vectors (which are parallel to the plane).  

Flattening the cloth We flatten the cloth by moving 
vertices so as to make the dihedral angle at each edge closer 
to 180 degrees . We compute the vectors shown in Figure 22 
for the four vertices associated with each edge; the sum of 
these is then applied to the vertices. This corresponds to the 
dihedral-angle spring found in typical cloth simulations [2]. 

v0=k   a r0 n0

v1=k   a r1 n1 -(v0+v1)/2

-(v0+v1)/2

a r0

r1

n0

n1

 
Figure 22: Each edge on a ridge moves four adjacent 
vertices to become flat. 

Gravity and friction To mimic the effects of gravity, we 
move each cloth vertex downward by a predefined amount 
unless it collides with the body surface (i.e., we make 
clothes fall at a  constant speed). Friction is mimicked by not 
allowing any vertex to be moved if 1) the vertex is in 
contact with the body surface, 2) the requested motion 
vector heads downwards with respect to the underlying 
body surface, and 3) the requested motion vector is smaller 
than a p redefined threshold. 

ADDITIONAL ALGORITHM DETAILS 

This section describes some further implementation details . 
The features described are optional: one can manipulate 
clothes reasonably with the basic algorithms alone, but 
these features help make the system robust and improve the 
user experience.  

Adaptive Subdivision 

As discussed in the previous section, we prevent the 
vertices from sinking into the body but do not prevent edges 
from sinking into the body. This works well when the 
underlying body surface is reasonably flat, but causes 
serious problems for high-curvature regions such as arms 
and legs. The body surface appears on top of the clothes and 
is very distracting.  

This is essentially an aliasing problem, and our solution 
is to adaptively change mesh resolution according to the 



 

curvature of the body surface. A cloth edge is automatically 
split when it intersects the body, and restored when it no 
longer intersects the body (the original edge no longer 
exists in the mesh if it is split, but the system remembers the 
original edge information). We use the 3  subdivision 
scheme [16] because it allows edgewise split/merge and 
generates reasonable mesh patterns (Figure 23). Our current 
implementation allows only one subdivision step for 
simplicity, and this hides most problems sufficiently. 

 
Figure 23: Splitting two edges  with 3  subdivision. 

We use Figure 24 to describe how the system decides 
whether to split an edge. Here, the system needs to know 
whether edge AB intersects the body. It is too expensive to 
do precise collision detection by traversing the body surface, 
so the system performs an app roximate computation using 
local information, that is, the locations of A, B, and P, 
where P is the nearest point on the body to A, which is 
always available from the “skin” algorithm. It is obviously 
not possible to detect actual collision, so we approximate it 
by testing collision with a sphere of radius L  = length(AB) 
that is tangent to the surface at P. The test is approximated 
by (d + L) sinθ < L and (d + L) cosθ < L; if both inequalities 
hold, we split the edge AB. The justification for using L as 
the body’s local radius is that it provides a minimum radius 
that we must worry about. If the body radius is actually 
larger than L, the “vertex is always on the body surface” 
constraint approximately guarantees that the edge does not 
sink below the surface. The system performs the equivalent 
test at B as well. 

!
L L

L d
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Figure 24: Testing an edge for collision with an 
approximating sphere.  

Collision Detection with Bones 

Adaptive subdivision effectively prevents most 
edge-to-edge penetration, but excessive mo vement can 
cause the clothes to penetrate the body. We can ignore small 
amounts of “sinking” because the relaxation process 
gradually recovers from the error, but the system cannot 
recover from significant topological errors such as the cloth 
penetrating the body all the way from one end to the other. 
This happens typically where thin parts such as a neck or an 
arm stick out from the body (Figure 25 center). To prevent 
this, we implemented collision detection against simple 
“bone structures ” (Figure 25 right). A bone  is a simple edge 

defined by two end points, and collision with all bones is 
checked whenever a cloth edge is moved. If a collision 
occurs, the system pushes the cloth edge back to prevent 
penetration. For the human body in Figure 2, we used six 
bones. 

 
Figure 25: Collision detection against simple bones. 

IMPLEMENTATION AND RESULTS 

The current prototype system is implemented in Java™  
(JDK1.4), and uses directX7 for 3D rendering. Figure 26 
shows some clothing designed using the system. The 
clothes have a few hundred triangles and the system 
maintains reasonable frame rates during surface dragging 
on a high-end PC (AMD Athron™ 1.5GHz).  

We have begun an informal user study. It took 
approximately 20 minutes before a user started using the 
system fluently under our supervision. The last image in 
Figure 26 was created by the test user. It took a while for 
the user to learn the peculiar behavior of the clothes in our 
system. The user tended to drag the clothes long way in a 
single interaction, making the system unstable; clothes must 
be moved gradually towards the goal position instead. It’s 
also necessary to release the mouse occasionally during the 
dragging so that relaxation steps can dissolve the 
accumulated distortion. The user also had difficulty in 
designing the clothes of an appropriate size. It would be 
helpful if one could adjust the size of the clothes after 
putting them on the characters.  

    

  
Figure 26: 3D characters in various clothes.  

LIMITATIONS AND FUTURE WORK 
Our current system has several limitations: our techniques 



 

are designed specifically for clothing a character and not for 
manipulating clothes away from a body. We support only a 
single layer of clothes on a body, although we plan to 
extend the system to support multilayer clothes. We also 
plan to support explicit folding of clothes (e.g., collars). But 
to support these, we need to track the nearest object on top 
of each cloth vertex as well as the nearest object under the 
vertex. 

Cloth-cloth collision is ignored in the current 
implementation. Although we believe that this  is a 
reasonable decision given current processor performance, 
we need to incorporate cloth-cloth collision detection in the 
future. That will let us explore more interesting 
cloth-manipulation techniques such as tying a tie. 

Wrinkles are an important part  of clothes design [13]. We 
plan to develop interaction techniques for explicitly placing 
wrinkles on clothes . For example, it might be useful for the 
system to automatically adjust global cloth configuration so 
that wrinkles appear where the user paints freeform marks. 

Some basic interface improvements would be very 
useful: An obvious extension is to let a  user edit the clothes 
in 2D and 3D space simultaneously [8]. We are considering 
several operations such as cutting, stitching, and resizing. 
And our dragging operation should probably interleave 
“relaxation steps” during long drags. 

We believe it is reasonably easy to incorporate our 
cloth-manipulation techniques into existing 3D graphics 
systems because we use standard triangular mesh structures 
for the cloth and the body. A potential difficulty is finding 
appropriate values for the many ad hoc parameters in our 
algorithms (the current values are chosen as the result of 
many experiments). They must be carefully adjusted 
according to object geometry and the user input. 
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Abstract

This paper presents an intuitive, freehand sketching application for Computer Aided Design (CAD) that can

reconstruct a 3D object from a single, flat, freehand sketch. A pen is used to draw 2D sketches consisting of straight and

curved strokes connected at vertices. The sketches are processed by a reconstruction algorithm that uses the angular

distribution of the strokes and their connectivity to determine an orthogonal 3D axis system whose projection correlates

with the observed stroke orientations. The axis system is used to determine a plausible depth for each vertex. This

approach works well for drawings of objects whose edges predominantly conform to some overall orthogonal axis

system. A second, independent optimization procedure is then used to reconstruct each curved stroke in the original

sketch, assuming that the curve is planar. New strokes can be attached to the 3D object, or drawn directly onto the

object’s faces. An implementation of the reconstruction algorithm based on Levenberg–Marquardt optimization allows

objects with over 50 strokes to be reconstructed in interactive time.

r 2005 Elsevier Ltd. All rights reserved.

Keywords: 3D sketching; Pen-based computing; Optimization; Human–computer interaction; Computer graphics
1. Introduction

Visual methods of communication are often the

simplest and most efficient way of conveying informa-

tion about the shape, composition and relationships of

an object’s components. Furthermore, visual informa-

tion often transcends the limitations imposed by spoken

or written languages and is necessary in engineering: a
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major portion of engineering information is conceived,

recorded and transmitted in a visual, nonverbal lan-

guage [1]. In spite of this, little work has been done to

create fast, intuitive sketch-based computer aided design

(CAD) interfaces for engineers and designers. Conven-

tional CAD user interfaces are typically cumbersome to

use and hamper creative flow.

Freehand sketching, the informal drawing of shapes

using freeform lines and curves, has remained one of the

most powerful and intuitive tools used at the conceptual

design stage. Sketches, in contrast to typical Computer

Aided Designs, can quickly and easily be created to

convey shape information. Simple paper-based sketch-

ing also has many drawbacks: the viewpoint is fixed and

cannot be changed in mid drawing; the sketch is passive

and cannot be directly simulated or analyzed using

computational engineering tools (e.g. structural analysis

or kinematic simulation); the sketch is tentative and if a
d.
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Fig. 1. A user creating, rendering and rotating a shape with a

see through hole using the proposed system on a Tablet PC.
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final, accurate model is desired, it must be recreated

from scratch. The ideal solution from a designer’s point

of view should combine both the speed and ease of

freehand sketching with the flexibility and analytical

abilities of CAD tools.

This paper presents an intuitive, pen-based sketching

tool that can reconstruct a 3D object from a single, flat,

freehand sketch without relying on a database of

existing models. As shown in Fig. 1, a user can make

an initial sketch, reconstruct it, and add detail using a

consistent sketching interface. The proposed system can

reconstruct sketches consisting of both straight lines and

planar curves. A series of optimization-based recon-

struction algorithms are used to achieve this goal. The

optimization algorithms run in interactive time on

complex sketches, providing a seamless interface for

the construction and refinement of 3D objects.
2. Previous work

Systems that use sketch-based input have been the

focus of much research. Stahovich et al. [2] demon-

strated a system that could interpret the causal

functionalities of a 2D mechanism depicted in a sketch,

and generate alternative designs. Davis [3] recently

showed a system that simulated rigid-body dynamics

of a sketched 2D mechanism. These systems are largely

2D.

Fig. 2 outlines the reconstruction of a 3D object from

a 2D sketch, in which any arbitrary set of depths fZg

that are assigned to the vertices in the sketch constitutes

a 3D configuration whose projection will match the

given sketch exactly. In principle, each such assignment

yields a valid candidate 3D reconstruction. A consider-

able amount of research has focused on the reconstruc-

tion of polyhedral objects from straight-line sketches.

Line labeling approaches [4,5] classify each line as

convex, concave or occluding edge without explicitly
reconstructing 3D shapes. Several methods construct

relationships between the slope of sketch lines and the

gradients of the associated 3D faces in an attempt to

constrain the number of possible interpretations [6,7].

Other methods construct 3D objects incrementally by

attaching facets sketched by the user in 2D [8,9]. A

gesture-based system for interactively constructing 3D

rectilinear models was proposed by Zeleznik et al. [10].

Other approaches to the reconstruction problem require

the assumption that the 3D elements in a scene are

specified entirely by known primitives [11]. Though

restrictive, this allows the reconstructed scene to be

specified with a convenient solid geometry.

Optimization-based reconstruction determines the

depth assigned to the sketch vertices by optimizing a

target function. These methods are more general than

the approaches above and can be used to reconstruct

relatively complex 3D objects. Optimization-based

approaches characterize the relationship of a 2D sketch

to an underlying 3D object using systems of linear

equations for which the existence of solutions is a

sufficient criterion for reconstruction. Linear program-

ming optimization techniques may provide these solu-

tions [12,13]. Another approach is taken by Lipson and

Shpitlani [14]: 2D sketches are converted to line and

vertex graphs, which are analyzed for regularities such

as parallelism, perpendicularity and symmetry. Regula-

rities in the 2D sketch plane are then weighted according

to the probability that they correspond to 3D geome-

trical relationships, and summed to produce an overall

compliance function that estimates how well the 3D

construction conforms to the regularities in the 2D

sketch. Reconstruction proceeds by optimizing this

compliance function. There are also statistical ap-

proaches to optimization-based reconstruction [15,16].

The correlation between the 2D angles formed by lines

in the sketch plane and the angle between these lines in

3D space are learned from a large number of computer-

generated 3D shapes and the corresponding projections

of these shapes onto a viewing plane. These 2D–3D

geometric correlations are then used to determine the

most likely 3D shape corresponding to a set of 2D

angles, by optimizing over possible assignments of depth

values.

While flexible, optimization-based methods suffer

because the optimization surface itself may contain

many local minima that make it difficult to find the

global minimum, while the computational complexity of

the optimization process grows rapidly in the number of

vertices and lines in a sketch. In contrast to the number

of approaches for reconstructing polyhedral objects

specified by straight line sketches, there are relatively

few reconstruction algorithms that can be applied to

sketches of 3D objects with curves. The best-known such

work is the Teddy system proposed by Igarashi et al.

[17], which uses a sketch-based interface to specify the
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Fig. 2. A sketch provides only two of the coordinates ðx; yÞ of object vertices. A 3D reconstruction must recover the unknown depth

coordinate z. In parallel projections, this degree of freedom is perpendicular to the sketch plane; there are an infinite number of

candidate objects—the problem is indeterminate. Each candidate object is represented by a unique set of Z coordinates, e.g. sets fZ1g,

fZ2g and fZ3g.
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boundaries for reconstruction of a curved solid. This

system cannot be used to reconstruct polyhedral objects,

or objects that mix straight lines and curves.

The 3D sketching system proposed in this paper uses a

fast, optimization-based reconstruction algorithm that

chooses a plausible three-connected sketch vertex to

serve as a 3D axis origin based on the angular

distribution of the lines in a sketch, and reconstructs

the depths of the three vertices at the opposite ends of

the attached strokes. Depths are then assigned to the

other sketch vertices by propagation across the con-

nectivity graph given by the sketch. This approach

allows the reconstruction of 3D objects with a con-

nectivity graph whose edges conform to an underlying,

orthogonal axis system. Following reconstruction of the

sketch vertices, a second optimization procedure recon-

structs each curved stroke.
3. 3D sketching system

The sketching system attempts to create an experience

similar to drawing with pencil and paper. The applica-

tion was implemented using the Microsoft Tablet PC

API. An example session is shown in Fig. 2. The system

allows users to make an initial sketch by drawing strokes

using the pen, reconstruct it, and subsequently add new

strokes. Following the initial reconstruction, the sketch

can be rotated, rescaled or resized. Each stroke is treated

as an independent object, and can be erased or modified

by the user either pre- or post-reconstruction.

The user interface relies entirely on the pen. A session

begins with an initial sketch specified by a set of loosely

connected strokes in the sketch plane given by the

digitizer surface. Each potentially curved stroke is

assumed to be piecewise linear, and is represented
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internally by the location of its two endpoints and a

series of values specifying the location of each point

along the length of the stroke.

Each new stroke is split into smaller strokes if one or

more corners are detected using the methods proposed

by Shpitlani and Lipson [18]. Strokes may intersect in

the sketch plane, but these intersections are not taken to

represent intersections in 3D space; at this stage, strokes

may be joined only at the endpoints. The reconstruction

process is triggered by pressing on the pen’s barrel

button. As a first step toward reconstruction, all stroke

endpoints within a specified distance of one another are

connected using an approach given by Shpitlani and

Lipson [18]. The 2D sketch can now be interpreted as a

connectivity graph (or straight-line graph) representing

the 2D orthographic projection of a 3D object onto the

plane z ¼ 0, with vertices given by the connections

between strokes and edges specified by the straight line

connections between vertices.

The reconstruction process first determines the 3D

position of all sketch vertices, while all curved strokes

are treated as straight line connections between vertices,

after which all points along each curve are recon-

structed. The system then identifies circuits in the

connectivity graph and constructs triangulated faces

for each circuit. The reconstruction algorithms run in

interactive time, allowing for a fluid interaction with the

system. The reconstructed shape can be rotated and

resized by dragging using the pen.

Strokes can be added, deleted or partially erased at

any time. If a new stroke’s endpoint is near a

reconstructed 3D feature (vertex, stroke or face), its

position is automatically interpolated from the 3D

object. Strokes sketched directly onto a planar face are

automatically reconstructed by interpolating the posi-

tion of the stroke’s points from the face. A stroke

deletion or erasure will automatically cause removal of

any faces containing the stroke.

The reconstruction algorithm and the methods by

which subsequent strokes can be added to the sketch are

described in the following sections.
4. Sketch reconstruction

Since the ðx; yÞ coordinates of each vertex are given in

the sketch, reconstructing a 3D object requires assigning

a z coordinate (also termed the depth value) to each

vertex, subject to constraints on the characteristics of the

resulting 3D object. It is assumed that the sketch vertices

are connected i.e. that a path can be constructed from

each vertex to every other vertex. It is further assumed

that none of the vertices or strokes in the sketch

completely obscures other elements of the same kind.

Though the reconstruction algorithm proposed in this

paper requires that at least one vertex be connected to
three strokes that represent projections of the 3D axis

system, the algorithm can also be adapted to reconstruct

an independent 3D axis system that is not directly

associated with any vertex in the sketch.

The algorithm is intended to reconstruct 3D objects

whose vertices can be connected by a spanning tree

consisting of straight lines aligned with one of 3

orthogonal axes. Sketches consisting of connected

planar curves can also be reconstructed, provided that

the underlying straight line connectivity graph satisfies

this requirement. Though these requirements are re-

strictive, this approach works well for drawings of

objects whose edges predominantly conform to some

overall orthogonal axis system, which includes a wide

range of engineering design drawings. Objects without

an underlying rectilinear frame cannot be reconstructed

using this method, but this approach can still be to

partially reconstruct the object before a more general

optimization-based approach [14] is used to complete

the reconstruction.

The reconstruction process proceeds as follows:
(1)
 The distribution of the 2D angles of all straight lines

connecting sketch vertices is tested for the presence

of three or more significant peaks. If these are found,

the sketch is considered to have one or more

underlying 3D axis systems, which are then identi-

fied.
(2)
 The identified 3D axis systems are reconstructed

from their 2D projections in the sketch plane and

used to reconstruct all sketch vertices.
(3)
 The points along each curved stroke in the original

sketch are reconstructed using a separate reconstruc-

tion procedure, under the assumption that each

stroke is planar.
(4)
 Connected circuits of approximately coplanar sketch

vertices are identified and used to generate the

object’s faces.
Once the 3D object has been reconstructed, the user can

rotate it, add additional strokes, or sketch directly onto

the object’s faces.

The reconstruction steps are described in more detail

below.

4.1. Identifying axis systems

Since orthogonality is the prevailing trend in most

engineering drawings, and the easiest to identify, a

statistical analysis of the direction of lines in the sketch

is performed to determine whether these are consistent

with the projections from an underlying orthogonal axis

system. The angular distribution graph (ADG) for a set

of lines is a discrete histogram of the 2D angles of the

lines relative to the sketch plane.
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The ADG is constructed by taking each angle to be

the mean of a Gaussian distribution with a fixed

variance to reduce sensitivity to noise. The resulting

sum of Gaussians is then sampled at 1� intervals to yield

the discrete ADG. A discrete, rather than continuous,

graph is used to facilitate correlation-based similarity

measures. Peaks in the ADG show the prevailing sketch

angles; the ADGs of most polyhedral 3D objects have

clear peaks. The reconstructed object’s axis system

should thus have a spatial orientation such that it

projects onto the sketch plane at angles corresponding

to maxima in the ADG. Fig. 3 shows a 2D sketch and

the ADG of the associated straight line sketch.

The local ADG of a vertex is the ADG of all lines

attached to the vertex. The first step in the reconstruc-
Fig. 3. (a) A 2D sketch with a single distinct axis system, (b) its angu

axis vertex circled in red, (d) the sketch’s minimum spanning tree (M
tion process is to select a vertex whose local ADG is

most similar to the ADG of a representative set of lines.

The similarity between any two discrete ADGs is

measured using linear correlation. The vertex whose

local ADG has the highest correlation with the ADG of

the representative set of lines is chosen to be the origin of

an axis system. The three lines attached to this vertex

represent the projection of the axes onto the sketch

plane.

The depth of each vertex is determined by the

projection of the connected lines onto the main axis

system. Given that the sketch graph is connected, it is

possible to construct a spanning tree that connects each

vertex to the axis origin. Depth values are then

propagated along this tree, beginning at the axis
lar distribution graph (ADG). (c) The sketch with the identified

ST) rooted at the selected vertex.
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endpoints. The weight assigned to the 2D line direction

vector vn ¼ ½xn; yn� associated with line n is given by

max
va2fv1 ;v2 ;v3g

jxnxa þ ynyajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

n þ y2n
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
a þ y2a

p , (1)

where fv1; v2; v3g is the set of 2D vectors that make up

the axis system.

A maximum weight spanning tree (MST) is used to

determine the propagation path from the main axis to

each vertex. The MST is the tree that connects all sketch

vertices such that the sum of the weights of all edges in

the tree is maximized. The MST constructed with the

weights given by Eq. (1) connects all of the vertices in the

sketch while avoiding those lines that are not highly

aligned with the main axes; using it to determine the

depth values of each vertex therefore minimizes the

propagation of reconstruction errors. The MST is

determined using Prim’s algorithm [19]. The algorithm

begins using only the main axis vertex and the projected

axes. The tree is then iteratively expanded by selecting

the connected line with the highest weight.

The representative ADG and MST for the sketch are

determined iteratively in order to minimize the effects of

atypical lines using the following algorithm:
(1)
 Select all lines
(2)
 Build the ADG of selected lines
(3)
 Select an axis vertex using the ADG and assign line

weights
(4)
 Generate the sketch MST and select the lines in the

MST
(5)
 If this selection differs from the previous selection,

goto step 2
It is assumed that a single MST can be constructed such

that all vertices are connected by strokes that are aligned
Fig. 4. (a) A 2D sketch with two distinct axis system
with a single set of 3D axes. If this process does not

converge on a single MST after a several iterations, the

2D sketch cannot be reconstructed with the proposed

method. An example MST is shown in Fig. 3.

The class of sketches with two distinct axis systems

cannot be reconstructed in their entirety with the

proposed algorithm. Fig. 4(a) shows a sketch with two

axis systems. The sketch ADG shown in Fig. 4(b) has

five distinct peaks, as opposed to the three found in the

ADGs of sketches with a single axis system such as

Fig. 3. If the sketch was drawn using two or more

distinct axis systems, the MST construction process will

not converge.

4.2. Reconstructing vertex depths

The origin of the main axis system is assumed to have

a depth of zero. The depth component of the axis line

vectors must be determined in order to reconstruct the

main axis system. The x and y components of each axis

are given by the vectors fv1; v2; v3g. The unknown z

components z1, z2, and z3 are the values that minimize

an optimization function based on two assumptions

about an ideal sketch:
(1)
s an
Since the axis vectors are, ideally, perpendicular to

one another in 3D space, the angle between any two

axes should be 90� and the cosine of the angle should

be 0.
(2)
 If the length of each line in the sketch plane

corresponds to its length in 3D, the difference between

the ratio of the axis lengths in the sketch plane and the

ratio of their lengths in 3D space should be 0.
Note that the second assumption imposes restrictions on

the sketch viewpoint: viewpoints where the orthographic
d (b) its angular distribution graph (ADG).
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projection of the object onto the 2D sketch plane

produces axes with very different lengths will result in

reconstructed 3D axes with very different lengths.

The optimization goal is therefore to minimize the

following cost function f ðz1; z2; z3Þ:

f ðz1; z2; z3Þ ¼ cos2 y21 þ cos2 y32 þ cos2 y31

þ o r21 �
jp2j

jp1j

� �2

þ r32 �
jp3j

jp2j

� �2
 

þ r31 �
jp3j

jp1j

� �2
!
,

¼
p1  p2

jp1jjp2j

� �2

þ
p3  p2

jp3jjp2j

� �2

þ
p1  p3

jp1jjp3j

� �2

þ o r21 �
jp2j

jp1j

� �2

þ r32 �
jp3j

jp2j

� �2
 

þ r31 �
jp3j

jp1j

� �2
!
, ð2Þ

where p1; p2; p3 are the 3D axis vectors, rmn is the ratio of

the length of axis lines pm and pn as measured in the

sketch plane, and ymn is the angle between pm and pn.

The weighting factor o allows a tradeoff between the

angular and length constraints. Note that this function

has a global minimum at 0.

Since Eq. (2) can be explicitly differentiated, the

Levenberg–Marquardt method [20] can be used to

determine a solution for this nonlinear optimization

problem. This fast nonlinear optimization method is an

iterative variation of the Newton method for nonlinear

optimization and relies on computation of the Jacobian

matrix

J ¼
df

dz1
;
df

dz2
;
df

dz3

� �
. (3)

The partial derivative df =dz1, for example, is given by

df

dz1
¼ � 2

p1  p2

jp1jjp2j

� �
z2

jp1jjp2j
þ
p1  p2

jp2j

� �
z1

jp1j
3

� �

� 2
p3  p1

jp3jjp1j

� �
z3

jp3jjp1j
þ
p3  p1

jp3j

� �
z1

jp1j
3

� �

þ 2o r21 �
jp2j

jp1j

� �
z1jp2j

jp1j
3

� �

þ 2o r31 �
jp3j

jp1j

� �
z1

jp1jjp2j

� �
. ð4Þ

Once the values of z1, z2, and z3 have been determined,

the four vertices attached to the axis system are

considered to have been reconstructed. The MST can

then be used to determine the depths of all other sketch

vertices. The depth of any vertex attached to an already

reconstructed vertex by a line with direction vector pn ¼

½xn; yn; zn� in the MST is determined by first reconstruct-

ing the missing depth component of this vector, then
adding it to the depth value of the already reconstructed

endpoint. The unknown depth component zn is recon-

structed by first selecting the axis vector pa 2 fp1; p2; p3g
that maximizes the 2D projection ðxnxa þ ynyaÞ=
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

n þ y2n
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
a þ y2a

p
Þ, then choosing the value of zn that

minimizes the equation

1�
xaxn þ yayn þ zaznffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
a þ y2a þ z2a

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

n þ y2n þ z2n
p

 !2

. (5)

Note that this equation will reach a global minimum of 0

when the direction vector is coincident with a 2D axis

vector. This process begins at the axis origin, which has

depth 0, and proceeds first to the other vertices

connected to the attached axis lines, then throughout

the remainder of the MST.

Many alternative methods of constructing the 3D axis

system are possible within the formulation presented

above. For example, rather than select an axis vertex, an

alternative approach is to construct an independent,

unattached 3D axis system that will fit the peaks of the

ADG. This produces an orthogonal axis system except

in degenerate cases, but is more computationally

intensive than the ADG algorithm.

4.3. Reconstructing curved strokes

Sections 4.1 and 4.2 dealt with the reconstruction of

sketch vertices using a connected straight line graph

extracted from the original sketch. Those strokes in the

original sketch that cannot be represented by a straight

line must also be reconstructed. This is accomplished by

a second reconstruction algorithm that processes each

stroke independently. The ðx; yÞ locations of every point

in a curved stroke are specified in the sketch; the depth

of each point in the curve must be determined by the

reconstruction process.

Though a stroke can specify an arbitrary path in three

dimensions, it is difficult to sketch an arbitrary,

unambiguous 3D path entirely by projection onto the

sketch plane. The stroke reconstruction algorithm

therefore relies on the underlying assumption that each

curved stroke is planar, though the parameters of the

planar equation are unknown. The goal of the curve

reconstruction process is to determine a plane onto

which the user might plausibly have drawn the stroke.

The depth of each point in the curved stroke is then

determined by projection onto the plane (Fig. 5).

The planar equation aðx � x0Þ þ bðy � y0Þ þ cðz �

z0Þ ¼ 0 has 3 unknowns ½a; b; c�T, which specify the

planar normal vector; these must be determined by the

reconstruction algorithm. Since the plane is constrained

by the requirement that it contain the line v passing

through both of the curve’s end points, it is possible to

determine the planar normal by optimization over a

single variable. An initial planar normal n0 ¼ ½a0; b0; c0�
T
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Fig. 5. A 3D axis system with an attached curved stroke, and two possible stroke planes, indicated in light gray. Each projection plane

contains the line connecting the two curve endpoints (indicated by the vector). The depth value zn (where depth is defined into the

screen) for each point ðxn; ynÞ along the curve are recovered by projection onto the underlying plane. The plane in (a) has the optimal

orientation as given by the solution to Eq. (10). The plane in (b) is an implausible plane, which will yield projected depth points well

outside the range specified by the two endpoints.
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is constructed so that it is perpendicular to v. All other

allowable normals can then be constructed by rotating

the initial normal by an angle y around v to yield the

rotated normal ny ¼ ½ay; by; cy�
T:

ay

by

cy

2
64

3
75 ¼ Ay½ �

a0

b0

c0

2
64

3
75, (6)

where Ay is a 3� 3 rotation matrix that specifies a

rotation of angle y around v. Following rotation

of the normal, the equation of the projection plane is

given by ayðx � xaÞ þ byðy � yaÞ þ cyðz � zaÞ ¼ 0, where

ðxa; ya; zaÞ is the first stroke endpoint, which is located at

one of the reconstructed sketch vertices. The planar

equation can likewise be specified by ayðx � xbÞþ

byðy � ybÞ þ cyðz � zbÞ ¼ 0, where ðxb; yb; zbÞ is the sec-

ond, similarly reconstructed stroke endpoint.

The optimization function relates the depth value for

a particular stroke point to the depths of the stroke’s

endpoints. The optimization function is based on the

assumption that the most likely stroke plane for most

simple planar curves is the one that causes the mean

depth of the stroke points to fall between the depths of

the stroke endpoints:

f ðnÞ ¼ ðzn � zaÞ
2
þ ðzn � zbÞ

2. (7)

It can be shown that this function has a minimum when

zn ¼ ðzb þ zaÞ=2; minimizing this function over the

collection of stroke points will produce mean projected

depths that are close to the midpoint of the range

between zb and za. Since zn is determined by projection

onto the plane with normal ny passing through the

stroke endpoints ðxa; ya; zaÞ and ðxb; yb; zbÞ, Eq. (7) may
be rewritten as a function of y and the stroke points

ðxn; ynÞ

f ðy; nÞ ¼
ayðxn � xaÞ þ byðyn � yaÞ

cy

� �2

(8)

þ
ayðxn � xbÞ þ byðyn � ybÞ

cy

� �2

. (9)

The optimization goal for a curved stroke with N points

is to find ymin, where

ymin ¼ argmin
y

XN

n¼1

f ðy; nÞ. (10)

The normal of the optimal projection plane is given by

nymin
.

In many sketches, the projection plane for curved

strokes is often related to the other sketch elements. In

particular, the normal of the projection plane is often

aligned with one of the sketch axes, or with one of the

other lines connecting the stroke endpoints. In practice,

the optimal projection plane normal is determined by

first searching over quantized values of y to determine a

set of normal vectors ny, each of which maximizes the

projection onto a single sketch line vector. The optimal

normal is chosen from this set as the one that minimizesPN
n¼1 f ðy; nÞ. If the smallest value of

PN
n¼1 f ðy; nÞ

measured over this set exceeds a specified threshold,

ymin is determined by exhaustively searching over a set of

quantized angular values.

4.4. Constructing faces

The object’s constituent faces must be identified in

order to convert the set of 3D vertices and strokes
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generated by the reconstruction algorithms into a solid.

Several works (e.g. [21]) specify methods of identifying

faces in 2D sketches. These algorithms are computa-

tionally intensive and relatively complex to implement,

however. In this work, faces are identified by recursively

searching the connectivity graph of the reconstructed 3D

object for cycles of approximately coplanar lines using a

fast, greedy search algorithm.

Since each of the object’s faces are subtended by a

plane, the sketch faces are triangulated by projecting

each stroke’s points onto the underlying plane, assuming

that each descendant face is a hole. Holes are handled by

projecting the hole contour onto the underlying plane.

The resulting set of 2D contours are then triangulated

using a Delauney triangulator capable of handling holes

[22]. The resulting triangle mapping is then applied to

the 3D points making up each stroke. This approach

works well for faces comprised of approximately linear

strokes. For faces composed of four strokes, with curved

and straight lines appearing in alternate progression, the

triangulation is determined using ruled surfaces [23].

More advanced methods (e.g. Coons patches) must be

investigated to handle more complex cases.
5. Adding features

The endpoints of all new strokes that are added to the

sketch are classified as one of the following:
(1)
 overlapping an existing reconstructed vertex, in

which case this endpoint is linked to the vertex;
(2)
 lying on a stroke in the 3D object, in which case

depth information for the endpoint is determined by

interpolating along the 3D stroke;
(3)
 embedded within a face, in which case the endpoint’s

depth is determined by projection onto the face. A

cycle of strokes whose vertices are all embedded into

the same face are said to constitute a descendant

face. Faces are stored as a tree; the immediate

descendants of a face at the top level are treated as

holes.
If none of the above are true, the endpoint’s depth is

determined using a general but computationally inten-

sive reconstruction algorithm based on the work by

Lipson and Shpitlani [19]. The optimization cost

function is the sum of separate cost functions given by

the parallelism, isometry and orthogonality of the

resulting 3D shape:

f ðvm; vnÞ ¼ ð1� jhvm; vnijÞ

þ 1�
minðjvmj; jvnjÞ

maxðjvmj; jvnjÞ

� �
þ ðjhvm; vnijÞ, ð11Þ
where the vector vn ¼ ½xn; yn; zn� is the vector given by

the difference between the endpoints of stroke n, hvm; vni

is the normalized inner product of vm and vn, and jvnj is

the vector magnitude. The optimization cost for a sketch

consisting of N strokes is given by
PN

m¼1

PN
n¼m f ðvm; vnÞ.

A hill-climber [24] is used to minimize the total cost.
6. Results

The performance of the axis reconstruction algorithm,

and the effect of the length ratio weight o on the

reconstructed axis systems, were verified by generating

and reconstructing multiple random 2D axis systems.

The first axis vector was taken to be the 2D vector ð0; 1Þ.
The second axis was generated by rotating the vector

ð0; 1Þ by a random angle f1 and setting its length to a

random factor r1. The third axis vector was generated by

rotating the second by a factor f2 and randomly setting

its length to be r2. The values were chosen such that

0pf1 þ f2p180� and 0:5pr1; r2p3. A successful re-

construction generated an assignment of depth values to

each axis such that the mean angle mymn
between the

resulting angle satisfied 70omymn
o110. Fifty different

randomly generated axes were used to evaluate perfor-

mance for five different values of o ranging from 1 to 0.

The relative importance of length ratios in the optimiza-

tion function increases as o increases.

Fig. 6 shows the mean angle between the recon-

structed axes (in degrees) and the mean ratio between

the longest and shortest reconstructed axes as a function

of the weighting term o, as well as the percentage of

random axes that were successfully reconstructed. The

percentage of successful reconstructions is encoura-

gingly high, though it drops as o increases; this is to

be expected since the length ratio criterion necessarily

limits the number of 3D axis systems that can be

successfully reconstructed from a given 2D axis. The

mean inter-axis angle mymn
moves toward the ideal, value

of 90� as the effect of axis lengths are reduced, though

the mean length ratio mlength increases, resulting in axis

lengths that vary considerably. This suggests that the

value of o can be used to determine the elongation of the

reconstructed 3D shape.

The curved stroke reconstruction algorithm was tested

on several different symmetric and asymmetric curves

where the distance jzb � zaj between the depths of the

two stroke endpoints was varied from 0 to 1. The

algorithm generated plausible reconstructions for curved

strokes at different orientations drawn using the same

set of fixed endpoints. The reconstruction was most

plausible for small to moderate values of jzb � zaj, and

for strokes with a high degree of curvature, though this

is to some extent subjective for each user. The stroke

planes for strokes with little to no curvature were

difficult to determine, largely because the relative
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�1

r1
�2

r2

� 1 0.1 0.01 0.001 0

%success 80% 84% 96% 98% 96%

��mn 86.98° 89.78° 89.69° 90.18° 90.18°

�length 1.25 1.24 1.32 1.58 2.09

Fig. 6. A 2D axis system composed of a single fixed axis and two randomly constructed axes with lengths r1 and r2 and relative

rotation angles f1 and f2, respectively. The table shows the percentage of successfully reconstructed 3D axis systems, as well as the

mean inter-axis angle mymn
and mean length ratio mlength measured over the reconstruction of 50 randomly constructed 2D axes.
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importance of the orientation of the projection plane

decreases as the stroke curves become less pronounced.

The reconstruction algorithm was not found to incur

significant computational overhead for angular incre-

ments of 0.05 rad, and sketches containing up to 10

curved strokes. Since the error term is analytically

differentiable, fast optimization techniques may also be

employed to reduce computational overhead.

The curved stroke reconstruction algorithm exhibited

a strong dependence on viewpoint. In cases where jzb �

zaj was small, curved strokes were always reconstructed

using a projection plane that was nearly parallel to the

sketch plane. Furthermore, relatively small variations in

the shape of the sketched curve could result in very

different reconstructions. Finally, since the curve recon-

struction process occurs after the sketch vertices have

been reconstructed, the reconstructed vertices may

occupy slightly different positions in 3D space than

intended by the user, which affects the correspondence

of the 2D curve with the intended 3D curve. Further

study is required to establish the impact of these

considerations on the correspondence between the

reconstructed 3D curve and the intended 3D curve.

The reconstruction algorithm performed best on

sketches that exhibited strong orthogonal trends, and

whose strokes were highly correlated with the underlying

axis system, a class of sketches that includes the majority

of engineering diagrams. Because the computationally

intensive nonlinear optimization is used only to recon-

struct the main axis system, rather than depths of all

sketch vertices directly, the algorithm can process

sketches composed of 50 or more strokes in interactive

time on a Pentium 4 Tablet PC notebook computer.

An example demonstrating the reconstruction of

several sketches incorporating both straight and curved

strokes is given in Figs. 7 and 8. The example also

demonstrates the addition of holes to the 3D objects,

and the performance of the general reconstruction

process that optimizes Eq. (11). In all of these examples

o ¼ 0:01.
7. Conclusions and future work

This paper presented a pen-based sketching system for

progressively constructing 3D objects from single free-

hand sketches. Sketches representing the orthographic

projection of a 3D object onto a sketch plane are treated

as graphs consisting of vertices connected by the sketch

strokes. The reconstruction problem consists of assign-

ing a depth value to each vertex, and subsequently

reconstructing each curved stroke. This is accomplished

by a two stage reconstruction process. The first stage

tests a straight line sketch extracted from the original for

the presence of prevailing angular trends and uses these

to determine a 3D axis system that maps 2D lines onto

3D lines. This axis system is used in combination with

the sketch connectivity graph to assign a depth to each

vertex. The second stage reconstructs curved strokes,

under the assumption that they are planar. Following

reconstruction, the 3D object’s faces are identified and

triangulated. Users can then add additional strokes, and

sketch directly onto the object’s faces. The system is

implemented with a consistent pen-based interface that

mimics pencil and paper sketching, and can reconstruct

sketches of up to 50 strokes in interactive time.

Future work on the ADG reconstruction algorithm

will address the reconstruction of shapes that do not

exhibit pronounced angular trends, or that have strokes

with large deviations from the underlying axis system.

Future work on the curve reconstruction algorithm will

address the problem of jointly reconstructing multiple

curves in order to increase the symmetry of the 3D

object. Furthermore, examination of the optimization

surface for several curved strokes showed a plateau

around the global minimum, suggesting that there are a

range of possible stroke planes that might yield very

similar results. Adding a term that maximizes the

projection of the planar normal onto the sketch axis

system to the optimization function might differentiate

between these planes, and allow the overall angular

trends in the sketch to be incorporated into the curve
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Fig. 7. (a) Symmetrical unreconstructed straight-line 2D sketches and the accompanying reconstructed 3D shapes from two

viewpoints. Reconstruction times are given for a Pentium 4M 1.7Ghz Tablet PC.

M. Masry et al. / Computers & Graphics 29 (2005) 563–575 573
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Fig. 8. Two sketches of shapes with mixed curved and straight lines, the underlying straight-line graphs used to reconstruct vertex

depths, the reconstructed objects, an alternate viewpoint.

M. Masry et al. / Computers & Graphics 29 (2005) 563–575574
reconstruction process. Finally, research on the construc-

tion of plausible 3D surfaces from object faces consisting

of multiple curved planar strokes is also required.
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Abstract
This paper presents a freehand, sketch-based interface forComputed Aided Design (CAD) engineering design and
finite element analysis. After a user sketches a two dimensional sketch consisting of connected straight and curved
strokes, the sketch is processed by two optimization-basedreconstruction algorithms that can reconstruct sketches
of 3D objects made up of straight lines and planar curves. Theproposed implementation allows certain types
of objects with over 50 strokes to be reconstructed in interactive time. Following reconstruction, the structural
properties of the 3D shape can be examined using finite element analysis. The object can quickly be modified
using the pen-based interface according to the results of the analysis. The combination of a rapid, sketch-based
design interface and finite element analysis allows users toiteratively design, analyze and modify 3D objects in
an intuitive and flexible way.

Categories and Subject Descriptors(according to ACM CCS): I.3.6 [Computer Graphics]: Interaction Techniques

1. Introduction

Visual methods of communication are often the simplest and
most efficient way of conveying information about the shape,
composition and relationships of an object’s components.
Visual information often transcends the limitations imposed
by spoken or written languages. Engineering information, in
particular, is often conceived, recorded and transmitted in a
visual, non-verbal language. Little work has been done, how-
ever, to create fast and intuitive conceptual interfaces based
on visual input. Conventional CAD user interfaces are typi-
cally cumbersome to use and hamper creative flow.

Freehand sketching, the informal drawing of shapes us-
ing freeform lines and curves, has remained one of the most
powerful and intuitive tools used at the conceptual design
stage. Sketches, in contrast to typical CAD designs, can
quickly and easily be created to convey shape information.
Simple paper-based sketching also has many drawbacks: the
viewpoint is fixed and cannot be changed in mid drawing;
the sketch is passive and cannot be directly simulated or an-
alyzed using computational engineering tools (e.g. structural
analysis or kinematic simulation); the sketch is tentativeand

if a final, accurate model is desired, it must be recreated from
scratch.

The ideal solution from a designer’s point of view should
combine both the speed and ease of freehand sketching with
the flexibility and analytical abilities of computational anal-
ysis tools. Sketch reconstruction algorithms allow design-
ers to quickly specify a 3D object using a single, freehand
sketch; the object can then be subjected to real-time physical
simulations such as structural, fluid, or manufacturing anal-
ysis. The combination of sketching and physical simulation
allows for a revolutionary,iterative design process: users
can sketch an object, gain immediate insight into its physi-
cal properties, and revise the sketch until the design concept
matures. By eliminating the restrictions of traditional CAD
interfaces, analysis tools can be brought much earlier into
the critical early conceptual design stage.

In addition to its practical applications, an interface for3D
sketching and analysis has significant educational benefits.
By removing the barrier between sketch and simulation stu-
dents can quickly explore and understand the physical prop-
erties, the advantages and the weaknesses of their design.
Instructors can quickly convey design concepts and physical
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Figure 1: A user creating, rendering and rotating a shape using the proposed system on a Tablet PC

properties during lectures, making the classroom experience
more dynamic and facilitating learning.

This paper presents an intuitive, pen-based sketching tool
that combines sketch-based design of 3D objects with fi-
nite element analysis (FEA) in order to achieve these goals.
The proposed approach consists of two parts: a reconstruc-
tion stage that reconstructs a 3D object from a single ortho-
graphic sketch, and an analysis stage that performs a finite
element analysis on the resulting 3D object and displays the
results in the sketch plane. The reconstruction algorithms
can process sketches consisting of both straight lines and
planar curves, and run in interactive time on certain types
of complex sketches. Once the analysis has been performed,
users can modify the shape using a consistent pen-based in-
terface, and perform subsequent analyses until the design is
complete.

2. Previous work

Several works have investigated the use of sketch-based in-
terfaces. Stahovich et al. [SDS98] demonstrated a system

that could interpret the causal functionalities of a two dimen-
sional mechanism depicted in a sketch, and generate alter-
native designs. Davis et al. [Dav02] recently showed a sys-
tem that simulated rigid-body dynamics of a sketched two-
dimensional mechanism. These systems are mostly two di-
mensional, and the few that are 3D require additional steps
that break the flow of sketching.

Figure2 outlines the reconstruction of a 3D object from a
2D sketch, in which any arbitrary set of depths{Z} that are
assigned to the vertices in the sketch constitutes a 3D con-
figuration whose projection will match the given sketch ex-
actly. In principle, each such assignment yields a valid can-
didate 3D reconstruction. A considerable amount of research
has focused on the reconstruction of polyhedral objects from
straight-line sketches. Several methods construct relation-
ships between the slope of sketch lines and the gradients of
the associated 3D faces [Mac73, Wei87]. Other approaches
include incremental construction [LB90, Fuk98, ZHH96],
and construction using known primitives [WG89]. Detailed
surveys are given in [LS00] and [CPC04].

Optimization-based reconstruction for polyhedral objects
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Figure 2: A sketch provides only two of the coordinates(x,y)
of object vertices. A 3D reconstruction must recover the un-
known depth coordinate z. In parallel projections, this de-
gree of freedom is perpendicular to the sketch plane; there
are an infinite number of candidate objects – the problem
is indeterminate. Each candidate object is represented by a
unique set of Z coordinates, e.g. sets{Z1}, {Z2} and{Z3}

specified by straight line sketches determine the depth as-
signed to each sketch vertex by optimizing a target function.
These methods are more general than the approaches above
and can be used to reconstruct relatively complex 3D ob-
jects, though they suffer from high computational complex-
ity and susceptibility local minima in the target function.A
comprehensive review of optimization-based reconstruction
techniques can be found in [LS96, LS00]. We proposed an
approach in which 2D sketches were converted to line and
vertex graphs and analyzed for regularities such as paral-
lelism, perpendicularity and symmetry [LS96]. These regu-
larities were then summed to produce an overall compliance
function that measures how well the 3D construction con-
forms to the regularities in the 2D sketch. Reconstruction
proceeds by optimizing this compliance function. We have
also investigated machine learning approaches to sketch
reconstruction [LS02]. Optimization-based approaches to
3D reconstruction were used by Shesh et al. [SC04] in
conjunction with incremental shape construction methods.
Optimization-based approaches to sketch beautification and
reconstruction were also used by Company et al. [CCCP04].
Neither of these two methods, however, address the problem
of curve reconstruction, or incorporate physical analysisinto
the design process.

In contrast to the number of approaches for reconstruct-
ing polyhedral objects specified by straight line sketches,
there are relatively few reconstruction algorithms that can
be applied to sketches of 3D objects with curves. The best-
known such work is the Teddy system [IMT99], which uses
a sketch-based interface to specify the boundaries for recon-
struction of a curved solid. This system cannot be used to
reconstruct polyhedral objects, or objects that mix straight

lines and curves. Approaches that deform a template (e.g.
[VTMS04]) to fit a curved structure have also been devel-
oped, though these require that a 3D template be formed
prior to curve reconstruction, and can therefore not recon-
struct arbitrary single curves.

The 3D sketching system proposed in this paper uses a
fast reconstruction algorithm that chooses a plausible three-
connected sketch vertex to serve as a 3D axis origin based on
the angular distribution of the lines in a sketch, and recon-
structs the depths of the three vertices at the opposite ends
of the attached strokes. Depths are then assigned to the other
sketch vertices by propagation across the connectivity graph
given by the sketch. This approach allows the reconstruction
of 3D objects with a connectivity graph whose edges con-
form to an underlying, orthogonal axis system. Following
reconstruction of the sketch vertices, a second optimization
procedure reconstructs each curved stroke.

In this work we wish to explore the utility of 3D sketch
understanding as a design tool, when combined with conven-
tional analysis capabilities. We chose to link the sketch inter-
pretation with standard finite element analysis code [RP05],
and demonstrate a complete cycle of 3D modeling and result
presentation performed entirely in the sketch medium. We
chose Finite element analysis as a commonly used form of
engineering analysis with a broad spectrum of applications,
though clearly other analysis codes could be used.

3. 3D Sketching System

This sketching system attempts to create an experience sim-
ilar to drawing with pencil and paper. The application was
implemented on a tablet PC with a pen input device. An ex-
ample session is shown in Figure1. The user interface relies
entirely on the pen. A session begins with an initial sketch
specified by a set of loosely connected strokes in the sketch
plane given by the digitizer surface. Each potentially curved
stroke is assumed to be piecewise linear, and is represented
internally by the location of its two endpoints and a series of
values specifying the location of each point along the length
of the stroke. Strokes may intersect in the sketch plane, but
these intersections are not taken to represent intersections in
3D space; at this stage, strokes may be joined only at the
endpoints. Users can erase all or part of a stroke at any time.

The reconstruction process when a user attempts to spin
the 3D object by pressing on the pen’s barrel button. As a
first step toward reconstruction, all stroke endpoints within a
specified distance of one another are connected using an ap-
proach given by Shpitlani et al. [SL97]. The 2D sketch can
now be interpreted as a connectivity graph (or straight-line
graph) representing the 2D orthographic projection of a 3D
object onto the planez= 0, with vertices given by the con-
nections between strokes and edges specified by the straight
line connections between vertices.

Following the initial reconstruction, the sketch can be ro-
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tated, rescaled or resized. Each stroke is treated as an inde-
pendent object, and can be erased or modified by the user
either pre- or post-reconstruction. Following reconstruction,
the 3D object’s faces are identified and triangulated. The tri-
angulated faces are used to facilitate user interaction with
the object, and as part of a hidden line removal algorithm
that determines the visible parts of each stroke. The trian-
gulated faces are also used to construct the object manifold
surface that is required for finite element analysis.

The 3D strokes making up the reconstructed object may
be altered and erased in the same way as the 2D strokes in
the original sketch. Strokes may also be added to the 3D
object, in which case the reconstruction procedure is used to
determine the 3D position of any stroke vertices that are not
coincident with object features.

The same interface can be used to specify the face param-
eters required to perform Finite Element Analysis (FEA).
The analysis itself is triggered using the application’s tool-
bar, at which point a tetrahedral mesh is generated for the
reconstructed solid and finite element analysis is performed.
The resulting deformation is superimposed directly over the
strokes making up the original sketch.

The following sections describe the reconstruction and
analysis stages in more detail.

4. Sketch Reconstruction

Since the(x,y) coordinates of each vertex are given in the
sketch, reconstructing a 3D object requires assigning az co-
ordinate (also termed thedepthvalue) to each vertex, subject
to constraints on the characteristics of the resulting 3D ob-
ject. It is assumed that the sketch vertices areconnectedi.e.
that a path can be constructed from each vertex to every other
vertex. This restriction necessarily restricts the reconstruc-
tion algorithm to sketches of single objects. Further research
is required to determine the best method by which sketches
of multiple objects can be reconstructed with suitable rela-
tive positions. It is further assumed that none of the vertices
or strokes in the sketch completely obscure other elements
of the same kind.

The algorithm is intended to reconstruct 3D objects whose
vertices can be connected by a spanning tree consisting of
straight lines aligned with one of 3 orthogonal axes. Sketches
consisting of connected planar curves can also be recon-
structed, provided that the underlying straight line connec-
tivity graph satisfies this requirement. Though these require-
ments are restrictive, this approach works well for draw-
ings of objects whose edges predominantly conform to some
overall orthogonal axis system, which includes a wide range
of engineering design drawings. The sketch vertices need not
necessarily be trihedral (see objects 1 and 4 in Figure4),
though sketches with vertices connected to the spanning tree.
In these cases, the proposed approach can be used to recon-
struct part of the object before a more general optimization-

based algorithm (e.g. [LS96]) is used to complete the recon-
struction.

Reconstruction proceeds in two stages: the depths of the
sketch vertices are determined while treating all curved
strokes as straight line connections between vertices, fol-
lowing which all points along each curved stroke are recon-
structed, assuming that the resulting 3D curve is planar. The
reconstruction algorithms run in interactive time, allowing
for a fluent interaction with the system.

4.1. Reconstructing vertex depths

The vertex reconstruction algorithm used in this paper was
given by the authors in an earlier work [KML04], and is
summarized here for convenience.

Since orthogonality is the prevailing trend in most engi-
neering drawings, and the easiest to identify, a statistical
analysis of the direction of the lines connecting the sketch
vertices is performed to determine whether these are consis-
tent with the projections from an underlying orthogonal axis
system. The reconstruction process begins with the selection
of the three-connected vertex whose attached lines are most
representative of the angular distribution of a representative
set of sketch lines; this vertex is the origin of the main sketch
axis system, and the attached strokes are taken represent the
orthographic projection of the 3D axes onto the 2D sketch
plane.

The origin of the main axis system is assumed to have
a depth of zero. The depth of the opposite vertex of each
of the three attached axis line vectors must be determined
in order to reconstruct the axis system. The unknown depths
are determined as the minimizing solution of an optimization
function based on two assumptions about an ideal sketch:

1. The 3D axis vectors should be as close to mutually or-
thogonal as possible.

2. The ratio of the axis lengths in the sketch plane is equal
to the ratio of their lengths in 3D space.

Note that the second assumption imposes restrictions on the
sketch viewpoint: viewpoints where the orthographic pro-
jection of the object onto the 2D sketch plane produces axes
with very different lengths will result in reconstructed 3D
axes with very different lengths. The optimization goal is
to minimize a cost function that attains a value of 0 when
all three axes are orthogonal in 3D and the ratio of the axis
lengths in 3D is equal to their ratio in the sketch plane. Min-
imization of this cost function can be performed with a fast
Levenberg-Marquardt algorithm. Since optimization is re-
quired only to reconstruct the three vertices of the axis sys-
tem, it does not depend on the sketch allowing complicated
sketch graphs to be reconstructed in real-time.

Since the sketch graph is connected, it is possible to con-
struct a spanning tree that connects each vertex to the origin
vertex. The spanning tree is given by the Maximum weight
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Spanning Tree (MST), where the weight of each edge is
given by the projection of the edge line onto the 2D axis
lines. Once the axis system vertices have been reconstructed,
the depths of the remaining vertices are determined by prop-
agating depth values along this tree, beginning with the axis
origin.

The depth of the endpoint vertices of all strokes added to
the sketch post-reconstruction are determined by interpolat-
ing from an underlying, reconstructed sketch feature. If the
endpoint does not lie over an existing feature, reconstruction
is performed using a general, axis-independent but computa-
tionally intensive reconstruction algorithm based our earlier
work [LS96]. A hill-climber [PTVF03] is used to minimize
the total cost. This approach is also used for the initial recon-
struction if there exists no vertex that can serve as the origin
of the main axis system.

The curve reconstruction algorithm only requires that the
vertices be reconstructed and planar faces be identified in or-
der to run; there are several alternative approaches for recon-
structing vertex depths. Company et. al [CCCP04] proposed
an optimization-based reconstruction engine that also makes
use of a minimum spanning tree, as well as a comprehen-
sive set of observed shape regularities and two separate infla-
tion methods. Their approach also includes an optimization-
based sketch beautification strategy that may add to compu-
tational cost. A wide range of shapes can be reconstructed,
although these occasionally require the use of sketch regu-
larities such as planarity and corner orthogonality that are
not considered in this work. Varley et al. [VMS04] proposed
a framework for labeling the lines in a sketch that begins by
analyzing the angular distribution of lines in the sketch, then
constructing a 3D axis system by solving a system of linear
equations. The reconstructed axis system is used along with
line parallelism to determine the depths of all sketch vertices
prior to assigning line labels. This methods is also capableof
reconstructing a wide range of sketches, though these appear
to also conform to an orthogonal axis system. Furthermore,
the method was developed for natural sketches, rather than
the wireframes under consideration here.

4.2. Reconstructing Curves

The (x,y) locations of every point in a curved stroke are
specified in the sketch; once the vertex depths have been re-
constructed, a second reconstruction algorithm reconstructs
the depths of each stroke point. Though a stroke can spec-
ify an arbitrary path in three dimensions, it is difficult to
sketch an arbitrary, unambiguous 3D path entirely by pro-
jection onto the sketch plane. The stroke reconstruction al-
gorithm therefore relies on the underlying assumption that
each curved stroke is planar, though the parameters of the
planar equation are unknown. The goal of the curve recon-
struction process is to determine a plane onto which the user
might plausibly have drawn the stroke. The depth of each
point in the curved stroke is then determined by projection

onto the plane. All curves are treated as piecewise linear col-
lections of points in the sketch plane. Special curves (e.g.
conic sections) are not treated independently.

The planar equationa(x−x0)+b(y−y0)+c(z−z0) = 0
has 3 unknowns[a,b,c]T , which specify the planar normal
vector; these must be determined by the reconstruction al-
gorithm. Since the plane is constrained by the requirement
that it contain the linev passing through both of the curve’s
end points, it is possible to determine the planar normal by
optimization over a single variable. An initial planar normal
n0 = [a0,b0,c0]

T is constructed so that it is perpendicular to
v. All other allowable normals can then be constructed by
rotating the initial normal by an angleθ aroundv to yield
the rotated normalnθ = [aθ,bθ,cθ]

T :




aθ
bθ
cθ



 = [Aθ]





a0
b0
c0



 (1)

whereAθ is a 3×3 rotation matrix that specifies a rotation of
angleθ aroundv. Following rotation of the normal, the equa-
tion of the projection plane is given byaθ(x− xa)+ bθ(y−
ya)+cθ(z−za) = 0, where(xa,ya,za) is the first stroke end-
point, which is located at one of the reconstructed sketch
vertices. The planar equation can likewise be specified by
aθ(x− xb) + bθ(y− yb)+ cθ(z− zb) = 0, where(xb,yb,zb)
is the second, similarly reconstructed stroke endpoint.

The optimization function relates the depth value for a
particular stroke point to the depths of the stroke’s end-
points. The optimization function is based on the assumption
that users intended the depth of the stroke points to fall be-
tween the depths of the two stroke endpoints. We therefore
choose the stroke plane as the one that causes the depth of
each stroke points to fall between the depths of the stroke
endpoints, which can be satisfied by minimizing the sum
squared distance between both endpoints:

f (n) = (zn− za)
2 +(zn− zb)

2 (2)

It can be shown that this function has a minimum when
zn = zb+za

2 ; minimizing this function over the collection of
stroke points will produce mean projected depths that are
close to the midpoint of the range betweenzb andza. Since
zn is determined by projection onto the plane with nor-
mal nθ passing through the stroke endpoints(xa,ya,za) and
(xb,yb,zb), Equation2 may be rewritten as a function ofθ
and the stroke points(xn,yn)

f (θ,n) =
(

aθ(xn−xa)+bθ(yn−ya)
cθ

)2
(3)

+
(

aθ(xn−xb)+bθ(yn−yb)
cθ

)2
(4)

The optimization goal for a curved stroke withN points is to
find θmin, where

θmin = argmin
θ

N

∑
n=1

f (θ,n) (5)
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Figure 3: A 3D axis system with an attached curved stroke, and two possible stroke planes, indicated in light gray. Each
projection plane contains the line connecting the two curveendpoints (indicated by the vector). The depth value zn (where
depth is defined into the screen) for each point(xn,yn) along the curve are recovered by projection onto the underlying plane.
The plane in (a) has the optimal orientation as given by the solution to Equation5. The plane in (b) is an implausible plane,
which will yield projected depth points well outside the range specified by the two endpoints.

The normal of the optimal projection plane is given by
nθmin. A gradient steepest descent algorithm can be used to
find θmin. In many sketches, the projection plane for curved
strokes is often related to the other sketch elements. In par-
ticular, the normal of the projection plane is often aligned
with one of the sketch axes, with one of the other lines con-
necting the stroke endpoints, or with a the normal of a planar
face plane in the reconstructed straight line object. In prac-
tice, the optimal projection plane normal is determined by
first searching over quantized values ofθ to determine a set
of normal vectorsnθ, each of which maximizes the projec-
tion onto a single sketch vector. The optimal normal is cho-
sen from this set as the one that minimizes∑N

n=1 f (θ,n).

The curved stroke reconstruction algorithm was tested on
several different symmetric and asymmetric curves where
the distance|zb − za| between the depths of the two stroke
endpoints was varied from 0 to∞. The algorithm gener-
ated plausible reconstructions for curved strokes at differ-
ent orientations drawn using the same set of fixed endpoints.
The reconstruction was most plausible for small to moder-
ate values of|zb − za|, and for strokes with a high degree
of curvature, though this is to some extent subjective for
each user. The stroke planes for strokes with little to no cur-
vature were difficult to determine, largely because the rel-
ative importance of the orientation of the projection plane
decreases as the stroke curves become less pronounced. The
reconstruction algorithm was not found to incur significant
computational overhead for angular increments of 0.05 radi-
ans, and sketches containing up to 10 curved strokes. Since
the error term is analytically differentiable, fast optimization
techniques may also be employed to reduce computational
overhead.

5. Analysis

Once the 3D object has been reconstructed in its entirety, the
object’s constituent faces must be identified in order to gen-
erate a solid suitable for finite element analysis. In this work,
faces are identified by recursively searching the connectivity
graph of the reconstructed 3D object for cycles of approxi-
mately coplanar lines using a fast, greedy search algorithm.
The sketch faces are then triangulated. If the face is approxi-
mately planar, a Delaunay triangulator [She96] is used. If the
face is composed of 3 or 4 non-coplanar curves, the face is
triangulated using Coons patches. Faces composed of more
than 4 non-planar curved strokes are not triangulated. Note
that the use of Coons patches to triangulate curved surface
necessarily limits the interpretation of the curved surface.
The correspondence between the reconstructed surface and
the user-intended surface requires further investigation.

Once the faces in the object have been triangulated, the
object’s properties can be analyzed and, if necessary modi-
fied by the addition of further object features. Though there
many different types of analysis can be applied to the 3D
shape (e.g. structural, fluid, or manufacturing analysis) we
have implemented a linear approximation to the laws for
elastic deformation, since this is representative of engineer-
ing design analysis.

Finite Element Analysis (FEA) decomposes a continu-
ous function over a global domain into a piecewise series of
functions applied to a set of smaller elements whose union
represents the original domain. Prior to performing FEA, the
reconstructed 3D object is first checked to see if its triangu-
lated faces can be combined to form a triangulated manifold
surface. If so, the surface is decomposed into a set of tetrahe-
dral elements using a meshing algorithm [Si05]. The mesh
complexity is limited only by the requirements of the mesh-
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Reconstruction time: 0.181 sec

Reconstruction time: 0.170 sec

Reconstruction time: 0.221 sec

Reconstruction time: 0.180 sec

Reconstruction time: 0.271 sec

Original Sketch Reconstructed Shape

Figure 4: (a) Symmetrical unreconstructed straight-line 2D sketches and the accompanying reconstructed 3D shapes from 2
viewpoints. Reconstruction times are given for a Pentium 4 M1.7Ghz Tablet PC.
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Figure 5: A an example of a simple, iterative reconstruction and analysis session. (a) An initial sketch of a table-like structure
with two legs (b) the reconstructed manifold solid. Boundary faces on the bottom of each leg are indicated by dark circles.
A 3N downward force is applied to the topmost face. The coefficients of elasticity are relatively large, allowing for a high
degree of deformation (c) the object’s tetrahedral solid mesh superimposed over the original strokes (d) the tetrahedral mesh
following finite element simulation to determine the displacement produced by the 3N force. The original sketch lines are still
visible. Dark blue colors indicate nodes with minimal displacement, orange colors indicates nodes with the maximum magnitude
displacement (e) a modified version of the original sketch with an additional bracing leg (f) the reconstructed manifoldsolid with
boundary faces on the bottom of each leg. A 3N downward force is applied to the topmost face (g) the object’s tetrahedral solid
mesh superimposed over the original strokes (h) the tetrahedral mesh following FEA. Note that the additional leg considerably
reduces deformation, and that peak deformation occurs on the longer of the two inter-leg sections.
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ing algorithm, which are discussed in detail in [Si05]. Con-
struction of a practical mesh requires limiting the number
of samples used to represent each stroke to less than 10 to
ensure that the manifold surface is not overly complex, and
ensuring that the boundary of each face is consistent with the
boundary of any adjacent face so that the manifold surface
can be constructed by linking the points along the boundary
of each triangulated face. In practice, these restrictionsdo
not limit the usefulness of the FEA simulation as an analysis
tool for sketched shapes.

The FEA solution to the elasticity problem requires that at
least one face of the manifold solid serve as a boundary that
will remain stationary when forces are applied to the solid.
Forces may be applied to one or more faces. Faces may be
selected directly by clicking with the pen, after which the
forces and boundary information are specified with a dialog.
The analysis itself is performed using GetFem++ [RP05], a
publicly available finite element library. The results of the
analysis are superimposed over the strokes making up the
sketch, allowing users to very quickly interpret the results
and modify the object accordingly.

5.1. Results

The reconstruction algorithm performed best on sketches
that exhibited strong orthogonal trends, and whose strokes
were highly correlated with the underlying axis system, a
class of sketches that includes many engineering diagrams.
Because the computationally intensive nonlinear optimiza-
tion is used only to reconstruct the main axis system, rather
than depths of all sketch vertices directly, the algorithm can
process sketches composed of 50 or more strokes in in-
teractive time on a Pentium 4 Tablet PC notebook com-
puter. An example demonstrating the reconstruction of sev-
eral sketches incorporating both straight and curved strokes
is given in Figure4. Examples of non-trihedral vertices can
be seen in the first and fourth objects.

An example FEA session is shown in Figure5. Users were
quickly able to design parts and verify their structural in-
tegrity under various loads. In practice, the time requiredto
perform the finite element analysis proved to be the limit-
ing factor. Finite element analysis scales to the third order
with the number of tetrahedra required to represent the man-
ifold solid, which in turn scales with the complexity of the
object. Very simple shapes could be analyzed in several sec-
onds. As complexity increased, however, the iterative anal-
ysis became time consuming and the design flow. Though
finite element analysis is necessarily computationally com-
plex, analysis time can be decreased by using only coarse
approximations to the sketched solid during the iterative de-
sign phase.

6. Conclusions and Future Work

This paper presented a pen-based sketching system for pro-
gressively constructing and analyzing 3D objects using free-
hand sketches. Sketches representing the orthographic pro-
jection of a 3D object onto a sketch plane are treated
as graphs consisting of vertices connected by the sketch
strokes. The 3D object is reconstructed from this sketch, af-
ter which the object’s faces are identified and triangulated.

The system is implemented with a consistent pen-based
interface that mimics pencil and paper sketching, and can
reconstruct sketches of up to 50 strokes in interactive time.
Users can add additional strokes, or erase strokes, and sketch
directly onto the object’s faces. The reconstructed objectcan
be submitted to a finite element analysis in order to investi-
gate its physical properties, after which it can be modified if
necessary. Other analysis codes can easily be used in place
of FEA.

This work was performed to investigate the use of 3D
sketching combined with engineering analysis as a concep-
tual design exploration tool. Future investigation will at-
tempt to further elucidate the types of design tasks for which
this form of interface is advantageous. Additional research
will also be dedicated to improving the reconstruction al-
gorithm, including extensions to sketches that cannot be de-
scribed by a single, connected graph, and sketches with mul-
tiple axis systems.
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NEXT-
GENERATION 
EDUCATIONAL 
SOFTWARE
Why We Need It
& a Research Agenda for Getting It

he dream of universal access to high-quality, personalized educational con-
tent that is available both synchronously and asynchronously remains unrealized. For
more than four decades, it has been said that information technology would be a key
enabling technology for making this dream a reality by providing the ability to produce
compelling and individualized content, the means for delivering it, and effective feed-
back and assessment mechanisms. Although IT has certainly had some impact, it has
become a cliché to note that education is the last field to take systematic advantage of IT.
There have been some notable successes of innovative software (e.g., the graphing
calculator, the Geometer’s Sketchpad, and the World Wide Web as an information-
storage and -delivery vehicle), but we continue to teach—and students continue to
learn—in ways that are virtually unchanged since the invention of the blackboard.
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There are many widely accepted reasons
for the lack of dramatic improvement:

■ Inadequate investment in appropriate
research and development of authoring
tools and new forms of content 

■ Inadequate investment in the creation
of new dynamic and interactive content
that takes proper advantage of digital
hypermedia and simulation capabili-
ties (as opposed to repurposed print
content) at all educational levels and
across the spectrum of disciplines

■ Inadequate investment in appropriate
IT deployment in schools (e.g., although
PCs are available in K-12, there are too
few of them, they are underpowered,
and they have little content beyond
traditional “drill-and-kill” computer-
aided instruction, or CAI; at the post-
secondary level there is more avail-
ability of computers and software,
plus routine use of the Internet, but
still a dearth of innovative content that
leverages the power of the medium)

■ Inadequate support for teacher educa-
tion in IT tools and techniques and for
the incorporation of IT-based content
into the curriculum

■ The general conservatism of educational
institutions 

Despite this disappointing record, we
remain optimistic. The dramatic advances
in hardware technology, especially during
the last decade, provide extraordinary
new capabilities, and the desire to “do
something” to address the need  for life-
long, on-demand learning is finally being
widely recognized. The ubiquity and ac-
cessibility of the Internet has given rise to
a new kind of learning community and en-
vironment, one that was predicted by Tim
Berners-Lee in his 1995 address to the
MIT/Brown Vannevar Bush Symposium1

and that John Seely Brown elaborated into
the rich notion of a learning ecology in his
seminal article “Growing Up Digital: How
the Web Changes Work, Education, and
the Ways People Learn.”2 There is great
hope that this emergent learning environ-
ment will in time pervade all organiza-
tions, binding learners and teachers to-
gether in informal,  ever-changing,
adaptive learning communities.

Here we will first recapitulate some
well-known technology trends that make

current platforms so exciting, and then
we will briefly discuss leveraging this
technology into highly desirable forms of
learning. Next we will examine an IT-
oriented education research agenda pre-
pared by a consortium called the Learn-
ing Federation and will present some
promising educational software experi-
ments being conducted at Brown Univer-
sity. Finally we will describe an as-yet-
unrealized concept called “clip models”:
simulation-based interoperable families
of components that represent multiple
levels of explanatory power and simula-
tion fidelity designed to be assembled
into systems. We make no attempt here to
present a critical review of the entire field
of educational software or of its impact. A
variety of organizations, journals, and
conferences is addressing the uses and
impact of IT in education; in particular,
EDUCAUSE and its Center for Applied
Research (ECAR) provide a good intro-
duction to resources and studies of IT in
higher education. 

Technology Trends
Exponential advances in computer archi-
tecture in the last two decades have enabled
the creation of far more compelling and en-
gaging educational software than we could
have dreamed of in the Apple II days. Ad-
vances in four areas of IT will continuously
raise the bar on user experiences: platform
power used for computation and graphics/
multimedia; networking; ubiquitous com-
puting; and storage.

The commoditization of the necessary
platforms, a trend described by Moore’s
“law,” is epitomized by supercomputer
power and high-end graphics/multi-

media capabilities in desktop and laptop
computers costing less than $1,000 and
even in specialized game boxes costing
less than $200. Alan Kay’s Dynabook vi-
sion can at long last be realized,3 and even
the personalized and ever-evolving
“young lady’s illustrated primer” from
Neal Stephenson’s Diamond Age will leave
the realm of science fiction.4

Advances in networking enrich user ex-
periences with ubiquitous, always-on,
high-bandwidth connections. Already,
gigabit networking over local area net-
works is a reality, and the Internet2 proj-
ect is creating the core of a massively
broadband global network. Wireless con-
nectivity is widely available in both devel-
oped and underdeveloped countries and
will rapidly increase in bandwidth. The
commoditization of bandwidth elimi-
nates physical distance and carrier costs
as a factor in providing resources to a
worldwide audience.

Ubiquitous computing environments5

have become commonplace; embedded
sensors and microcomputers transform or-
dinary passive objects into intelligent ob-
jects that interact with each other and with
us in a great diversity of form factors. Keep-
ing pace with the hardware is ever-more so-
phisticated software that uses the results of
artificial intelligence research in practical
applications of the “smart objects.” 

Compelling experiences and work
products alike require data storage that is
reliable, fast, and inexpensive. A 1.44-
megabyte floppy disk cost a few dollars in
the early 1990s and couldn’t be relied on
to keep data safe during a bus ride home
from school; today, blank DVDs can be
permanently “burnt” with 4.7 gigabytes of
data for less than a dollar each, and 20-
gigabyte mobile storage devices cost ap-
proximately $200, making the Library of
Congress accessible anywhere. In addi-
tion to raw capacity, however, data needs
that must be addressed include security,
privacy, validity, and format persistence. 

Despite predictions that we will hit a
technological wall in the coming decade,
new advances repeatedly push any such
wall out into the indefinite future. For ex-
ample, developments in nanotechnology
and quantum computing promise new
capabilities in all four areas. Indeed, one
can only wish that the same exponential
improvement curves that apply to
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hardware also applied to software and
content creation. Regrettably, both these
hugely important areas have shown, at
most, modest improvements, and there
are no signs of breakthrough technology
on the horizon—only continued slow,
evolutionary progress. But it is precisely
because of the revolutionary improve-
ments in hardware that we can create
breakthrough experiences and content.
Now is the time to mount such an effort.

IT in Education: Appropriate Role?
So, what is the appropriate role for IT in
education, in the broadest sense? As al-
ways, IT’s role is to augment (not to re-
place) the teacher, to provide human-
centered tools that encourage and
support adaptability and flexibility, and
to enable appropriate modes of learning
(e.g., small team interaction and not just
individual task performance).6 Principles
such as situated, active learning (i.e.,
learning by doing rather than just by lis-
tening)—principles that foster interactive
involvement of the learner with the edu-
cational materials—are well supported by
current technology trends. However, one
size does not fit all in educational soft-
ware. Unless new tools allow exploration
at multiple levels of detail and accommo-
date diverse learning styles,7 they will be
just as limited as ordinary textbooks. But
this is easier to say than to do: there is no
collective experience in authoring at
multiple levels of detail and multiple
points of view. Such authoring requires
the development of skills and tools of far
greater power than we have experience
with to date. 

The most important task in the appli-
cation of IT to education is to author
stimulating content that is as compelling
as “twitch games” or even as strategy
ga m e s  a p p e a r  to  b e .  Ne w  c o n te n t
dropped into existing curricula typically
shows no improvement in outcomes; we
must also redefine curricula to support
learner-centered, on-demand explo-
ration and problem-solving, and we must
break down traditional disciplinary
boundaries. We must also train educators
to take advantage of these new capabili-
ties. This will require massive invest-
ment, on a scale we have not encountered
heretofore. This content creation, curric-
ula adaptation, and educator training will

also require a long period of experimen-
tation, as well as tolerance for the false
starts that are an inevitable part of all in-
novation processes. For example, where-
as classical CAI was thought to hold great
promise in the 1960s, its applicability
turned out to be rather limited; the same
held for Keller plan self-paced instruc-
tion and other innovations that are in fact
now reappearing in different guises.

Content and curriculum alone are not
sufficient. We must provide support for
all aspects of learning, in both formal and
informal education, not just in schools
but in all venues, ranging from the home
to the office and the factory floor—any-
place where learners gather, singly or in
groups. In addition, we must provide
support for all aspects of this process, in-
cluding course administration (as
WebCT and its competitors are doing),
continuous assessment (a deep research
problem), and digital rights management
(still a very contentious and difficult soci-
etal, commercial, and research problem).

Returning to the topic of content, we
must develop software that accommo-
dates many different human-computer
interactions, from single-user to mas-
sively collaborative multi-user. Genres
must be equally diverse, from cognitive
tutors such as CMU’s Pump Algebra
Tutor, or PAT (http://act.psy.cmu.edu/
awpt/awpt-home.html), to simulation-
and rule-based interactive models (mi-
croworlds), massive multiplayer games,
and robots constructed and programmed
to carry out specified tasks.

Even before such adaptive, personal-
ized content is widely available, we must
also rethink learning environments—that
is, envision profound structural change at
all levels of education to accommodate
the kind of learning the new content facil-
itates. Early examples of experiments in
structural change include Eric Mazur’s
Peer Instruction Physics (http://mazur-
www.harvard.edu/education/education
menu.php),  the RPI Studio Model
(http://ciue.rpi.edu/), and the Virginia
Tech Math Emporium (http://www.
emporium.vt.edu/). Both the RPI Studio
Model and the Virginia Tech Math Empo-
rium change not just the structure of the
educational process but even the facili-
ties required. This is just the beginning of
rethinking college and university instruc-

tion from the ground up. In addition, dis-
tance learning, as embodied by the Open
University (http://www.open.ac.uk/) and
the University of Phoenix (http://www.
phoenix.edu/), shows that non-campus-
based instruction can work, although the
materials used are not particularly inno-
vative as yet. On a cautionary note, we
should add that there have been many re-
cent failures in commercial distance
learning. Traditional colleges and univer-
sities with classroom/laboratory instruc-
tion will not soon be replaced, although
they will certainly be augmented by
newer, IT-based forms of learning.

The Computing Research Associa-
tion’s “Grand Challenge 3”—“Provide a
Teacher for Every Learner” (http://www.
c r a . o r g / r e p o r t s / g c . s y s t e m s . p d f ) —
describes some of the genres mentioned
above, but the most important conclu-
sion of that report, reflected in its title, is
that by providing powerful tools, we offer
the opportunity to rethink the relation-
ship between teachers and learners. The
appropriate use of IT will empower teach-
ers to enhance their mentoring roles and
can supplement such teacher support
with peer and computer-based mentoring
and tutoring to provide students with es-
sentially full-time, on-demand, context-
specific help. Building domain-specific
mentoring, tutoring, and question-
answering is scarcely a solved problem
and will require a very significant re-
search and development (R&D) effort.

Getting There: Learning 
Federation Research Roadmaps
To better understand the issues involved
and to direct a focused research invest-
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ment effort, Andries van Dam helped to
found a small steering group that has
proposed the creation of a nonprofit, 
industry-led foundation, called the Learn-
ing Federation (http://www.thelearning
federation.org/), modeled on the highly
successful Sematech Consortium (http://
www.sematech.org). The Learning Federa-
tion is a partnership joining companies,
colleges and universities, government
agencies, and private foundations whose
purpose is to provide a critical mass of
funding for long-term basic and applied
pre-competitive research in learning sci-
ence and technology. This research, to be
conducted by interdisciplinary teams, is
meant to lead to the development not only
of next-generation authoring tools but
also of exemplary curricula for both syn-
chronous and asynchronous learning.

The Federation’s first task was to pro-
duce a Learning Science and Technology
R&D Roadmap. This roadmap describes
a platform-neutral research plan to
stimulate the development and dissemi-
nation of next-generation learning tools,
with an initial focus on postsecondary

science, technology, engineering, and
mathematics. The component roadmaps,
which address five critical focus areas for
learning science and technology R&D,
were developed using expert input from
companies, colleges and universities,
government research facilities, and oth-
ers with unique expertise during a series
of specialized workshops, consultative
meetings, and interviews. Each roadmap
provides an assessment of the R&D
needs, identifies key research questions
and technical requirements, and specifies
long-term goals and three-, five-, and ten-
year benchmarks—the roadmap to the
long-term goals. The following sections
give the abstracts from the component
roadmaps, along with the URLs where
the full PDF files may be downloaded.

Instructional Design: Using Games 
and Simulations in Learning
“Learning environments that provide
learners opportunities to apply their
knowledge to solve practical problems
and invite exploration can lead to faster
learning, greater retention, and higher

levels of motivation and interest. Unfor-
unately, these learning strategies are
rarely used today because they are diffi-
cult to implement in standard classroom
environments. Expected improvements
in technology have the potential to signif-
icantly reduce the cost and complexity of
implementing learning-by-doing en-
vironments. The combined forces of
high-powered computing, unparalleled
bandwidth, and advances in software ar-
chitecture are poised to make realistic
gaming and simulation environments
more feasible and economical. Because
these tools will be increasingly available,
it is important to understand appropriate
contexts and methods for implementa-
tion. The challenge is to understand how
the tools should be used, with whom and
for what?” See (http://www.thelearning
federation.org/instructional.html).

Question Generation and 
Answering Systems
“Question generation is understood to play
a central role in learning, because it both
reflects and promotes active learning and
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construction of knowledge. A key chal-
lenge to researchers and practitioners alike
is to find ways to facilitate inquiry by
taking advantage of the benefits offered
by emerging technologies. Further ex-
ploration is needed in the realm of intu-
itive interfaces that allow the learner to
use spoken language, or coach the learner
on how to ask questions, tools to enable
answers to learners’ questions—includ-
ing linking learners to real people, as well
as the creation of intelligent systems that
ask the learner questions or present
problems that require major attention
and conversation.” See (http://www.
thelearningfederation.org/question.html).

Learner Modeling and Assessment
“Assessment generates data for decisions
such as what learning resources to pro-
vide individual learners and who to se-
lect or promote into particular jobs.
These decisions are only as valid as the
data and interpretations that are avail-
able. Ideally, every educational decision-
maker, from teacher to human resource
director, would have access to real-time
valid data to make a decision about an in-
dividual, group, or program. There is a
critical need to articulate more precisely
and reach consensus on many of the the-
oretical underpinnings and models that
drive our assessment practices.” See
(http://www.thelearningfederation.
org/learner.html).

Building Simulations 
and Exploration Environments
“Research has demonstrated that simula-
tion environments are powerful learning
tools that encourage exploration by al-
lowing learners to manipulate their
learning experience and visualize results.
Simulations used in academic settings
can enhance lectures, supplement labs,
and engage students. In the workplace,
simulations are a cost-effective way to
train personnel. Despite important suc-
cesses in the use of simulation and syn-
thetic environments, there are still a
number of limitations to current applica-
tions and programs. The goal of this R&D
effort is to make simulations and syn-
thetic environments easier to build and
incorporate into learning environments.”
See (http://www.thelearningfederation.
org/building.html).

Integration Tools for Building and
Maintaining Advanced Learning Systems
“As specifications and standards have
been developed to support web-based
system directed learning systems, the
means for creating interoperable and ro-
bust instructional content have emerged.
However, these specifications have de-
fined a technically complex infrastruc-
ture that is unfriendly to instructional de-
signers. Designers should be able to focus
entirely on content, the needs of stu-
dents, and instructional theory and not
on the mechanics of the software. A vari-
ety of authoring and integration tools are
needed to make it easy to identify soft-
ware resources and to combine these re-
sources into a functioning system.” See
(http://www.thelearningfederation.org/
integration.html).

Beginnings: Brown University Projects
Microworlds
At Brown University, partially inspired by
Kay’s powerful Dynabook vision,8 we
have been particularly interested in
building simulation and exploration en-
vironments, often referred to as micro-
worlds. These can be used to teach abstract
concepts, such as Newton’s laws and the
Nyquist limit for signal processing, and
skills, such as spatial visualization and in-
tegration by parts. The combination of
the Web and Java applets has resulted in a
proliferation of applets across a broad
range of subjects. 

For the last decade, inspired by many
applets on the Web, we have been devel-
oping computer graphics teaching ap-
plets called Exploratories (see Figure 1).
These highly interactive, simulation-
based applets are built from reusable
software components and can be embed-
ded in a Web-based hypermedia environ-
ment or used as downloadable compo-
nents in a wide variety of settings. Their
design builds on a geometric structure to
simulate behavior. Users can control the
environment and experiment with differ-
ent variables through interface-exposed
parameters. To date we have over fifty
Exploratories in computer graphics
a l o n e  ( h t t p : / / w w w. c s . b r o w n . e d u /
exploratories/).

Gesture-Based Tablet PC Applications
In an increasingly ubiquitous world of
iPods, digital camera cell phones, and
wireless everything, the WIMP (“Win-
dows, Icons, Menus, and Pointers”) inter-
face has been gradually augmented by
post-WIMP interface techniques as mo-
bile users experience the convergence of
media and communication technologies.
The laptop workhorse has been expand-
ing its capabilities as well with the advent
of the Tablet PC and its pen-based inter-
face. Until the last decade, pen-based
technology was not good or cheap
enough for widespread use. Gesture
recognition, handwriting recognition,
and digitizer technology have signifi-
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cantly improved in performance and
availability in the last few years; now ap-
plications can be developed and de-
ployed at retail scope. 

Just as with microworlds, the Brown
computer graphics group has been ex-
perimenting with gesture-based user in-
terfaces and applications for many years9

and is currently developing gestural in-
terfaces for the Tablet PC. Two of these
are MathPad2 and ChemPad.

MathPad2. Mathematical sketching is a
pen-based, modeless gestural interaction
paradigm for mathematics problem-
solving. Whereas it derives from the
familiar pencil-and-paper process of
drawing supporting diagrams to facili-
tate the formulation of mathematical ex-
pressions, users can also leverage their
physical intuition by watching their
hand-drawn diagrams animate in
response to continuous or discrete
parameter changes in their written
formulas. Implicit associations that are
inferred, either automatically or with

gestural guidance, from mathematical
expressions, diagram labels, and drawing
elements drive the diagram animation.

The modeless nature of mathematical
sketching enables users to switch freely
between modifying diagrams or expres-
sions and viewing animations. Mathe-
matical sketching can also support
computational tools for graphing, manip-
ulating, and solving equations.

The MathPad2 mathematical sketching
application currently uses MATLAB as its
underlying math engine and provides a
fully gestural interface for editing. Expres-
sions can be deleted, edited, and rerecog-
nized in a fully modeless operation (see
Figure 2).

ChemPad. Organic chemistry is the study
of the structure and function of carbon-
based molecules. These molecules have
complex, three-dimensional structures
that determine their functions. Ideally,
students would do all their thinking and
drawing in three dimensions (3D), but
whiteboards and paper notebooks support

only 2D structures and projections of 3D
and higher-dimensional structures. To
compensate, organic chemists use a
complicated 2D schematic notation for
indicating the spatial arrangement of
atoms in a molecule. With practice and
insight, beginning chemists can develop
the ability to look at such a 2D schematic
description of a molecule and auto-
matically construct a mental model of the
3D structure of that molecule. 

Teachers of organic chemistry identify
this spatial understanding as a key deter-
minant of whether students will succeed
in organic chemistry. We have been de-
signing and developing a software proj-
ect, ChemPad, whose purpose is to help
organic chemistry students develop an
understanding of the 3D structure of
molecules and the skill of constructing a
3D mental model of a molecule that
matches a 2D diagram (see Figure 3).
ChemPad fosters this understanding by
allowing the student to sketch a 2D dia-
gram and then to see and manipulate the
3D model described by the diagram. 
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A pen-based interface is particularly
appropriate for drawing organic chem-
istry molecules because the existing soft-
ware tools in this area are difficult to learn
and use, which places them out of the
reach of most students. Drawing with pen
and paper, though, is not entirely satisfac-
tory; it is difficult to produce neat draw-
ings, and it is difficult to erase and correct
errors neatly. ChemPad addresses both
these issues, with a simple interface that
mimics drawing on paper and with a

“beautify” function that “tidies up” a stu-
dent’s drawing. ChemPad also provides
validity-checking; many of the structures
that beginning students draw do not de-
scribe physically possible molecules. Un-
like paper and pencil, ChemPad can de-
tect and indicate certain kinds of errors.
One possible extension of this approach
would be to add simulation capabilities
so that the static ball-and-link 3D dia-
grams can start to approximate the actual
dynamics of molecular interaction.

Limitations of Our Current Work
Although microworlds have been useful
adjuncts to the undergraduate computer
graphics course, they fall short of the
goals for a far more ambitious vision.
Microworlds and Exploratories are re-
stricted to single concepts with a small set
of parameters. However, because they are
component- and parameter-based, they
illustrate some of the fundamental prin-
ciples that will be essential in fully func-
tioning clip-model environments, and
they open possibilities for evolving even
more flexible structures. The combina-
tion of fluid and multi-POV (point of
view) hypermedia information structures
with component-based software architec-
tures may provide a foundation on which
we can build.

Tablet-PC-based gestural interfaces to
applications are underdeveloped be-
cause the state-of-the-art in robust user-
independent gesture recognition is still
primitive. Furthermore, gesture sets are
anything but self-disclosing, and they
take considerable time to learn. Finally,
our experiments thus far are essentially
single-user in their orientation and don’t
facilitate a collaborative, team-based ap-
proach to learning. The next section ad-
dresses some of the issues involved in de-
signing software that can be adapted to
multiple needs, users, and levels of detail.

Clip Models: A Proposal for 
Next-Generation Educational 
and Research Software
Over forty years ago, Jerome Bruner pro-
posed a radically new theory of educa-
tion: “Any subject can be taught effec-
tively in some intellectually honest form
to any child at any stage of develop-
ment.”10 Although many people have dis-
puted the more extreme claims attached
to that hypothesis, it is an admirable goal.
One way to implement it is through the
“spiral approach to learning,” common to
formal education, in which a learner en-
counters a topic multiple times through-
out his or her education, each time at an
increasing level of sophistication. Fur-
thermore, at any stage, the learner should
be able to mix and match educational
modules at different levels of sophistica-
tion within the same general topic area.
Simpler modules can offer overviews of a
subject for review or provide context
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Figure 3.The ChemPad program displays an organic molecule, 2-chloro-ethanol.
On the right side, the user has sketched the non-hydrogen atoms of the molecule
using standard organic chemistry conventions. On the left side, the program has
generated and rendered a 3D view of the molecule.The user is able to rotate the 
3D representation and examine it from arbitrary points of view.

Figure 2. MathPad2 sketching interface of a mass spring system



when the intent is to go more deeply into
related topics. 

The kinds of modules we are most in-
terested in here are simulation- or rule-
based modules that help create ex-
plorable models of subsystems, which
can be linked into increasingly higher-
level subsystems. Such modules can help
simulate most aspects and components
of the natural and man-made worlds. We
will focus here on simulating subsystems
of the human body at all levels, from the
molecular to the cellular to the gross
anatomical. Each subsystem of the
human body must then be simulated at a
level appropriate to the (educational)
purpose. There is not just a single
model/simulation for each component of
the system (e.g., the heart or lungs) but a
family of models/simulations varying in
explanatory power and simulation fi-
delity—not to mention, ideally, in the
learning style it is to match. Furthermore,
since subsystems interact with each
other, the models and their underlying
simulations must be able to interoperate.
We summarize the properties of these
types of models with the term “clip mod-
els”: simulation-based families of compo-
nents that represent multiple levels of ex-
planatory power and simulation fidelity
designed to interoperate and to be assem-
bled into systems. In particular, unlike
clip art, which represents only images,
clip models emphasize behavior, inter-
action/exploration, and interoperability.

This concept of mix-and-match,
multi-LOD (level of detail) models poses
huge challenges to would-be imple-
menters. The inherent challenges of
building multi-resolution, multi-view,
multi-complexity interoperating simula-
tions have not yet been confronted be-
cause most simulation efforts have been
standalone projects. In the same way,
repositories of learning objects have
stored only objects at a single level of ex-
planatory power, and component frame-
works in use by software developers have
not been designed with the complexity of
interoperation between components at
different levels of detail in mind. 

A Biological Scenario
The concept of clip models can best be
explained with an illustration. The details
don’t really matter; the important thing is

to note the complexity of the relation-
ships between simulated components
and the potential applications of this 
family of simulations for education and
research. 

Figures 4, 5, and 6 are an abstract rep-
resentation of how the heart and vascular
systems interact with other systems used
by the human body to regulate oxygena-
tion—that is, to make sure that we have
enough oxygen in our blood, and not too
much. This homeostasis, crucial for
maintaining life, relies on several inter-

connected mechanisms, including func-
tions of the kidney, the heart, the brain,
the lungs, and chemoreceptors located
throughout the body.

All of these systems are connected by
the blood, and each of them plays a
slightly different role. The blood’s behav-
ior as an oxygen carrier is determined by
macro- and microscopic factors, from the
fraction of blood composed of red blood
cells, visible to the human eye in a test
tube, to the electrostatic attraction be-
tween oxygen and hemoglobin mole-
cules at a scale too fine to be seen with any
microscope. Hormones that regulate the
actions of the kidney, the heart, and the
lungs are generated by the kidney, the
brain, the lungs, and the endocrine sys-
tem, including endocrine glands located
in or near the brain.

The kidneys monitor and correct vari-
ous characteristics of the blood. To un-
derstand their function, we must first
perceive them at a coarse level as organs
that produce urine by filtering the blood.
At this coarse scale, we must understand
only that blood is delivered to and ac-
cepted from the kidneys by large blood
vessels and that the kidneys produce
urine; this level of understanding is 
appropriate for an elementary school 
student. To understand how the kid-
neys perform this function, a more 
advanced learner must examine their
structure at a much finer scale, the scale
of the nephron, of which each kidney has
millions.

The heart rate and the volume of blood
ejected per heartbeat control the rate of

36 EDUCAUSE r e v i e w � March/Apr i l  2005

Figure 5.A more detailed view of the 
kidney, a cross section with some of the 
internal structures

Figure 6.A more detailed view of a
nephron, the microscopic functional unit
of the kidney

Figure 4. Elements in the system for control of oxygenation in the human body 
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distribution of oxygen to the body; these
factors are jointly controlled by the brain
and by the heart itself. The lungs’ respira-
tion rate and inhalation volume are con-
trolled by the brain via nerves, but the
oxygen absorption and the carbon diox-
ide elimination rate are also determined
by the concentration of these gases in the
blood. The carotid bodies, in the neck,
monitor the oxygen concentration in the
blood and inform the brain when more
oxygen is needed. The brain then issues
hormones and neural signals, carried by
the blood and the nervous system to other
organs, which adjust their operation to
correct the problems. 

In our simplified illustration, we show

three levels of detail for examining the
roles of the heart and the kidneys in
homeostatic oxygenation. Figure 5 illus-
trates more detail of the kidney, a cross
section with some of the internal struc-
tures. Figure 6 depicts a single nephron in
the kidney. A learner can dynamically se-
lect which level to examine and may ex-
plore different levels at different times,
depending on need. Clearly, clip-model
exploration by itself may not suffice in an
educational context. We must not only
embed it in explanatory context (e.g., a hy-
permedia document) and organizational
structure (e.g., a self-paced course) but
also enrich it with some type of problem-
solving and/or construction activity and
continuous feedback and assessment.

Clip-Model Implications
The interconnected mechanisms in the
example above, along with the funda-
mental interconnectedness of system
components in all disciplines, cannot all
be studied or understood at once, nor can
they be understood with purely linear
thought . The learner ’s exploratory
process naturally follows the intercon-
nected web of causality, but linear or hier-
archical organizations (such as those in
most software data sources and all text-
books) force the learner into an artifi-
cially linearized exploration. Lineariza-

tion discourages the cross-disciplinary
insights that fuel deep understanding,
since it encourages compartmentalized
rote knowledge. 

As noted above, the varied needs of
audiences at many different levels of so-
phistication preclude a one-to-one map-
ping between a given concept (such as the
circulation of blood through the cardio-
vascular system) and a single clip model.
Thus, instructional designers must think
not in terms of creating a single clip
model for a given topic but in terms of
creating one or more components in a
family of interrelated clip models that
cover a broad range of explanations and
their representations. These models must
correctly reflect the ontology and seman-
tics of the subject matter at each point
along the multiple axes of age, knowledge
level, task, and individual learning. We
must also accommodate the variety of
learning environments in which such
clip models will be presented. These in-
novative and, by their nature, emergent
learning environments must be made
available online and on-site, in synchro-
nous and asynchronous and in virtual
and real classrooms, servicing both single
on-demand learners and collaborative
learners, either in impromptu virtual
study groups or in formats yet to be de-
fined. Another dimension we need to ex-
plore more deeply is team collaboration.
Clearly, these requirements present a
huge challenge for instructional design
and learning technology.

The variety of pedagogical needs that
clip models must satisfy is a complicating
factor that makes their design immensely
harder than that of ordinary components
in standard software engineering. A po-
tential approach to thinking about the
problem may be to use an extension of
the MVC (Model-View-Controller) para-
digm of object-oriented programming to
describe the necessary interrelationships
between these different concept repre-
sentations. Each concept or real-world
object must be represented by a family of
models (e.g., the heart as a pump, the
heart as a muscle, the heart as an organ in
the chest cavity), with widely different de-
grees of sophistication. Each model sup-
ports multiple views (e.g., simplified 3D
models, realistic 3D models, 2D schemat-
ics, the sound heard through a stethoscope)

T he varied needs of audiences at
many different levels of

sophistication preclude a one-to-one
mapping between a given concept 
and a single clip model. 



and, for each view, multiple controllers
that may present a learner-chosen UI
(user interface) style. Multiple models
that must interact, regardless of level of
detail and simulation fidelity, geometri-
cally complicate the single-model para-
digm of classic MVC.

Challenges
This intersection of simulation science,
software engineering, ontology (formal
naming scheme) building, instructional
design, and user interface design forms
the technological aspect of this complex
problem. In addition to the technological
challenges, there are interdisciplinary or-
ganizational challenges: building clip
models is essentially a new design disci-
pline that requires collaborative teams of
experts from cognitive science, social sci-
ences, arts, design, story-telling profes-
sions, information structure design, and
instructional design—working with
teachers, domain experts, simulation sci-
entists, and computer scientists. We can
identify challenges for ontological engi-
neering, simulation science, software en-
gineering, and educational design. 

As a prerequisite to interoperation,
simulation elements must agree on the
ontology of the conceptual realm they
represent. Without a shared ontology or
mappings between related ontologies,
two simulation elements cannot inter-
operate if they disagree on the point in
the nephron at which the “filtrate” be-
comes “urine” or the names for the lobes
of the liver. Furthermore, the ontology
must encompass not just (geometric)
structure (anatomy, in the case of biolo-
gicial systems) but also behavior (bio-
chemical, electrochemical, biomechani-
cal, etc.), a largely untackled problem, at
least for biology. As an additional com-
plication, when you have a single author
or a small team of authors writing a sin-
gle book targeted at a single audience,
the domain specification as seen in the
definition and relationships of concepts
and terms is an important but manage-
able task. When you expand the context
as described above, the situation be-
comes orders of magnitude more com-
plex. Who will define the master ontol-
ogy? How will  other classification
schemes and vocabularies build a corre-
spondence map? Some sort of collabora-

tive approach to ontological engineering
will have to be used in order to build an
ontology that is acceptable to many
members of a given field.

Simulation science does not have a suffi-
ciently flexible framework for wiring to-
gether components of a simulation from
various providers that were not designed
to interoperate from the beginning. How
to connect simulations from different
problem domains for the same subsystem
is still a difficult problem. For example,
simulating the heart’s operation biochem-
ically, electrochemically, and with compu-
tational fluid dynamics, while dealing
with flexible (nonrigid) and time-varying
geometry and both normal and abnormal
behavior, is still a daunting problem. Even
with a standard vocabulary, adaptive
multi-resolution simulations will be even
harder to interoperate; how can they de-
termine at what level of detail to share in-
formation? If we are running interactive
simulations, should we allow algorithms
to run with graceful degradation in order
to meet time requirements? What is the
nature of such approximations? How can
the valid operating ranges of particular
simulations be determined? How can the
simulations report when they venture be-
yond those ranges? If these simulations
are to be used in real science, as we hope,
they must have a mechanism for compar-
ing them with experimental results and
for validating their calculations. How can
a researcher compare predictions made
by a Stanford heart model and by a Har-
vard heart model? How will a kidney
model created by nephrologists at Johns
Hopkins share data with a heart model
from Stanford or a lungs model from Cal-
tech not purposely designed to interoper-
ate? How can a seventh-grade teacher in
Nebraska use a fourth-grade teacher’s set
of human anatomy clip models as the
basis for a more detailed model of the cir-
culatory system?  

The software engineering challenges
range from the commercial and social
difficulties of persuading scientists to
work within a common model to the 
software design characteristics that will
enable flexibility at all levels. Just as 
object-oriented programming is a vast im-
provement in the power of abstraction
compared to assembly language, so must
the clip-model framework design be to

today’s component frameworks; the chal-
lenges are simply too great to be addressed
by incremental advances. A clip-model
framework must address various ques-
tions. How can simulations ensure that
they get the data they need, in the format
they need, regardless of the level of fidelity
at which connected clip models are run-
ning their simulation? For example, how
will a heart model cope with changing
stiffness in the valves if the valve model is
not designed to adjust to stenosis? What
protocols will keep all the simulation
components synchronized in time, even if
one runs in real time and another takes a
day to compute a single time-step? Who
will maintain the repository of code? Who
will control the standards? How can inter-
operability be preserved when some com-
ponents are proprietary?

The educational design challenges of our
vision are the same problems facing
today’s educational software designers.
How can teachers, learners, and scientists
find the components that best meet their
needs? How does a student figure out that
he or she is an auditory learner if the stu-
dent is bombarded with visual materials?
How can users evaluate the reliability,
correctness, bias, and trustworthiness of
authors of the components? 

Progress So Far 
Our field is more prepared to address this
challenge today than we were twenty years
ago. Software engineers used to joke and
complain about rewriting a linked list, a
common data structure, in every new lan-
guage, project, and environment. Since
then, library standardization (especially
the C++ Standard Library, the Standard
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Building clip models is essentially a
new design discipline that requires

collaborative teams of experts.



Template Library, Microsoft .NET, and
Java’s extensive built-in libraries) has made
reusable data structures available to almost
any software project. Reusable component
libraries have advanced to include algo-
rithms (generic programming in C++), user
interface elements (Windows Forms, Java
Swing), and structured data (XML). Our
proposal for clip models follows this trend
of abstraction and reuse.  Although none
of the efforts below address the full gener-
ality of our clip-model idea, there are a
number of projects that are important
stepping-stones toward our goals.

Various groups are working to build
learning object repositories (http://
elearning.utsa.edu/guides/LO-repositories.
htm)—for example, the ARIADNE Foun-
dation (http://www.ariadne-eu.org/) and
M E R LOT  ( h t t p : / / w w w. m e r l o t . o rg /
Home.po)—and to develop standards and
reference models for learning objects—
for example, SCORM (http://www.adlnet.
org/index.cfm?fuseaction=scormabt)
and IEEE’s WG12: Learning Object Meta-
data (http://ltsc.ieee.org/wg12/). Several
efforts have begun to address some of the
simulation science challenges identified
above. The Center for Component Tech-
nology for Terascale Simulation Software
is designing a Common Component Ar-
chitecture (http://www.cca-forum.org/)
as part of a program of the U.S. Depart-
ment of Energy (DOE) Office of Science
(SC). The Knowledge Web community is
now starting to tackle the problem of
identifying and encoding domain-
specific ontologies for the Web. Clyde W.
Holsapple and K. D. Joshi describe a col-
laborative approach to designing an on-
tology; the approach begins with inde-
pendent ontological proposals from
several authors and incorporates input
from many contributors.11 At the Univer-
sity of Washington, the Structural Infor-
matics Group has been working on the
Digital Anatomist Foundational Model of
Anatomy (FMA), an ambitious anatomi-
cal ontology: “The FMA is a domain on-
tology that represents a coherent body of
explicit declarative knowledge about
human anatomy ” (http://sig.biostr.
washington.edu/projects/fm/AboutFM.
html). The ambitious Digital Human Proj-
ect (http://www.fas.org/dh/index.html),
which uses the FMA ontologies, is in-
tended to incorporate all biologically

relevant systems at all time and scale di-
mensions. They range from 10-14 sec
chemical reactions to 109 sec lifetimes
and perhaps 1012 for ecosystems, and
from 10-9 meter chemical structures to
meter-scale humans. The work thus far
has focused on a series of scattered proj-
ects around the world, including the
CellML (http://www.cellml.org/public/
about/what_is_cellml.html) and other
work at the University of Aukland. In the
United States, the NIH (National Insti-
tutes of Health) (http://www.nih.gov/) has
created an interagency group, is planning
another meeting in 2005, and has started
a number of bioinformatic centers that
should help, while DARPA (Defense Ad-
vanced Research Projects Agency) has
charged ahead with the Virtual Soldier
Program (http://www.darpa.mil/dso/
thrust/biosci/virtualsoldier.htm) and the
BioSPICE program (https://community.
biospice.org/).

Conclusion
Rethinking learning and education, in all
of their dimensions, to successfully ad-
dress the needs in this century is an over-
whelmingly large and complex research
and implementation agenda that will re-
quire a multi-decade—indeed, never-
ending—level of effort on the part of all
those involved in creating and delivering
educational content. Nonetheless, a start
must be made, as a national—indeed,
global—imperative. 

The start we’re proposing here (the
Learning Federation’s R&D roadmaps) is
another first step in the quest to build
next-generation educational content and
tools. This research agenda is meant to

lead to the development not only of next-
generation authoring tools and content
but also of exemplary curricula in the
broadest sense. The research agenda is
predicated on our belief that “hardware
will take care of itself” because of com-
moditization driven by market forces. Ed-
ucational software R&D, on the other
hand, thus far has insufficient commer-
cial appeal and must therefore be consid-
ered a strategic investment by funding
agencies and companies. Industry and
government are certainly investing in
computer-based training; much can be
learned from their successful efforts.

To return to our biology example, we
believe that the creation of families of in-
teroperable clip models that will de-
scribe the human body as a system of in-
terconnected biological components at
all levels—from the molecular to the
gross anatomical—will provide an un-
precedented learning resource. Even
though the creation of such families of
clip models in a variety of disciplines will
necessitate the integration of work from
thousands of contributors over decades,
even a beginning but very ambitious and
comprehensive effort, such as the Digital
Human Project, at building biological
system components will have a payoff.
We should not be daunted by the sheer
magnitude of the task but should make
steady progress along a clearly articu-
lated path. 

Furthermore, clip models are not, by
themselves, the answer: there is no magic
bullet, no single style of educational con-
tent that can encompass the enormously
diverse set of requirements for this
agenda. Creating high-quality next-
generation educational content, across all
disciplines and at all levels, will require a
Grand Challenge effort on a scale such as
the Manhattan Project, the Man on the
Moon (Apollo) Project, and the Human
Genome Project. The U.S., European, and
several Asian economies certainly have
both the ability and the need to cultivate
the will to invest the same amount in cre-
ating exemplar interactive courses as they
do in videogames and special-effects
movies. Indeed, the U.S. Department of
Defense is making significant modern IT-
based investments for its training needs,
mostly notably in “America’s Army”
(http://www.americasarmy.com/) and the
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E ducational software R&D thus far
has insufficient commercial appeal

and must therefore be considered a
strategic investment by funding agencies
and companies. 



funding of institutes such as the USC 
Institute for Creative Technologies
(http://www.ict.usc.edu/). We cannot af-
ford to have the civilian sector left be-
hind. The Learning Federation has made
a start in working with the government
with the DOIT (Digital Opportunity In-
vestment Trust) report (http://www.digital
promise.org/), which articulates a poten-
tial funding mechanism based on spec-
trum sales.

The payoff from the huge investment
of time, energy, and money cannot be
overstated. Beyond education, the clip-
model architecture will help advance sci-
ence itself. The architecture will enable
the “development” aspect of R&D to rap-
idly integrate advances in basic research.
Th e  c o m i n g  ava l a n c h e  o f  d at a  i n
genomics and proteomics will require
massively interconnected simulation sys-
tems; otherwise, how will the identifica-
tion of a gene in Japan link to a class of
pharmaceutical candidates for a rare dis-
ease being researched in Switzerland? In-
formation sharing must be augmented by
model sharing as an intrinsic part of the

research process if connections are to be
drawn between advances in different spe-
cialized fields—not sharing simply by
publishing papers in research journals
but by publishing information as soft-
ware objects that can be used immediately
(subject to accommodating the relevant
IP and commercialization issues) in other
research projects. We cannot predict the
insights that will be revealed by happy ac-
cident when two or three unrelated
strands of knowledge are unified in an in-
tegrated model, but we can eagerly antici-
pate the leverage that will be gained from
the synergy.e
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Abstract

This paper presents a novel form of dynamically
constructed Bayes net, developed for multi-domain
sketch recognition. Our sketch recognition engine
integrates shape information and domain knowl-
edge to improve recognition accuracy across a vari-
ety of domains using an extendible, hierarchical ap-
proach. Our Bayes net framework integrates the in-
fluence of stroke data and domain-specific context
in recognition, enabling our recognition engine to
handle noisy input. We illustrate this behavior with
qualitative and quantitative results in two domains:
hand-drawn family trees and circuits.

1 Introduction
There is a gap between how people naturally express ideas
and the ability of computers to use that information. For ex-
ample, while sketching provides a natural way to record de-
sign ideas in many domains, sketches are, unavoidably, static
pictures. Computer aided design tools, on the other hand,
offer powerful capabilities, but require designers to interact
through buttons and menus. The hardware to draw on the
computer exists; the missing element is the computer’s abil-
ity to interpret hand-drawn symbols in a domain. To address
this problem, we are constructing a general sketch recognition
architecture applicable to a number of domains, and capable
of parsing freely-drawn strokes in real time and interpreting
them as depicting objects in the domain of interest.

Sketch recognition involves two related subproblems:
stroke segmentation and symbol recognition. Segmentation
determines which strokes should be grouped to form a single
symbol. Symbol recognition determines what symbol a given
set of strokes represents.

The difficulty of doing segmentation and recognition si-
multaneously has led previous approaches to place con-
straints on the user’s drawing style, or focus on tasks where
assumptions can greatly reduce segmentation complexity. For
example, the multimodal approach in [Wu et al., 1999] as-
sumes that each symbol will be drawn independently, and that

∗Currently at Harvey Mudd College, Claremont, CA, 91711
†This work was funded by the MIT iCampus project supported

by Microsoft and MIT Project Oxygen.

the user will often say the name of the symbol when drawing
it. The approach in [Kara and Stahovich, 2004] assumes that
the diagram (a feedback control system) consists of shapes
linked by arrows, which is not true in other domains.

While these systems have proven useful for their respective
tasks, we aimed to create a more general system, independent
of drawing assumptions in any one domain. Our system is
designed, instead, to be applied to a number of symbolic do-
mains by giving it descriptions of shapes and commonly oc-
curring combinations of shapes. We use these descriptions in
a three-stage, constraint-based approach to recognition. Our
system first relies on a rough processing of the user’s strokes
to generate a number of interpretation hypotheses. In the sec-
ond stage, the system uses a novel form of dynamically con-
structed Bayes net to determine how well each hypothesis fits
the data. In the third stage, it uses this evaluation to guide fur-
ther hypothesis generation. This paper focuses specifically on
the second stage, exploring hypothesis evaluation; the other
two stages are described in [Alvarado, 2004].

Using Bayes nets for hypothesis evaluation offers two
advantages over previous constraint-based recognition ap-
proaches (e.g., [Futrelle and Nikolakis, 1995; Hammond and
Davis, 2004]). First, our system can interpret drawings as
they develop, identifying shapes before they are complete.
Second, the system’s belief in a hypothesis can be influenced
by both the strokes and the context in which the shape ap-
pears, allowing the system to cope with noise in the drawing.

We constructed a sketch recognition engine and used it in
two domains: family tree diagrams and circuit diagrams. We
show that the Bayes net successfully allows domain-specific
context to help the system overcome noise in the stroke data,
reducing interpretation errors compared to a baseline system.

2 Dynamically Constructed Graphical Models
While time-based graphical models (e.g., Dynamic Bayes
Nets) have been widely used, they are not suitable for sketch
understanding, for two reasons. First, we must model shapes
based on two-dimensional constraints (e.g., touches) rather
than on temporal constraints (i.e., follows). Second, our mod-
els cannot simply unroll in time as data arrives: we cannot
necessarily predict the order in which the user will draw the
strokes, and things drawn previously can be changed.

While it is not difficult to use Bayes nets to model spatial
relationships, static Bayes nets are not suitable for our task
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C4 = (equalLength line-fit(s3) line-fit(s4))
C5 = (shorter line-fit(s3) line-fit(s2))
C6 = (acuteAngle line-fit(s2), line-fit(s3))
C7 = (acuteAngle line-fit(s2), line-fit(s4))

Figure 1: A single current source hypothesis (CS1) and asso-
ciated lower-level hypotheses.

because we cannot predict a priori the number of strokes or
symbols the user will draw. For sketch recognition, as in re-
lated dynamic tasks, models to reason about specific problem
instances (e.g., a particular sketch) must be dynamically con-
structed in response the input. This problem is known as the
task of knowledge-based model construction (KBMC).

Early approaches to KBMC focused on generating Bayes
nets from probabilistic knowledge bases [Glessner and
Koller, 1995; Haddawy, 1994]. A recently proposed repre-
sentation uses generic template knowledge directly as Bayes
net fragments that can be instantiated and linked together at
run-time [Laskey and Mahoney, 1997]. Finally, Koller et
al. have developed a number of object-oriented frameworks
[Koller and Pfeffer, 1997; Pfeffer et al., 1999; Getoor et al.,
1999]. These models represent knowledge in terms of rela-
tionships among objects and can be instantiated dynamically
in response to the number of objects in a particular situation.

Although these frameworks are powerful, they are not di-
rectly suitable for sketch recognition. First, because of the
size of the networks we encounter, it is sometimes desirable
to generate only part of a complete network, or to prune nodes
from the network. In reasoning about nodes in the network,
we must account for the fact that the network may not be
fully generated or relevant information may have been pruned
from it (see [Alvarado, 2004] for details). Second, these pre-
vious models have been optimized for responding to specific
queries about a single node in the network. In contrast, our
model must provide probabilities for a full set of possible in-
terpretations of the user’s strokes.

3 Network Structure
Our Bayes net model is built around hierarchical descriptions
of shapes in a domain, described in a language called LAD-
DER [Hammond and Davis, 2003]. The basic unit in this

language is a shape, which we use to mean a pattern recog-
nizable in a given domain. Shapes may be compound, i.e.,
composed of subshapes fit together according to constraints.
These subshapes also may be compound, but all shapes must
be non-recursive. A shape that cannot be decomposed into
subshapes (e.g., a line), is called a primitive shape. Primi-
tive shapes may have named subcomponents that can be used
when describing other shapes, e.g., the endpoints of a line,
“p1” and “p2”, used in Figure 1.

We refer to each shape description as a template with one
slot for each subpart. A shape hypothesis is a template with
an associated mapping between slots and strokes, generated
during the recognition process. Similarly, a constraint hy-
pothesis is a proposed constraint on one or more of the user’s
strokes. A partial hypothesis is a hypothesis in which one or
more slots are not bound to strokes.

To introduce our Bayes net model, we begin by considering
how to model a current source hypothesis (CS1) for the stokes
in Figure 1. A current source is a compound shape, so CS1 in-
volves two lower-level shape hypotheses—E1, an ellipse hy-
pothesis for stroke s1; and A1, an arrow hypothesis involving
strokes s2, s3 and s4—and one constraint hypothesis—C1, in-
dicating that an ellipse fit for stroke s1 contains strokes s2,
s3, and s4. A1 is also compound and is further broken down
into three line hypotheses (L1, L2 and L3) and six constraint
hypotheses (C2, ...,C7) according to the description of an ar-
row. Thus, determining the strength of hypothesis CS1 can be
transformed into the problem of determining the strength of a
number of lower-level shape and constraint hypotheses.

The Bayes net used to evaluate CS1 is shown in Figure 2.
There is one node in the network for each hypothesis; each
node represents a boolean random variable that is true if the
corresponding hypothesis is correct. The probability of each
hypothesis is influenced both through its children by stroke
data and through its parents by the context in which it appears,
allowing the system to handle noise in the drawing.

The nodes labeled O1, ...,O11 represent measurements of
the stroke data that correspond to the constraint or shape to
which they are linked. The variables corresponding to these
nodes have positive real numbered values that we discretize in
our implementation1. For example, the variable O2 is a mea-
surement of the squared error between the stroke s1 and the
best fit ellipse to that stroke. Its raw value (later discretized)
ranges from 0 to the maximum possible error between any
stroke and an ellipse fit to that stroke. The boxes labeled
s1, ...,s4 are not part of the Bayes net but serve to indicate
the stroke or strokes from which each measurement, Oi, is
taken (e.g., O2 is measured from s1). P(CS1 = t|ev) (or sim-
ply P(CS1|ev))2, where ev is the evidence observed from the
user’s strokes, represents the probability that the hypothesis
CS1 is correct.

The direction of the links may seem counterintuitive, but
there are two important reasons why the links are directed
from higher-level shapes to lower-level shapes instead of the
opposite direction. First, whether a higher-level hypothe-
sis is true directly influences whether a lower-level hypoth-

1The BN software we used did not support continuous variables.
2Throughout this paper, t means true, and f means false.
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Figure 2: A Bayes net to verify a single current source hy-
pothesis. Labels come from Figure 1.

esis is true. For example, if the arrow hypothesis A1 is
true, then it is extremely likely that all three line hypotheses,
L1,L2,L3, are also true. Second, this representation allows us
to model lower-level hypothesis as conditionally independent
given their parents, which reduces the complexity of the data
needed to construct the network.

Each shape description constrains its subshapes only rela-
tive to one another. For example, an arrow may be made from
any three lines that satisfy the necessary constraints. Based on
this observation, our representation models a symbol’s sub-
shapes separately from the constraints between them. For ex-
ample, node L2 represents the hypothesis that stroke s3 is a
line. Its value will be true if the user intended for s3 to be a
line, any line regardless of its position, size or orientation. C4
separately represents the hypothesis that the line fit to s3 and
the line fit to s4 are the same length.

The conditional independence between shapes and con-
straints might seem a bit strange at first. For example,
whether or not two lines are the same length seems to de-
pend on the fact that they are lines. However, observation
nodes for constraints are calculated in such a way that their
value is not dependent on the true interpretation for a stroke.
For example, when calculating whether or not two lines are
the same length, we first fit lines to the strokes (regardless
of whether or not they actually look like lines), then measure
their length. How well these lines fit the original strokes is
not considered in this calculation.

The fact that there is no edge between the constraint nodes
and the shapes they constrain has an important implication for
using this model to perform recognition: There is no guaran-
tee in this Bayes net that the constraints will be measured
between the correct subshapes because the model allows sub-
shapes and constraints to be detected independently. For ex-
ample, we want C4 in Figure 2 to indicate that L2 and L3
(the two lines in the head of an arrow) are the same length,
not simply that any two lines are the same length. To satisfy
this requirement, the system must ensure that O8 is measured
from the same strokes that O4 and O5 were measured from.
We use a separate mechanism to ensure that only legal bind-
ings are created between strokes and observation nodes.

The way we model shape and constraint information has
two important advantages for recognition. First, this Bayes
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Figure 3: A partial sketch of a family tree. Quadrilaterals (Q)
represent males (M); ellipses (E) represent females (F), and
arrows (A) indicate a parent-child relationship.

net model can be applied to recognize a shape in any size,
position and orientation. CS1 represents the hypothesis that
s1, ...,s4 form a current source symbol, but the exact posi-
tion, orientation and size of that symbol is determined directly
from the stroke data 3.

Second, the system can model competing higher-level in-
terpretations for lower-level shapes. For example, the system
may consider a stroke to be a line that is in turn part of ei-
ther an arrow or a quadrilateral. Because the line hypothesis
does not include any higher-level shape-specific constraint in-
formation, both an arrow hypothesis node and a quadrilateral
hypothesis node can point to this same line hypothesis node.
These two hypotheses then become alternate, competing ex-
planations for the line hypothesis. We further discuss how
hypotheses are combined below.

4 Recognizing a Complete Sketch
To recognize a complete sketch, we create a Bayes net similar
to the one above for each shape. We call each of these Bayes
nets a shape fragment because they can be combined to create
a complete Bayes net for evaluating the whole sketch.

Given a set of hypotheses for the user’s strokes (hypothe-
sis generation is described in [Alvarado and Davis, 2004] and
[Alvarado, 2004]), the system instantiates the corresponding
shape fragments and links them together to form a complete
Bayes net, called the interpretation network. To illustrate this
process, consider a piece of a network generated in response
to Strokes 6 and 7 in the example of Figure 3. Figure 4 shows
the part of the Bayes net representing the hypotheses that the
system generated for these strokes. Low level processing rec-
ognizes Strokes 6 and 7 as L-shaped polylines and breaks
each into two individual lines (L1...L4) that meet.

4.1 Linking Shape Fragments
When Bayes net fragments are linked during recognition,
each node Hn may have several parents, S1 . . .Sm, where each
parent represents a possible higher-level interpretation for Hn.
We use a noisy-OR function to combine the influences of all
the parents of Hn to produce the complete conditional proba-
bility table (CPT) for P(Hn|S1, . . . ,Sm). The noisy-OR func-
tion models the assumption that each parent can indepen-
dently cause the child to be observed. For example, a single

3Orientation-dependent symbols (e.g., a downward-facing ar-
row) can be recognized by including orientation-dependent con-
straints in their descriptions (e.g., vertical, below).



stroke might be part of a quadrilateral or an arrow, but both
interpretations would favor that interpretation of the stroke
as a line. We set P(Hn = f |S j = t) = 0 for all parents S j
in which Hn is a required subshape or constraint, and we set
P(Hn = f |Sk = t) = 0.5 for all parents Sk in which Hn is an
optional subshape or constraint. A consequence of these val-
ues is that S j = t ⇒ P(Hn|S1, . . . ,Sm) = 1 for any S j in which
Hn is required, which is exactly what we intended.

We experimented with a noisy-XOR construct, imple-
mented using a “gate node” similar to that described in
[Boutilier et al., 1996], but found that noisy-OR semantics
were simpler and in fact produced better results. In effect,
a noisy-OR node in a Bayes net with low prior probabilities
behaves as a non-aggressive XOR. The fact that one parent
is true does not actively prohibit the other parents from being
true, but it causes their probabilities to tend back to their prior
values because of the “explaining away” phenomenon.

4.2 Signal Level Noise

The bottom layer of the network deals with signal level noise
by modeling the differences between the user’s intentions and
the strokes that she draws. For example, even if the user
intends to draw L1, her stroke likely will not match L1 ex-
actly, so the model must account for this variation. Consider
P(O1|L1 = t) (recall that O1 is a discretized continuous val-
ued variable). If the user always drew perfect lines, this dis-
tribution would be 1 when O1 = 0 (i.e., the error is 0), and 0
otherwise. However, most people do not draw perfect lines
(due to inaccurate pen and muscle movements), and this dis-
tribution allows for this error. It should be high when O1 is
close to zero, and fall off as O1 gets larger. The wider the
distribution, the more error the system will tolerate, but the
less information a perfect line will provide.

The other distribution needed is P(O1|L1 = f ) which is the
probability distribution over line error given that the user did
not intend to draw an line. This distribution should be close to
uniform, with a dip around 0, indicating that if the user specif-
ically does not intend to draw an line, she might draw any
other shape, but probably won’t draw anything that resem-
bles an line. Details about how we determined the conditional
probability distributions between primitive shapes and con-
straints and their corresponding observation nodes are given
elsewhere [Alvarado, 2004].

4.3 Missing Strokes

A1 is a partial hypothesis—it represents the hypothesis that L1
and L2 (from Stroke 6) are part of an arrow whose other line
has not yet been drawn. Line nodes representing lines that
have not been drawn (e.g., L5) are not linked to observation
nodes because there is no stoke from which to measure these
observations. We refer to these nodes (and their correspond-
ing hypotheses) as virtual.

The fact that partial hypotheses have probabilities allows
the system to assess the likelihood of incomplete interpreta-
tions based on the evidence it has seen so far. In fact, even
virtual nodes have probabilities, corresponding to the proba-
bility that the user (eventually) intends to draw these shapes
but either has not yet drawn this part of the diagram or the
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Figure 4: A portion of the interpretation network generated
while recognizing the sketch in Figure 3.

correct low-level hypotheses have not yet been proposed (be-
cause of low-level recognition errors). A partial hypothesis
with a high probability cues the system to examine the sketch
for possible missed low-level interpretations during the hy-
pothesis generation step.

5 Implementation and Bayesian Inference
Our system updates the structure of the Bayes net in response
to each stroke the user draws, using an off-the-shelf, open
source Bayes net package for Java called BNJ [bnj, 2004].

Generating and modifying the BNJ networks can be time
consuming due to the exponential size of the CPTs between
the nodes. We use two techniques to improve performance.
First, networks are generated only when the system needs to
evaluate the likelihood of a hypothesis. This on-demand con-
struction is more efficient than continuously updating the net-
work, because batch construction of the CPTs is often more
efficient than incremental construction. Second, the system
modifies only the portion of the network that has changed be-
tween strokes, rather than creating it from scratch every time.

We experimented with several inference methods and
found that loopy belief propagation (loopy BP) [Weiss, 1997]
was the most successful4. On our data, loopy BP almost al-
ways converged (messages initialized to 1, run until node val-
ues stable within 0.001). We further limited the algorithm’s
running time in two ways. First, we terminated the algorithm
after 60 seconds if it had not yet converged. Second, we al-
lowed each node to have no more than 8 parents (i.e., only 8
higher-level hypotheses could be considered for a single hy-
pothesis), ensuring a limit on the complexity of the graphs
produced. These restrictions had little impact on recognition
performance in the family tree domain, but for complex do-
mains such as circuit diagrams, more efficient inference algo-
rithms or graph simplification techniques are needed to im-
prove recognition results.

6 Application and Results
We applied our implemented system to two non-trivial
domains—family trees and circuits—and found that it is ca-
pable of recognizing sketches in both domains without re-
programming. Qualitative and quantitative evaluation of our

4Junction Tree [Jensen et al., 1990] was often too slow and
Gibb’s Sampling did not produce meaningful results.
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Figure 5: Part of three possible ground symbols.

system illustrates its strengths over previous approaches and
suggests some extensions.

Applying our system to a particular domain involves two
steps: specifying the structural descriptions for the shapes
in the domain, and specifying the prior probabilities for top-
level shapes and domain patterns, i.e., those that will not have
parents in the Bayes net. For each domain, we wrote a de-
scription for each shape and pattern in that domain. We hand-
estimated priors for each domain pattern and top level shape
based on our intuition about the relative prevalence of each
shape. For example, in family-tree diagrams, we estimated
that marriages were much more likely than partnerships, and
set P[Mar] = 0.1 and P[Part] = 0.001. These priors represent
the probability that a group of strokes chosen at random from
the page will represent the given shape and, in most cases,
should be relatively low. Although setting priors by hand can
be tedious, we found through experimentation that the sys-
tem’s recognition performance was relatively insensitive to
the exact values of these priors. For example, in the circuit
diagrams, increasing all the priors by an order of magnitude
did not affect recognition performance; what matters instead
is the relative values of the prior probabilities.

Our system is capable of recognizing simple sketches
nearly perfectly in both the family-tree and circuit domains.
We also tested its performance on more complex, real-world
data. As there is no standard test corpus for sketch recog-
nition, we collected our own sketches and have made them
available online to encourage others to compare their results
with those presented here [Oltmans et al., 2004]. In total, we
tested our system on 10 family tree sketches and 80 circuit
diagram sketches, with between 23 and 110 strokes each.

6.1 Qualitative Results
Qualitative analysis reveals that the Bayes net mechanism
successfully aggregates information from stroke data and
context, resolves inherent ambiguities in the drawing, and
updates its weighting of the various existing hypotheses as
new strokes are drawn. We show through an example that
the Bayes net scores hypotheses correctly in several respects:
it prefers to group subshapes into the fewest number of in-
terpretations, it allows competing interpretations to influence
one another, it updates interpretation strengths in response to
new stroke data, and it allows both stroke data and context to
influence interpretation strength.

To illustrate the points above, we consider in detail how the
system responds as the user draws the three sets of strokes
in Figure 5 (a ground symbol). To simplify the example,
we consider a reduced circuit domain in which users draw
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Figure 6: The Bayes net produced in response to the strokes
in each ground symbol in Figure 5. The shaded area shows
the network produced in response to the first two strokes.

Name P[Shape|stroke data]
after 2 strokes after 3 strokes

(a) (b) (c) (a) (b) (c)
Wire-1 0.4 0.41 0.41 0.4 0.4 0.42
Wire-2 0.4 0.38 0.38 0.4 0.4 0.38
Wire-3 N/A N/A N/A 0.4 0.4 0.1
Battery-1 0.51 0.51 0.51 0.09 0.1 0.91
Battery-2 N/A N/A N/A 0.09 0.1 0.0
Ground-1 0.51 0.51 0.51 0.95 0.94 0.03

Table 1: Posterior probabilities for part of the network in Fig-
ure 6 for each sketch in Figure 5.

only wires, resistors, ground symbols and batteries. Figure 6
shows the Bayes nets produced in response to the user’s first
two and first three strokes. After the first two strokes, the net-
work contains only the nodes in the shaded area; after three
strokes it contains all nodes shown. Continuous variables cor-
responding to observation nodes were discretized into three
values: 0 (low error: stroke data strongly supports the shape
or constraint), 1 (medium error: stroke data weakly supports
the shape or constraint), and 2 (high error: stroke data does
not support the shape or constraint).

Posterior probabilities are given in Table 1. For the rel-
atively clean ground symbol (Figure 5(a)), the stroke data
strongly supports all the shapes and constraints, so all shaded
nodes in Figure 6 have value 0. After the first two strokes,
the battery symbol and the ground symbol have equal weight,
which may seem counterintuitive: after two strokes the user
has drawn what appears to be a complete battery, but has
drawn only a piece of the ground symbol. Recall, however,
that the Bayes net models not what has been drawn, but what
the user intends to draw. After two strokes, it is equally likely
that the user is in the process of drawing a ground symbol. Af-
ter the third stroke, the ground symbol’s probability increases
because there is more evidence to support it, while the bat-
tery’s probability decreases. The fact that the ground symbol
is preferred over the battery illustrates that the system prefers
interpretations that result in fewer symbols (Okham’s razor).
Interpretations that involve more of the user’s strokes have
more support and get a higher score in the Bayes net. The fact
that the battery symbol gets weaker as the ground symbol gets
stronger results from the “explaining away” behavior in this
Bayes net configuration: each of the low-level components
(the lines and the constraints) are effectively “explained” by
the existence of the ground symbol, so the battery is no longer



needed to explain their presence.
Another useful property of our approach is that a small

amount of noise in the data is counteracted by the context
provided by higher-level shapes. The slightly noisy second
and third strokes in Figure 5(b) cause the values of SqErr-
2 and SqErr-3 to be 1 instead of 0 (all other shaded node
values remain 0). Despite this noise, after three strokes the
posterior probability of the ground symbol interpretation is
still high (0.94), because Line-1 and all of the constraints
are still strongly supported by the data. In addition, the
probabilities for Line-2 and Line-3 are high (both 1.0, not
shown in Table 1), indicating that the context provided by the
ground symbol provides support for the line interpretations
even when the evidence from the data is not as strong.

On the other hand, if the data is too messy, it causes
the probability of the higher-level interpretations to decrease.
The sketch in Figure 5(c) causes the value of SqErr-2 to be 1,
and SqErr-3 to be 2, and results in a low posterior probability
for Ground-1 (0.03) and a high posterior for Battery-1 (0.91),
because the hypothesis Line-3 is contradicted by the user’s
third stroke. For now, the third stroke remains uninterpreted.

6.2 Quantitative Results
We ran our system on all of the sketches we collected
and compared its performance to a baseline constraint-based
recognition system that used a fixed threshold for detect-
ing shapes and constraints and did not reinterpret low-level
shapes. We measured recognition performance by deter-
mining the number of objects identified correctly in each
sketch. Our system significantly outperformed the baseline
system (p � 0.001), correctly recognizing 77% (F=0.83) of
the shapes in the family tree diagrams and 62% (F=0.65) of
the shapes in the circuit diagrams, while the baseline system
correctly recognized 50% (F=0.63) and 54% (F=0.57).

While not yet real time, in general our system’s processing
time scaled well as the number of strokes increased. How-
ever, it occasionally ran for a long period. The system had
particular trouble with areas of the sketch that involved many
strokes drawn close together in time and space and with do-
mains that involve more complicated or overlapping symbols.
This increase in processing time was due almost entirely to
increase in Bayes net complexity.

We believe we can speed up loopy BP based on the obser-
vation that it repeatedly sends messages between the nodes
until each node has reached a stable value. When a stroke is
added, our system resets all messages to 1, essentially eras-
ing the work done the last time inference was performed, even
though most of the graph is unchanged. The algorithm should
instead begin with the messages that remain at the end of the
previous inference step.

7 Conclusion
We have described a model for dynamically constructing
Bayes nets to represent varying hypotheses for the user’s
strokes. Our model, specifically developed for the task of
recognition, allows both stroke data and contextual data to
influence the probability of an interpretation for the user’s
strokes. Using noisy-OR, multiple potential higher-level

interpretations mutually influence each other’s probabilities
within the Bayes net. The net result is a sketch recognition
approach that brings us a significant step closer to sketching
as a natural and powerful interface.
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ABSTRACT
We present SketchREAD, a multi-domain sketch recognition
engine capable of recognizing freely hand-drawn diagram-
matic sketches. Current computer sketch recognition systems
are difficult to construct, and either are fragile or accomplish
robustness by severely limiting the designer’s drawing free-
dom. Our system can be applied to a variety of domains by
providing structural descriptions of the shapes in that do-
main; no training data or programming is necessary. Robust-
ness to the ambiguity and uncertainty inherent in complex,
freely-drawn sketches is achieved through the use of con-
text. The system uses context to guide the search for possible
interpretations and uses a novel form of dynamically con-
structed Bayesian networks to evaluate these interpretations.
This process allows the system to recover from low-level
recognition errors (e.g., a line misclassified as an arc) that
would otherwise result in domain level recognition errors.
We evaluated SketchREAD on real sketches in two domains—
family trees and circuit diagrams—and found that in both do-
mains the use of context to reclassify low-level shapes signif-
icantly reduced recognition error over a baseline system that
did not reinterpret low-level classifications. We also discuss
the system’s potential role in sketch-based user interfaces.

Categories and Subject Descriptors: I.5.4 [Pattern Recog-
nition ]: Applications; H.5.2 [User Interfaces]: Interaction
Styles

Additional Keywords and Phrases: Pen-based UIs, in-
put and interaction technology, sketch recognition, intelligent
UIs, Bayesian networks

1 INTRODUCTION
While in recent years there has been an increasing interest
in sketch-based user interfaces [9, 13, 14], the problem of
robust free-sketch recognition remains largely unsolved. Be-
cause existing sketch recognition techniques are difficult to
implement, and are error-prone or severely limit the user’s
drawing style, many previous systems that support sketching
perform only limited recognition. ScanScribe, for example,
uses perceptual guidelines to support image and text editing,
but does not attempt to recognize the user’s drawing [14].
Similarly, the sketch-based DENIM system supports the de-
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sign of web pages but recognizes very little of the user’s
sketch [13]. Finally, NuSketch reasons about spatial relation-
ships in military diagrams, but does not recognize sketched
symbols [5]. Systems of this sort involve the computer in the
early design, making it easy to record the design process, but
they do not always facilitate automatic transition from the
early stage design tool to a more powerful design system.

To enable the construction of sketch-based interfaces for a
number of domains, we have created SketchREAD (Sketch
Recognition Engine for mAny Domains), a system capable
of understanding freely-drawn, messy, two-dimensional di-
agrammatic sketches. SketchREAD “understands” a user’s
sketch in that it parses a user’s strokes as they are drawn and
interprets them as objects in a domain of interest. Sketch-
READ operates in the background while the user sketches;
recognition results may be displayed after the user completes
the sketch or at any time during the recognition process. Our
engine does not assume it will receive user feedback for its
recognition, because having to give feedback can distract the
user during the design process. It may be applied to any do-
main in which sketches may be described in terms of dia-
grammatic symbols (e.g., circuit diagrams, military course
of action diagrams). Although SketchREAD is not designed
to recognize other types of sketches (e.g., three-dimensional
sketches and free-form sketches common in domains such as
architecture) the class of sketches it is designed to recognize
is important for designers in many domains. This system both
helps solve a challenging problem in sketch understanding
and enables more natural interaction with design software.

One of the most difficult problems in creating a sketch recog-
nition system is handling the tradeoff between ease of recog-
nition and drawing freedom. The more we constrain the
user’s drawing style, the easier recognition becomes. For ex-
ample, if we enforce the constraint that each component in
the domain must be a carefully drawn symbol that can be
created with a single stroke, it is relatively easy to build rec-
ognizers capable of distinguishing between the symbols, as
was done with Palm Pilot GraffitiTM . The advantage of us-
ing restricted recognizers is accuracy; the disadvantage is the
designer is constrained to a specific style of sketching.

Previous recognition-intensive systems have focused on tasks
where drawing style assumptions can greatly reduce recog-
nition complexity. Longet al. focus on designing special
graphical symbols that will not be confused easily by the
computer [10]. This approach improves recognition, but it
limits the designer to a specific set of single-stroke sym-
bols that may be natural only for certain tasks. The Quickset
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Figure 1: The symbols in the family tree domain.

system for recognizing military course of action (COA) dia-
grams uses multi-modal information to improve recognition
of sketched symbols [20], but assumes that each symbol will
be drawn independently, and that the user will likely speak
the name of the symbol when drawing it. These assumptions
aid recognition, but may fail for design tasks in other do-
mains. In electrical engineering, for example, designers draw
several symbols without pausing and probably do not speak
the name of the symbols they draw. Other previous systems
have similar constraints on drawing style or do not provide
the level of recognition robustness we seek here [17, 6, 3].

While the previous systems have proven useful for their re-
spective tasks, we aim to create a general sketch recognition
system that does not rely on the drawing style assumptions
of any one domain. To be usable, a sketch recognition-based
system must make few enough mistakes that sketching is less
work than using a more traditional (i.e., menu-based) inter-
face. To be broadly effective the system’s architecture should
be easily applied across a variety of domains, without hav-
ing to reengineer the system. Our system is a significant step
toward achieving these goals.

Our approach makes four contributions to the field of sketch-
based UIs. First, our engine separates information about ba-
sic shapes from their interpretation in a particular domain
so that our engine can more easily be extended to multi-
ple domains without having to recreate the shape recogniz-
ers. Second, we have developed a novel form of dynamically
constructed Bayesian networks to allow both stroke data and
higher-level shape information to influence the system’s in-
terpretation of the user’s strokes. Third, our system uses this
novel Bayesian network technique to guide its search for pos-
sible interpretations of the user’s sketch, allowing it to re-
cover from low-level interpretation errors (e.g., a line mis-
classified as an arc) that would otherwise prevent recognition
of the sketch. Fourth, we gathered and tested our recognition
engine on unconstrained freely-drawn data in two domains—
family trees and circuits. We show that SketchREAD con-
sistently reduced recognition errors over a baseline system
that did not reinterpret low-level classifications. The results
of these tests make concrete the strengths of our approach
and the remaining challenges we face in building a recogni-
tion engine that can better handle real-world data.

We begin by exploring the challenges of recognizing real-
world sketches. Next, we present our new approach to recog-
nition, then analyze our system’s performance on real data.
We conclude with a discussion of how to extend our system’s
power and how it can be used in sketch recognition user in-
terfaces (SkRUIs).
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Figure 2: A partial sketch of a family tree.

2 THE CHALLENGES OF SKETCH UNDERSTANDING
Figure 2 shows the beginning of a sketch of a family tree,
with the strokes labelled in the order in which they were
drawn. The symbols in this domain are given in Figure 1.
The user started by drawing a mother and a father, then drew
three sons. He linked the mother to the sons by first drawing
the shafts of each arrow and then drawing the arrowheads.
(In our family tree diagrams, each parent is linked to each
child with an arrow.) He will likely continue the drawing by
linking the father to the children with arrows and linking the
two parents with a line.

Although relatively simple, this drawing presents many chal-
lenges for sketch recognition. While previous recognition
systems have addressed some of these challenges, Sketch-
READ is the first to address all of them using a general
framework that can be extended to multiple domains.

The first challenge illustrated in Figure 2 is the incremental
nature of the sketch process. Incremental sketch recognition
allows the computer to seamlessly interpret a sketch as it is
drawn and keeps the user from having to specify when the
sketch is complete. To recognize a potentially incomplete
sketch, a computer system must know when to recognize a
piece of that sketch and when to wait for more information.
For example, Stroke 1 can immediately be recognized as a
female, but Stroke 6 cannot be recognized without Stroke 7.

The second challenge is that many of the shapes in Fig-
ure 2 are visually messy. For example, the center arrow-
head (Stroke 11) looks more like an arc than two lines. Next,
the stroke used to draw the leftmost quadrilateral (Stroke 3)
looks like it is composed of five lines—the top of the quadri-
lateral is bent and could be reasonably divided into two lines
by a stroke parser. Finally, the lines in the rightmost quadri-
lateral (Strokes 6 and 7) do not touch in the top left corner.

The third issue is segmentation: It is difficult to know which
strokes are part of which shapes. For example, if the com-
puter knew that Strokes 9 and 11 were part of one shape,
the system would likely be able to match an arrow pattern to
these strokes using a standard algorithm, such as a neural net-
work. Unfortunately, segmentation is not an easy task. The
shapes in this drawing are not clearly spatially segmented,
and naively trying different combinations of strokes is pro-
hibitively time consuming. To simplify segmentation, many
previous systems (e.g., [13, 20]) assume each shape will be



drawn with temporally contiguous strokes. This assumption
does not hold here.

There are also some inherent ambiguities in how to segment
the strokes. For example, lines in our domain indicate mar-
riage, but not every line is a marriage-link. The shaft of the
leftmost arrow (Stroke 8) might also have been interpreted as
a marriage link between the female (Stroke 1) and the left-
most male (Stroke 3). In this case, the head of that arrow
(Stroke 12) could have been interpreted as a part of the draw-
ing that is not yet complete (e.g., the beginning of an arrow
from the leftmost quadrilateral (Stroke 3) to the top quadri-
lateral (Stroke 2)).

Finally, how shapes are drawn can also present challenges
to interpretation. The head of the rightmost arrow (part of
Stroke 10) is actually made of three lines, two of which over-
lap to form one side of the arrowhead. In order to recognize
the arrow, the system must know to collapse those two lines
into one, even though they do not actually overlap. Another
challenge arises because the same shape may not always be
drawn in the same way. For example, the arrows on the left
(Strokes 8 and 12, and Strokes 9 and 11) were drawn differ-
ently from the one on the right (Stroke 10) in that the user first
drew the shaft with one stroke and then drew the head with
another. This variation in drawing style presents a challenge
for segmentation and recognition because a system cannot
know how many strokes will be used to draw each object,
nor the order in which the parts of a shape will appear.

Many of the difficulties described in the example above arise
from the messy input and visual ambiguity in the sketch. It
is the context surrounding the messy or ambiguous parts of
the drawing that allows humans to interpret these parts cor-
rectly. We found that context also can be used to help our
system recover from low-level interpretation errors and cor-
rectly identify ambiguous pieces of the sketch. Context has
been used to aid recognition in speech recognition systems;
it has been the subject of recent research in computer vision
[18, 19] and has been used to a limited extent in previous
sketch understanding systems [3, 6, 13]. We formalize the
notion of context suggested by previous sketch recognition
systems. This formalization improves recognition of freely
drawn sketches using a general engine that can be applied to
a variety of domains.

3 TECHNICAL APPROACH
We have developed and implemented a general framework
for sketch recognition that handles the challenges presented
in the previous section and that can be applied to a variety of
domains by supplying domain specific pattern descriptions.

3.1 Knowledge Representation
We use a hierarchical shape description language to describe
the shapes in a domain. A hierarchical representation is use-
ful because it enables re-use of geometric shapes (e.g., ar-
rows) in a variety of domains, and because many sketched
symbols are compositional. Here we describe the language
only briefly. For a more complete description, see [7].

Figure 3 shows a simple use of the language. The arrow is an
example of ashape, which we use to mean a pattern recog-

head2

shaft
head1 MS

L

DEFINE ARROW

(Subshapes
L1,L2,L3: (Line shaft head1 head2))
(Constraints
C1: (coincident

shaft.p1 head1.p1)
C2: (coincident

shaft.p1 head2.p2)

C3: (equal-lengthhead1 head2)
C4: (shorterhead1 shaft)
C5: (acute-anglehead1 shaft)
C6: (acute-anglehead2 shaft)

DEFINE MOTHER-SON

(Subshapes
M,S,L: (FemaleM) (MaleS) (Child-link L)
(Constraints
C1: (touchesL.head S)
C2: (touchesL.tail M))

Figure 3: The description of the shape “arrow” and the
domain pattern “mother-son.” Child-links are defined
from arrows, males from quadrilaterals, and females
from ellipses. Labels for the subshapes and constraints
are used in Figure 4.

nizable in a given domain. The arrow is acompound shape,
i.e., one composed of non-recursivesubshapesfit together
according toconstraints. A line is a primitive shape—one
that cannot be decomposed into subshapes. Although primi-
tive shapes cannot be decomposed into subshapes, they may
have namedsubcomponentsthat can be used when describ-
ing other shapes, e.g., the endpoints of a line, “p1” and “p2”,
used in Figure 3.Domain shapesare shapes that have se-
mantic meaning in a particular domain. For example,line ,
arrow andchild-link are all shapes that may be rec-
ognized, but only a child-link has meaning in the family
tree domain.Domain patternsare combinations of domain
shapes that are likely to occur, for example a child-link point-
ing from a female to a male, indicating a relationship be-
tween mother and son. Recognition information for primi-
tive shapes and constraints are built in to SketchREAD; com-
pound shapes, including domain shapes and patterns, are rec-
ognized from primitive shapes and vary depending on the do-
main to which SketchREAD is applied.

The context in which a shape is likely to occur is given by
the higher-level shapes and domain patterns in which it ap-
pears. For example, the domain patternmother-son pro-
vides a context in which child-links (and in turn arrows),
males and females are likely to occur. This representation al-
lows our system to incorporate both domain knowledge and
shape information in its interpretation of the user’s sketch.
The separation between domain shapes and their geometric
subshapes facilitates the re-use of geometric shapes in other
domains (e.g., the arrow in electrical engineering symbols).
The shapes and domain patterns for the family tree domain
are listed in Table 1; constraints are omitted to save space.

3.2 Recognition Overview
Recognizing the sketch is a matter of parsing a user’s strokes
according to the specified visual language. Visual language
parsing has been studied [12], but most previous approaches



SHAPE/PATTERN (ABBR.) SUBSHAPES

Line (L) –
Ellipse (E) –
Polyline (PL) –
Arrow (A) Line h1, h2, shaft
Quadrilateral (Q) Linel1, l2, l3, l4
Marriage-link (ML) Line l
Divorce-link (DL) Polylinepl
Female (F) Ellipsee
Male (M) Quadrilateralm
Child-link (CL) Arrow a
Divorce (Div) Maleh; Femalew; DL l
Marriage (Mar) Maleh; Femalew; ML l
Partnership-F (PartF) Femalew1, w2; ML l
Partnership-M (PartM) Maleh1, h2; ML l
Father-daughter (FD) Malef ; Femaled; CL l
Mother-daughter (MD) Femalem, d; CL l
Father-son (FS) Malef, s; CL l
Mother-son (MS) Femalem; Male s; CL l

Table 1: A complete list of the shapes and domain
patterns in the family tree domain.

assume diagrammatic input free from low-level recognition
errors and cannot handle realistic, messy, stroke-based in-
put. Mahoney and Fromherz use mathematical constraints
to cope with the complexities of parsing sketches of curvi-
linear configurations such as stick figures [11]. Shilmanet
al. [16] present a parsing method similar to our approach,
with two differences. First, their work employs a spatially-
bounded search for interpretations that quickly becomes pro-
hibitively expensive. Second, their parsing method builds and
scores a parse tree for each interpretation independently; we
allow competing interpretations to influence each other.

As the user draws, our system uses a two-stage generate
and test recognition process to parse the strokes into pos-
sible interpretations. This two-dimensional parsing problem
presents a challenge for a real-time system. Noise in the in-
put makes it impossible for the system to recognize low-level
shapes with certainty or to be sure whether or not constraints
hold. Low-level misinterpretations cause higher-level inter-
pretations to fail as well. On the other hand, trying all pos-
sible interpretations of the user’s strokes guarantees that an
interpretation will not be missed, but is infeasible due to the
exponential number of possible interpretations.

To solve this problem we use a combined bottom-up and top-
down recognition algorithm that generates the most likely in-
terpretations first (bottom-up), then actively seeks out parts
of those interpretations that are still missing (top-down). Our
approach uses a novel application of dynamically constructed
Bayesian networks to evaluate partial interpretation hypothe-
ses and then expands the hypothesis space by exploring the
most likely interpretations first. The system does not have to
try all combinations of all interpretations, but can focus on
those interpretations that contain at least a subset of easily-
recognizable subshapes and can recover any low-level sub-
shapes that may have been mis-recognized.

3.3 Hypothesis Evaluation
Our method of exploring the space of possible interpreta-
tions depends on our ability to assess partial hypotheses. We

C1L2 C6L1 L3

Arrow

M L S C1 C2...

Mother−Son

Figure 4: The Bayesian network fragment constructed
from the description of an arrow and the domain pat-
tern “mother-son” given in Figure 3.

use a dynamically constructed Bayesian network to evalu-
ate the current set of hypothesized interpretations. (We dis-
cuss below how these hypotheses are generated.) We give an
overview and illustration of this method here; more details
are presented in [1].

Bayesian networks provide a framework for combining mul-
tiple sources of evidence to reason about uncertainty in the
world. They consist of two parts: a directed acyclic graph
that encodeswhich factors in the world influence each other,
and a set of conditional probability distributions that spec-
ify howthese factors influence one another. Each node in the
graph represents something to be measured, and a link be-
tween two nodes indicates that there is a causal relationship
from one node to another. Each node contains a conditional
probability table specifying how it is influenced by its par-
ents. For more information, see [4], which provides an intu-
itive overview of Bayesian networks.

Bayesian networks are traditionally used to model static do-
mains in which the variables and relationships between those
variables are known in advance. Static networks are not suit-
able for the task of sketch recognition because we cannot
predicta priori the number of strokes or symbols the user
will draw. Therefore, our network structure must be changed
to reflect each new stroke. To allow the network to grow
as new data arrives, we specify a library of Bayesian net-
work fragments that describe shapes and domain patterns.
This framework is similar to the Object-Oriented Bayesian
Networks proposed in [8] but has been developed specifi-
cally for use in a real-time recognition system. As an exam-
ple of our representation, the fragments for the descriptions
from Figure 3 are given in Figure 4. As the recognition sys-
tem proposes interpretations for the user’s strokes, it makes
copies of the corresponding fragments from the library and
links them together to form a complete Bayesian network (as
in Figure 5). Each node,n, in the network has two values,
true and false , and represents a possible interpretation
for a subset of the user’s strokes or a constraint between in-
terpretations.P (n = true ) reflects the strength of that in-
terpretation. The complete network contains the set of all the
interpretations the system is considering.

Recall that links in the Bayesian network indicate causal re-
lationships, so the arrow fragment in Figure 4 represents the
hypothesis that the user intended to draw an arrow, which in
turn “caused” her to produce three lines that obey a corre-
sponding set of constraints (i.e. they are connected, two of
them are the same length, etc.). Similarly, the user’s intent to
draw a mother-son relationship caused her to draw a male, a
female and a child-link, which in turn caused her to draw an
ellipse, an arrow and a quadrilateral, and so forth.
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Q1ML1A1

Constraints
for Q1

Observations
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Domain 
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Figure 5: A portion of the interpretation network gen-
erated while recognizing the sketch in Figure 2. Abbre-
viations are given in Table 1

To explain the semantics of the Bayesian network further,
we consider a piece of the network that is generated in re-
sponse to Strokes 4 and 5 in the example given in Figure 2.
Figure 5 shows the part of the Bayesian network represent-
ing the possible interpretations that the system generated
for these strokes (which we call theinterpretation network).
Each node represents a hypothesized interpretation for some
piece of the sketch. For example, Q1 represents the system’s
hypothesis that the user intended to draw a quadrilateral. A
higher level hypothesis is compatible with the lower level
hypotheses it points to. For example, if M1 (the hypothesis
that the user intended to draw a male) is correct, Q1 (the hy-
pothesis that the user intended to draw a quadrilateral) and
L1-L4 (the hypotheses that the user intended to draw 4 lines)
will also be correct. Two hypotheses that both point to the
same lower level hypothesis represent competing interpre-
tations for the lower level shape and are incompatible. For
example, A1, ML1 and Q1 are three possible higher level
interpretations for line L1, only one of which may be true.

Hypotheses are linked to stroke data with observation nodes
that represent measurements taken from one or more strokes.
For example, L1 is linked to O1, which is measured from
Stroke 4. Consequently, L1 represents the hypothesis that
Stroke 4 is a line, not simply that there is a line somewhere on
the page. A1 is a partial hypothesis–it represents the hypoth-
esis that L1 (and hence Stroke 4) is part of an arrow whose
other two lines have not yet been drawn. Line nodes repre-
senting lines that have not been drawn (L5 and L6) are not
linked to observation nodes because there is no stroke from
which to measure these observations. We refer to these nodes
(and their corresponding interpretations) asvirtual.

The probability of each interpretation is influenced both by
stroke data (through its children) and by the context in which
it appears (through its parents), allowing the system to handle
noise in the drawing. For example, the bottom edge of quadri-
lateral Q1 is slightly curved (see Figure 2); stroke data (O4)
only weakly supports the corresponding line hypothesis (L4).

However, the other three edges of Q1 are fairly straight, and
O1-O3 raise the probabilities of L1-L3, respectively, which
in turn raise the probability of Q1. Q1 provides a context in
which to evaluate L4, and because Q1 is well supported by
L1-L3 (and by the constraint nodes), it raises the probability
of L4.

The fact that partial interpretations have probabilities allows
the system to assess the likelihood of incomplete interpreta-
tions based on the evidence it has seen so far. In fact, even
virtual nodes have probabilities, corresponding to the proba-
bility that the user (eventually) intends to draw these shapes
but either has not yet drawn this part of the diagram or the
correct low-level hypotheses have not yet been proposed be-
cause of low-level recognition errors. As we describe below,
a partial interpretation with a high probability cues the sys-
tem to examine the sketch for possible missed low-level in-
terpretations.

3.4 Hypothesis Generation
The major challenge in hypothesis generation is to gener-
ate the correct interpretation as a candidate hypothesis with-
out generating too many to consider in real-time. A naive
approach to hypothesis generation simply would attempt to
match all shapes to all possible combinations of strokes, but
this would produce an exponential number of interpretations.
Our method of evaluating partial interpretations allows us to
use a bottom-up/top-down generation strategy that greatly re-
duces the number of hypotheses considered but still gener-
ates the correct interpretation for most shapes in the sketch.

Our hypothesis generation algorithm has three steps:

1. Bottom-up step: As the user draws, the system parses the
strokes into primitive objects using a domain-independent
recognition toolkit developed in previous work [15]. Com-
pound interpretations are hypothesized for each compound
object that includes these low-level shapes, even if not all
the subshapes of the pattern have been found.

2. Top-down step: The system attempts to find subshapes
that are missing from the partial interpretations generated
in step 1, often by reinterpreting strokes that are temporally
and spatially proximal to the proposed shape.

3. Pruning step: The system removes unlikely interpreta-
tions.

This algorithm, together with the Bayesian network repre-
sentation presented above, deals successfully with the chal-
lenges presented in Section 2. Using the example in Figure 2,
we illustrate how the system generates hypotheses that allow
the Bayesian network mechanism to resolve noise and in-
herent ambiguity in the sketch, how the system manages the
number of potential interpretations for the sketch, how the
system recovers from low-level recognition errors, and how
the system allows for variation in drawing style.

Based on low-level interpretations of a stroke, the bottom-
up step generates a set of hypotheses to be evaluated using
the Bayesian network mechanism presented in the previous
section. In the sketch in Figure 2, the user’s first stroke is cor-
rectly identified as an ellipse by the low-level recognizer, and
from that ellipse the system generates the interpretationel-
lipse , and in turn, partial interpretations for mother-son,
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Figure 6: The symbols in the circuit domain.

mother-daughter, father-daughter, marriage, partner-female,
and divorce. These proposed interpretations are calledtem-
platesthat have aslot for each subshape. Future interpreta-
tions will be filled into empty slots.

Naive bottom-up interpretation easily can generate too many
hypotheses to consider in real-time. We employ three strate-
gies to control the number of hypotheses generated in the
bottom-up step. First, when an interpretation can be fit into
more than one slot in a higher-level template (e.g., in Fig-
ure 5, L1 could be the shaft or either of the lines in the head
of A1), the system arbitrarily chooses one of the valid slots
rather than generating one hypothesis for each potential fit.
Later, the system can shuffle the shapes in the template when
it attempts to fit more subshapes.

Second, the system does not generate higher-level interpre-
tations for interpretations that are only partially filled. The
lines generated from Strokes 4 and 5 result in one partial
hypothesis—arrow (A1)—and two complete hypotheses—
quadrilateral (Q1) andmarriage-link (ML1) (Fig-
ure 5). Continuing to generate higher-level templates from
partial hypotheses would yield a large number of hypotheses
(one hypothesis for each higher level domain pattern involv-
ing each existing partial hypothesis). To avoid this explosion,
the system continues to generate templates using only the
complete hypotheses (in this case, ML1 and Q1).

Third, when the system processes polylines, it assumes that
all the lines in a single polyline will be used in one interpreta-
tion. While this assumption does not always hold, in practice
we find that it is often true and greatly reduces the number of
possible interpretations. The system recognizes Stroke 2 as a
4-line polyline. The bottom-up step generates only a quadri-
lateral because that is the only shape in the domain that re-
quires four lines.

The top-down step allows our system to recover from low-
level recognition errors. Stroke 3 is incorrectly, but reason-
ably, parsed into 5 lines by the low-level recognizer. Because
the system does not know about any 5-line objects, but does
know about things that contain fewer than 5 lines, it attempts
to re-segment the stroke into 2 lines, 3 lines and 4 lines (with
a threshold on acceptable error). It succeeds in re-segmenting
the stroke into 4 lines and successfully recognizes the lines
as a quadrilateral. Although the 4 line fit is not perfect, the
network allows the context of the quadrilateral in addition to
the stroke data to influence the system’s belief in the 4-line
interpretation. Also note that the 5 lines from the original
segmentation remain in the interpretation network.

The system controls the number of interpretations in the net-
work through pruning, which occasionally causes it to prune
a correct hypothesis before it is complete. The top-down step
regenerates previously-pruned hypotheses, allowing the sys-

tem to correctly interpret a symbol despite variations in draw-
ing order. The leftmost arrow in Figure 2 was drawn with
two non-consecutive strokes (Strokes 8 and 12). In response
to Stroke 8, the system generates both an arrow partial hy-
pothesis and a marriage-link hypothesis (using the line hy-
pothesis generated for this stroke). Because the user does not
immediately complete the arrow, and because the competing
marriage-link hypothesis is complete and has a high proba-
bility, the system prunes the arrow hypothesis after Stroke 9
is drawn. Later, Stroke 12 is interpreted as a 2-line polyline
and a new arrow partial hypothesis is generated. The top-
down step then completes this arrow interpretation using the
line generated previously from Stroke 8, effectively regener-
ating a previously pruned interpretation.

3.5 Selecting an Interpretation
As each stroke is drawn, the sketch system uses a greedy
algorithm to select the best interpretation for the sketch.
It queries the Bayesian network for the strongest complete
interpretation, sets aside all the interpretations inconsistent
with this choice, chooses the next most likely remaining do-
main interpretation, and so forth. It leaves strokes that are
part of partial hypotheses uninterpreted. Although the sys-
tem selects the most likely interpretation at every stroke, it
does not eliminate other interpretations. Partial interpreta-
tions remain and can be completed with the user’s subsequent
strokes. Additionally, the system can change its interpreta-
tion of a stroke when more context is added.

4 APPLICATION AND RESULTS
Applying SketchREAD to a particular domain involves two
steps: specifying the structural descriptions for the shapes in
the domain and specifying the prior probabilities for the do-
main patterns and any top-level shapes (i.e., those not used
in domain patterns, which, consequently, will not have par-
ents in the generated Bayesian network. See [1] for details on
how probabilities are assigned to other shapes). We applied
SketchREAD to two domains: family trees and circuits. For
each domain, we wrote a description for each shape and pat-
tern in that domain (Figures 1 and 6) and estimated the nec-
essary prior probabilities by hand. Through experimentation,
we found the recognition performance to be insensitive to the
exact values of these priors.

4.1 Data Collection
SketchREAD can recognize simple sketches nearly perfectly
in both the family tree and circuit domains, but we wanted to
test its performance on more complex, real-world data. Our
goal was to collect sketches that were as natural and uncon-
strained as the types of sketches people produce on paper
to test the limits of our system’s recognition performance.
To collect these sketches, we used a data collection program
for the Tablet PC developed by others in our group that al-
lows the user to sketch freely and displays the user’s strokes



Figure 7: Examples that illustrate the range of com-
plexity of the sketches collected.

exactly as she draws them, without performing any type of
recognition. Most of our users had played with a Tablet PC
before they performed our data collection task but had never
used one for an extended period of time. None used any type
of pen-based computer interface on a regular basis. The users
first performed a few warm-up tasks, at the end of which all
users expressed comfort drawing on the Tablet PC.

To collect the family tree sketches, we asked each user to
draw her family tree using the symbols presented in Figure 1.
Users were told to draw as much or as little of the tree as they
wanted and that they could draw the shapes however felt nat-
ural to them. Because erasing strokes introduces subtleties
into the recognition process that our system is not yet de-
signed to deal with, users were told that they could not erase,
and that the exact accuracy of their family tree diagram was
not critical. We collected ten sketches of varying complexity.

We then recruited subjects with basic knowledge of circuit
diagram construction and showed them examples of the types
of circuits we were looking for. After a warm-up task, sub-
jects were instructed to draw several circuits. We specified
the number and types of components to be included in the cir-
cuit and then and asked them to design any circuit using those
components. Subjects were instructed not to worry about the
functionality of their circuit, only that they should try to pro-
duce realistic circuits. We collected 80 diagrams in all.

The circuit diagrams were considerably more complicated
than the family tree diagrams. One limiting assumption that
SketchREAD currently makes is that the user will not draw
more than one symbol with a single stroke. Unfortunately,
in drawing circuit diagrams, users often draw many symbols
with a single stroke. To allow SketchREAD to handle the
circuit diagrams, we broke apart strokes containing multiple
objects by hand. This is clearly a limitation of our current
system; we discuss below how it might be handled.

5 Performance Results
We ran SketchREAD on each family tree sketch and each cir-
cuit sketch. We present qualitative results, as well as aggre-
gate recognition and running time results for each domain.
Our results illustrate the complexity our system can currently
handle, as well as the system’s current limitations. We dis-
cuss those limitations below, describing how best to use the
system in its current state and highlighting what needs to be

Missed line

Missed line

Missed line

Missed line

Ground: 0/4 
Resistor: 4/4
Battery: 2/2 + 3 false positive
Transistor: 0/2

(a) Baseline System

Too messy

Ground: 3/4 
Resistor: 4/4
Battery: 2/2 + 1 false positive
Transistor: 2/2

(b) SketchREAD

Figure 8: Recognition performance example. Overall
recognition results (# correct / total) are shown in the
boxes.

done to make the system more powerful. Note that to ap-
ply the system to each domain, we simply loaded the do-
main’s shape information; we did not modify the recognition
system. Although SketchREAD does not perform perfectly
on every sketch, its generality and performance on complex
sketches illustrates its promise over previous approaches.

Figure 8 illustrates how our system is capable of handling
noise in the sketch and recovering from missed low-level in-
terpretations. In the baseline case, one line from each ground
symbol was incorrectly interpreted at the low-level, causing
the ground interpretations to fail. SketchREAD was able to
reinterpret those lines using the context of the ground symbol
in three of the four cases to correctly identify the symbol. In
the fourth case, one of the lines was simply too messy, and
SketchREAD preferred to (incorrectly) recognize the top two
lines of the ground symbol as a battery.

In evaluating our system’s performance, direct comparisons
with previous work are difficult, as there are few (if any)
published results for this type of recognition task. The clos-
est published sketch recognition results are for the Quick-
set system, which also uses top-down information (through
multi-modal input) to recognize sketched symbols, but this
system assumes object segmentation, making its recognition
task different from ours [20]. We compared SketchREAD’s
recognition performance with the performance of a strictly
bottom-up approach of the sort used in previous systems



Size #Shapes % Correct
BL SR

Mean 50 34 50 77
S1 24 16 75 100
S2 28 16 75 87
S3 29 23 57 78
S4 32 22 31 81
S5 38 31 54 87
S6 48 36 58 78
S7 51 43 26 72
S8 64 43 49 74
S9 84 49 42 61

S10 102 60 57 80

Table 2: Recognition rates for the baseline system (BL)
and SketchREAD (SR) for each sketch for the family
tree domain. The size column indicates the number of
strokes in each sketch.

Total % Correct # False Pos
BL SR BL SR

AC Source 4 100 100 35 29
Battery 96 60 89 56 71

Capacitor 39 56 69 27 14
Wire 1182 62 67 478 372

Ground 98 18 55 0 5
Resisitor 330 51 53 7 8

Voltage Src. 43 2 47 1 8
Diode 77 22 17 0 0

Current Src. 44 7 16 0 0
Transistor 43 0 7 0 14

Table 3: Aggregate recognition rates for the baseline
system (BL) and SketchREAD (SR) for the circuit dia-
grams by shape.

[3, 13]. This strictly bottom-up approach combined low-level
shapes into higher-level patterns without top-down reinter-
pretation. Even though our baseline system did not reinter-
pret low-level interpretations, it was not trivial. It could han-
dle some ambiguities in the drawing (e.g., whether a line
should be interpreted as a marriage-link or the side of a
quadrilateral) using contextual information in the bottom-up
direction. To encourage others to compare their results with
those presented here we have made our test set publicly avail-
able at http://rationale.csail.mit.edu/ETCHASketches.

We measured recognition performance for each system by
determining the number of correctly identified objects in
each sketch (Table 2 and Table 3). For the family tree dia-
grams SketchREAD performed consistently and notably bet-
ter than our baseline system. On average, the baseline sys-
tem correctly identified 50% of the symbols while Sketch-
READ correctly identified 77%, a 54% reduction in the num-
ber of recognition errors. Due to inaccurate low-level recog-
nition, the baseline system performed quite poorly on some
sketches. Improving low-level recognition would improve
recognition results for both systems; however, SketchREAD
reduced the error rate by approximately 50% independent of
the performance of the baseline system. Because it is impos-
sible to build a perfect low-level recognizer, SketchREAD’s
ability to correct low-level errors will always be important.

Circuit diagrams present SketchREAD with more of a chal-
lenge for several reasons. First, there are more shapes in the
circuit diagram domain and these shapes are more complex.

Second, there is a stronger degree of overlap between shapes
in the circuit diagrams. For example, it can be difficult to dis-
tinguish between a capacitor and a battery. As another exam-
ple, a ground symbol contains within it (at least one) battery
symbol. Finally, there is more variation in the way people
draw circuit diagrams, and their sketches are messier caus-
ing the low-level recognizer to fail more often. They tend to
include more spurious lines and over-tracings.

Overall, SketchREAD correctly identified 62% of the shapes
in the circuit diagrams, a 17% reduction in error over the
baseline system. It was unable to handle more complex shapes,
such as transistors, because it often failed to generate the cor-
rect mapping between strokes and pieces of the template. Al-
though the system attempts to shuffle subshapes in a template
in response to new input, for the sake of time it cannot con-
sider all possible mappings of strokes to templates. We dis-
cuss below how we might extend SketchREAD to improve its
performance on complex domains such as circuit diagrams.

We measured SketchREAD’s running time to determine how
it scales with the number of strokes in the sketch. Figure 9
graphs the median time to process each stroke for each do-
main. The vertical bars in the graph show the standard de-
viation in processing time over the sketches in each domain.
(One family tree diagram took a particularly long time to pro-
cess because of the complexity of its interpretation network,
discussed below. This sketch affected the median processing
time only slightly but dominated the standard deviation. It
has been omitted from the graph for clarity.) Three things
about these graphs are important. First, although Sketch-
READ does not yet run in real-time, the time to process each
stroke in general increased only slightly as the sketch got
larger. Second, not every stroke was processed by the system
in the same amount of time. Finally, the processing time for
the circuit diagrams is longer than the processing time for the
family trees.

By instrumenting the system, we determined that the pro-
cessing time is dominated by the inference in the Bayesian
network, and all of the above phenomena can be explained
by examining the size and complexity of the interpretation
network. The number of nodes in the interpretation network
grows approximately linearly as the number of strokes in-
creases. This result is encouraging, as the network would
grow exponentially using a naive approach to hypothesis
generation. The increase in graph size accounts for the slight
increase in processing time in both graphs. The spikes in the
graphs can be explained by the fact that some strokes not only
increased the size of the network, but had more higher-level
interpretations, creating more fully connected graph struc-
tures, which causes an exponential increase in inference time.
After being evaluated, most of these high-level hypotheses
were immediately pruned, accounting for the sharp drop in
processing time on the next stroke. Finally, the fact that cir-
cuits take longer to process than family trees is related to the
relative complexity of the shapes in the domain. There are
more shapes in the circuit diagram domain and they are more
complex, so the system must consider more interpretations
for the user’s strokes, resulting in larger and more connected
Bayesian networks.
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Figure 9: The median incremental time it took the system to process each stroke in the family tree and circuit diagrams.
Vertical bars show the standard deviation across the sketches in each domain.

6 SKETCH RECOGNITION USER INTERFACES (SKRUIS)
Our goal is to use SketchREAD in sketch recognition user in-
terfaces (SkRUIs). In this section we discuss SketchREAD’s
strengths and limitations with two purposes. First, we discuss
the type of interface in which SketchREAD can be used cur-
rently. Second, we discuss the system’s limitations and how
they can be addressed so that its overall performance can be
improved to better handle more complicated domains.

6.1 Building Design Tools with SketchREAD
We presented results on sketches of family trees and circuits,
but SketchREAD can be applied to any domain that has a
clear language of symbols. Currently SketchREAD is best
used in simple domains where the shapes have little overlap
and are drawn spatially separated. As an example, Sketch-
READ was able to process the simpler family trees in near
real-time. It ran into difficulty when encountering many over-
lapping shapes, such as the arrows the top right drawing in
Figure 7. Based on these guidelines, we used SketchREAD
to build a sketch-based system for constructing box and ar-
row diagrams in Power Point and conducted an informal
user study on this system [2]. People sketched their diagrams
freely while SketchREAD ran in the background. The system
produced few errors in this simple domain, allowing us to in-
vestigate issues such as how and when to display recognition
feedback, and how to allow people to edit their sketches.

While interpretations are selected after every stroke, deter-
mining when to display these interpretations to the user is by
itself an interesting and difficult question of human computer
interaction. One approach we are exploring is to use the sys-
tem’s determination of the completeness of an interpretation
to inform it when to display an interpretation and when to
wait for more strokes.

Even though SketchREAD reduces recognition error, it will
never eliminate it. SketchREAD’s interpretation-graph archi-
tecture could itself be used to reduce the burden placed on
the user in correcting the system’s errors. Often in compli-
cated diagrams, errors are interconnected. If there are many
competing interpretations, choosing the wrong interpretation
for one part of the diagram often will lead the system to

choose the wrong interpretation for the surrounding strokes.
SketchREAD could display its recognition results on top of
the user’s original strokes, so that the user can see the con-
text of these results. Then, the user could help the system by
tracing over the strokes for one of the symbols that was mis-
recognized. This retracing would help the system recover
from the error because the user’s strokes would be cleaner
and because the system would know that they were all part of
a single symbol. Then, based on this new interpretation, the
system could reevaluate the surrounding strokes and (hope-
fully) recover some of the missed interpretations that might
still exist but simply were not currently chosen as the best
interpretation.

Finally, one of the main causes of recognition error might be
dealt with through UI design. The system had trouble with
the fact that the users varied the structure of their symbols
even though they were explicitly shown the desired structure
for each symbol. For example, although we instructed peo-
ple to draw a voltage source using a circle with a plus and
a minus next to it, some people put the plus and minus in-
side the circle. SketchREAD is designed to handle variations
in the way people draw, but cannot handle such unexpected
changes to the basic shape of the symbol. Although ideally
we would like to support all methods people have for drawing
each object, this might never be possible. Instead, a simple
interactive training step before a new user uses the interface
could help eliminate this type of variation without imposing
too many limitations on the user’s drawing style.

6.2 Performance Improvement
SketchREAD significantly improves the recognition perfor-
mance of unconstrained sketches. However, its accuracy, es-
pecially for complicated sketches and domains, is still too
low to be practical in most cases. Here we consider how to
improve the system’s performance.

First, while SketchREAD always corrected some low-level
interpretation errors, its overall performance still depended
on the quality of the low-level recognition. Our low-level rec-
ognizer was highly variable and could not cope with some
users’ drawing styles. In particular, it often missed corners



of polylines, particularly for symbols such as resistors. Other
members of our group are working on a low-level recognizer
that adapts to different users’ drawing styles.

Second, although in general SketchREAD’s processing time
scaled well as the number of strokes increased, it occasion-
ally ran for a long period. The system had particular trouble
with areas of the sketch that involved many strokes drawn
close together in time and space and with domains that in-
volve more complicated or overlapping symbols. This in-
crease in processing time was due almost entirely to in in-
crease in Bayesian network complexity.

We suggest two possible solutions. First, part of the complex-
ity arises because the system tries to combine new strokes
with low-level interpretations for correct high-level interpre-
tations (e.g., the four lines that make a quadrilateral). These
new interpretations were pruned immediately, but they in-
creased the size and complexity of the network temporar-
ily, causing the bottlenecks noted above. In response, we
are testing methods for “confirming” older interpretations
and removing their subparts from consideration other higher-
level interpretations as well as confirming their values in the
Bayesian network so that their posterior probabilities do not
have to be constantly re-computed. Second, we can modify
the belief propagation algorithm we are using. We currently
use Loopy Belief Propagation, which repeatedly sends mes-
sages between the nodes until each node has reached a sta-
ble value. Each time the system evaluates the graph, it resets
the initial messages to one, essentially erasing the work that
was done the last time inference was performed, even though
most of the graph remains largely unchanged. Instead, this
algorithm should begin by passing the messages it passed at
the end of the previous inference step.

Finally, because our recognition algorithm is stroke-based,
spurious lines and over-tracing hindered the system’s perfor-
mance in both accuracy and running time. A preprocessing
step to merge strokes into single lines would likely greatly
improve the system’s performance. Also, in the circuit dia-
gram domain, users often drew more than one object with
a single stroke. A preprocessing step could help the system
segment strokes into individual objects.

7 CONCLUSION
We have shown how to use context to improve online sketch
interpretation and demonstrated its performance in Sketch-
READ, an implemented sketch recognition system that can
be applied to multiple domains. We have shown that Sketch-
READ is more robust and powerful than previous systems
at recognizing unconstrained sketch input in a domain. The
capabilities of this system have applications both in human
computer interaction and artificial intelligence. Using our
system we will be able to further explore the nature of usable
intelligent computer-based sketch systems and gain a bet-
ter understanding of what people would like from a drawing
system that is capable of understanding their freely-drawn
sketches as more than just strokes. This work provides a nec-
essary step in uniting artificial intelligence technology with
novel interaction technology to make interacting with com-
puters more like interacting with humans.
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Abstract

Sketch recognition systems are currently being developed for many domains, but can be time consuming to build if

they are to handle the intricacies of each domain. In order to aid sketch-based user interface developers, we have

developed tools to simplify the development of a new sketch recognition interface. We created LADDER, a language to

describe how sketched diagrams in a domain are drawn, displayed, and edited. We then automatically transform

LADDER structural descriptions into domain specific shape recognizers, editing recognizers, and shape exhibitors for

use in conjunction with a domain independent sketch recognition system, creating a sketch recognition system for that

domain. We have tested our framework by writing several domain descriptions and automatically generating a domain

specific sketch recognition system from each description.
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1. Introduction

As pen-based input devices have become more

common, sketch recognition systems are being devel-

oped for many hand-drawn diagrammatic domains such

as mechanical engineering [1–3], UML class diagrams

[4–7], webpage design [8], GUI design [9,10], virtual

reality [11], stick figures [12], course of action diagrams

[13], and many others. These sketch interfaces (1) allow

for more natural interaction than a traditional mouse

and palette tool [14] by allowing users to hand sketch the

diagram, (2) can automatically connect to a CAD

system preventing the designer from having to enter

the same information twice, (3) can offer real-time

design advice from CAD systems, (4) allow more

powerful editing since the shape is recognized as a
e front matter r 2005 Elsevier Ltd. All rights reserve
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whole, (5) provide diagram beautification to remove

mess and clutter, and (6) use display as a trigger to

inform the sketcher that the shapes have been correctly

recognized. However, sketch recognition systems can be

quite time consuming to build if they are to handle the

intricacies of each domain. Also we would prefer that

the builder of a sketch recognition system be an expert in

the domain rather than an expert in sketch recognition

at a signal level. Rather than build each recognition

system separately, our group has been working on a

multi-domain recognition system that can be customized

for each domain.

Using our framework, in order to build a sketch

recognition system for a new domain, a developer need

only write a domain description which describes what

the domain shapes look like, and how they should be

displayed and edited after they are recognized. Thus, the

writer of the domain description does not need to know

how to program a system to perform sketch recognition.

This domain description is then automatically translated
d.

www.elsevier.com/locate/cag
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into shape recognizers, editing recognizers, and shape

exhibitors for use with the customizable base domain

independent recognition system creating a domain

specific sketch interface that recognizes the shapes in

the domain, displaying them and allowing them to be

edited as specified in the description. The inspiration for

such a framework stems from work in speech recogni-

tion [15,16], which has used this approach with some

success.

This paper describes LADDER, the first sketch

description language that can be used to describe how

shapes and shape groups are drawn, edited, and

displayed, and a first implemented prototype system

that proves that such a framework is possible: that we

can automatically generate a sketch interface for a

domain from only a domain description. This work also

shows that LADDER [17] is an acceptable language for

describing sketch interfaces and enables us to auto-

matically generate a sketch interface from only a
LADDER domain description. To accomplish our goal,

we have built (1) LADDER, a symbolic language to

describe how shapes are drawn, displayed, and edited in

a domain, (2) a base customizable multi-domain

recognition system, and (3) a code generator [18] that

parses a LADDER domain description and generates

Java and Jess code to be used by the base recognition

system so that it can recognize, display, and edit domain

shapes. Fig. 1 shows how all three parts of the system fit

together.
2. LADDER

LADDER allows interface designers to describe how

shapes in a domain are drawn, displayed, and edited.

LADDER descriptions primarily concern shape, but

may include other information helpful to the recognition

process, such as stroke order or stroke direction. The
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specification of editing behavior allows the system to

determine when a pen gesture is intended to indicate

editing rather than a stroke. Display information

indicates what to display after strokes are recognized.

The language consists of predefined shapes, con-

straints, editing behaviors, and display methods, as well

as a syntax for specifying a domain description. The

difficulty in creating such a language is ensuring that

domain descriptions are easy to specify, and that the

descriptions provide enough detail for accurate sketch

recognition. To simplify the task of creating a domain

description, shapes can be built hierarchically, reusing

low-level shapes. Shapes can extend abstract shapes,

which describe shared shape properties, preventing the

application designer from having to redefine these

properties several times. The language has proven

powerful enough to describe shapes from several

domains. The language enables more accurate sketch

recognition by supporting both top-down and bottom-

up recognition. Descriptions of how shapes may

combine can aid in top-down recognition and can be

used to describe ‘‘chain reaction’’ editing commands.

A shape definition is structural and includes primarily

geometric information, but can include other drawing

information that may be helpful to the recognition

process, such as stroke order or stroke direction.1 We

can specify that the shaft of an arrow must be drawn

before the two lines representing the head with

(drawOrder shaft head1 head2). We can use the

same constraint to specify stroke direction; for instance

(drawOrder shaft.p2 shaft.p1) requires that the

tail of the arrow be drawn before the head.

LADDER allows the developer to specify both hard

and soft constraints. Hard constraints must be satisfied

for the shape to be recognized, but soft constraints may

not be. Soft constraints can aid recognition by specifying

relationships that usually occur. For instance, in the left

box of Fig. 1, we could have specified soft(drawOr-
der shaft head1 head2) to specify that the shaft of

the arrow is commonly drawn before the head, but the

arrow should still be recognized even if this is not

satisfied.

Before creating the language, we performed a user

study where 30 people described shapes with their

natural vocabulary and with increasing levels of

syntactical constraints in order to ensure an intuitive

vocabulary and syntax. We chose a hierarchical

symbolic shape-based language as we found it to be

more intuitive to describe shapes in this manner, making

descriptions easier to create, understand, and correct.

We also noticed that not only are shape-based geome-

trical properties more intuitive than feature-based

properties such as those used by [19,20] (since shape is
1This enables us to also describe sketching languages such as

the Graffiti language for the Palm Pilot.
the salient feature used in human recognition), but since

the features (and thus recognition) are not based on

drawing style, sketchers are able to draw as they do

naturally, with no constraints on stroke number, order,

or direction.

LADDER is the first language that not only can

define how shapes are to be recognized, but also can

define how shapes are displayed and edited. Display and

editing are important parts of a sketch interface, and are

different in each domain. The display gives the sketcher

feedback that an object was recognized and beautifica-

tion can be used to remove clutter from the diagram.

Because the objects are recognized we can define more

powerful and intuitive editing gestures, consisting of a

trigger and action, for each shape. For instance, a

developer may define that an arrow can be dragged in

rubber-band fashion from its head or tail, or she may

define that a wheel can be moved as a whole by dragging

any point within the wheel’s bounding box. Although we

do encourage standardization between different do-

mains by including some predefined editing behaviors, it

is important that we allow the developer to define her

own editing behaviors for each domain. The same

gesture, such as writing an X inside of a rectangle, may

be intended as a pen stroke in the one domain (a check

inside of a checkbox, or the letter X in a textbox), or as

an editing command (deletion of the box).
2.1. Description limitations

LADDER can be used to describe a wide variety of

shapes, but we are limited to the following class of

shapes.
�
 LADDER can only describe shapes with a fixed

graphical grammar. The shapes must be diagram-

matic or iconic such that they are drawn using

the same graphical components each time. For

instance we cannot describe abstract shapes, such as

people or cats, that would be drawn in an artistic

drawing.
�
 The shapes must be composed solely of the primitive

constraints contained in LADDER and must be

differentiable from the other shapes in the language

using only the constraints available in LADDER.
�
 Pragmatically, LADDER can only describe domains

that have few curves or where the curve details are

not important for distinguishing between different

shapes. This is because curves are inherently different

to describe in detail because of the difficulty in

specifying a curve’s control points. Future work

includes investigating more intuitive ways of describ-

ing curves.
�
 Pragmatically, LADDER can only describe shapes

that have a lot of regularity and not too much detail.
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If a shape is highly irregular and complicated so that

it cannot be broken down into subshapes which can

be described, it will be cumbersome to define.

2.2. Shape definition

New shapes are defined in terms of previously defined

shapes and constraints between them. An example of

arrow definition is shown on the left-hand side of

Fig. 1. The definition of a shape contains the following

parts.
�

2

and

Th

link
A list of components specifies the elements from

which the shape is built. Note that the arrow is built

from three lines.
�
 Geometric constraints define the relationships on

those components. The arrow definition requires that

the HEAD1 and SHAFT meet at a single point and form

an acute angle in a counter-clockwise direction from

HEAD1 to SHAFT. (Angles are measured in a counter-

clockwise direction.)
�
 A set of aliases is used to simplify other elements in

the description. The HEAD and TAIL have been added

as aliases in the arrow definition to more easily

specify the editing behaviors.
�
 Editing behaviors specify the editing gestures triggers

and how the object should react to these editing

gestures. The arrow definition specifies three editing

behaviors: dragging the head, dragging the tail, and

dragging the entire arrow. Each editing behavior

consists of a trigger and an action. Each of the three

defined editing commands are triggered when the

sketcher places and holds the pen on the head, tail, or

shaft, and then begins to drag the pen. The actions

for these editing commands specify that the object

should follow the pen either in a rubber-band fashion

for the head or tail of the arrow or by translating the

entire shape.2
�
 Display methods indicate what to display when the

object is recognized. A shape or its components may

be displayed in any color in four different ways: (1)

the original strokes of the shape, (2) the cleaned-up

version of the shapes, where the best-fit primitives of

the original strokes are displayed, (3) the ideal shape,

which displays the primitive components of the shape

with the constraints solved, or (4) another custom

shape that specifies which shapes (line, circle,

rectangle, etc.) to draw and where. The arrow

definition specifies that the arrow should be displayed

in the color red, that head1 and head2 should be

drawn using CLEANEDSTROKES (a straight line in this
Rubber-banding allows sketchers to simultaneously rotate

scale an object, assuming a fixed rotation point is defined.

is action has proved useful for editing arrows and other

ing shapes.
case), and that the shaft should be drawn using the

original strokes.

The domain description is translated into shape

recognizers (from the components and constraints

sections), exhibitors (from the display section), and

editors (from the editing section) which are used in

conjunction with a customizable recognition system to

create a domain sketch interface.

2.2.1. Hierarchical shape definitions

To simplify shape definitions, shapes can be defined

hierarchically. For example, the TRIANGLEARROW in

Fig. 2 is composed of an ARROW and a LINE.

2.2.2. Abstract shape definitions

In the domain of UML class diagrams, there are four

different types of arrows: the regular arrow, an arrow

with a triangle head, an arrow with a diamond head, and

an arrow with a dashed shaft. All of these arrows have

the same editing behaviors. Rather than repeat the

editing behaviors four times, we instead create an

ABSTRACTARROW (shown in Fig. 3 which specifies the

repeated editing behaviors). The is-a section, used in

Fig. 2, specifies any class of abstract shapes that the

shape may be a part of. This is similar to the extends

property in Java. All shapes extend the abstract shape

SHAPE. Abstract shapes have no concrete shape asso-

ciated with them; they represent a class of shapes that

have similar attributes or editing behaviors. An abstract

shape is defined similarly to a regular shape, except it

has a required section instead of a components section.

Each shape that extends the abstract shape must define

each variable listed in the required section, in its

components or aliases section.

2.2.3. Shape groups

A shape group is a collection of domain shapes that

are commonly found together in the domain. Defining

shape groups provides two significant benefits. Shape

groups can be used by the recognition system to provide

top-down recognition, and ‘‘chain reaction’’ editing

behaviors can be applied to shape groups, allowing the

movement of one shape to cause the movement of

another. Below we have an example describing a shape

group consisting of a FORCE and a BODY (a mechanical

engineering term describing a physical mass). In the
Fig. 2. Description for an arrow with a triangle-shaped head.
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Fig. 3. Description for the abstract class AbstractArrow.

Fig. 4. Definition of a shape group for the force/body

relationship in mechanical engineering.
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mechanical domain, forces push bodies. Forces are

represented by arrows and objects are represented

by polygons. If a force is said to be pushing an

object, then an arrow is pointing to the polygon. The

shape group FORCEPUSHOBJECT defined in Fig. 4

states that the head of the arrow touches the body. It

also specifies that the body must be drawn before the

force. If a single shape in a sketch can be part of many

instances of a shape group, then we place the key word

shared before the component shape of the shape group

(e.g. if a body could have several forces we would place

the word shared in front of the (Body b)) to show

shared(Body b). We can also define abstract shape

groups.

2.3. Language contents

The power of the language is derived in part from

carefully chosen predefined building blocks. The lan-

guage consists of predefined shapes, constraints, editing

behaviors, and display methods.

2.3.1. Predefined shapes

The language includes the primitive shapes SHAPE,

POINT, PATH, LINE, BEZIERCURVE, CURVE, ARC, ELLIPSE,

and SPIRAL. The language also includes a library of
predefined shapes built from these primitives including

RECTANGLE, DIAMOND, etc. The language uses an

inheritance hierarchy; SHAPE is an abstract shape which

all other shapes extend. SHAPE provides a number of

components and properties for all shapes, including

boundingbox, centerpoint, width, and height. Each pre-

defined shape may have additional components and

properties; a LINE, for example, also has p1, p2 (the

endpoints), midpoint, length, angle, and slope. Compo-

nents and properties for a shape can be used hierarchi-

cally in shape descriptions. When defining a new shape

the components and properties are those defined by

SHAPE, and those defined by the components and aliases

section.

2.3.2. Predefined constraints

A number of predefined constraints are included in

the language, including perpendicular, parallel, collinear,

sameSide, oppositeSide, coincident, connected, meet,

intersect, tangent, contains, concentric, larger, near,

drawOrder, equalLength, equal, lessThan, lessThanEqual,

angle, angleDir, acute, obtuse, acuteMeet, and obtuse-

Meet. If a sketch grammar consists of only the

constraints above, the shape is rotationally invariant.

There are also predefined constraints that are valid

only in a particular orientation, including horizontal,

vertical, posSlope, negSlope, leftOf, rightOf, above,

below, sameXPos, sameYPos, aboveLeft, aboveRight,

belowLeft, belowRight, centeredBelow, centeredAbove,

centeredLeft, centeredRight, and angleL, where (angleL-

line1 degrees) specifies that the angle between a

horizontal line pointing right and line1 is degrees.

We have found that it is easier for many developers

to describe shapes in an orientation dependent fashion.

However, since the developer may still want a shape

to be recognizable in any orientation, the language

allows a developer to describe shapes in an orientation

dependent fashion and then specify that the shape is

rotatable. For this purpose, the language contains an

additional constraint: isRotatable, which implies the

shape can be found in any orientation. If isRotatable

is specified along with an orientation dependent

constraint, there must be an angleL, horizontal, or

vertical constraint specified, which serves to define the

orientation and set a relative coordinate system. For

example, the two angleMeet constraints could have been

replaced with:
(isRotatable)
(horizontal shaft)
(negSlope head1)
(posSlope head2)
(leftOf shaft.p1 shaft.p2)
(leftOf head1.p2 shaft.p2)
(leftOf head2.p2 shaft.p2),
in which case the shaft is the reference line.
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2.3.3. Predefined editing behaviors, actions, and triggers

Describing editing gestures permits the recognition

system to discriminate between sketching (pen gestures

intended to leave a trail of ink) and editing gestures (pen

gestures intended to change existing ink), and permits

us to describe the desired behavior in response to a

gesture.

In order to encourage interface consistency, the

language includes a number of predefined editing

behaviors described using the actions and triggers

above. One such example is dragInside, and defines that

if you hold the pen for a brief moment inside the

bounding box of a shape and then start to drag the pen

(specified by the trigger (holdDrag Shape), the entire
shape automatically translates along with the motion of

the pen.

When defining a new editing behavior particular

to a domain, there are two things to specify: the

trigger—what signals an editing command—and

the action—what should happen when the trigger

occurs. The language has a number of predefined

triggers and actions to aid in describing editing

behaviors.

The arrow definition in Fig. 1 defines three editing

behaviors. The first editing behavior says that if you

click and hold the pen over the SHAFT of the ARROW,

when you drag the pen, the entire ARROW will translate

along with the movement of the arrow. The second

editing behavior states that if you click and hold the pen

over the HEAD of the arrow, the HEAD of the arrow will

follow the motion of the pen, but the TAIL of the arrow

will remain fixed and the entire ARROW will stretch like a

rubber-band (translating, scaling, and rotating) to

satisfy these two constraints and keep the ARROW as

one whole shape. All of the editing behaviors also

change the pen’s cursor as displayed to the sketcher, and

display moving handles to the sketcher to let the

sketcher know that she is performing an editing

command.

The possible editing actions include wait, select,

deselect, color, delete, translate, rotate, scale, resize,

rubberBand, showHandle, and setCursor. To give an

example: (rubberBand shape-or-selection
fixed-point move-point [new-point]) trans-

lates, scales, and rotates the shape-or-selection so that

the fixed-point remains in the same spot, but the move-

point translates to the new-point. If new-point is not

specified, move-point translates according to the move-

ment of the pen.

The possible triggers include click, doubleClick, hold,

holdDrag, draw, drawOver, scribbleOver, and encircle.

Possible triggers also include any action listed above, to

allow for ‘‘chain reaction’’ editing.

Shape groups allow designers to define ‘‘chain

reaction’’ editing behaviors. For instance, the designer

may want to specify that when we move a rectangle,
if there is an arrowhead inside of this rectangle, the

arrow should move with the rectangle.

2.3.4. Predefined display methods

An important part of a sketching interface is

controlling what the sketcher sees after shapes

are recognized, both of which can be used to clean

up the sketch as desired for the domain and pro-

vide feedback to the sketcher that a shape has been

recognized. The designer can specify that the ori-

ginal strokes should remain, or instead that a

cleaned version of the strokes should be displayed.

In the cleaned version, the original strokes are fit

to straight lines, clean curves, clean arcs, or a combina-

tion.

Another option is to display the ideal version

of the strokes where the constraints listed in the

definition are solved. In this case, lines that are supposed

to connect at their end points actually connect and

lines that are supposed to be parallel are actually

shown as parallel. In the ideal version of the strokes,

all of the low-level signal noise from sketching is

removed.

It may be that we do not want to show any version of

the strokes at all, but some other picture. In this case, we

can either place an image at a specified location, size,

and rotation (using the method IMAGE), or we can create

a picture built out of predefined shapes, such as circles,

lines, and rectangles.

The predefined display methods include original-

Strokes, cleanedStrokes, idealStrokes, circle, line, point,

rectangle, text, color, and image. Each method includes

color as an optional argument.

2.4. Vectors

The arrow defined in Fig. 1 contains a fixed number of

components (3). However, many shapes that we would

like to define, such as a POLYGON, POLYLINE, or

DASHEDLINE, contain a variable number of components.

A POLYLINE may contain a variable number of line

segments. A variable number of components is specified

by the key word vector and must specify the minimum

and maximum number of components. If the maximum

number can be infinite, the variable n is listed. For

instance, the POLYLINE must contain at least two

lines, and each line must be connected with the pre-

vious. The definition of a POLYGON easily follows

from the definition of the POLYLINE (both are defined

in Fig. 5).

Likewise, a DASHEDARROW is made from an ARROW,

and a DASHEDLINE (both defined in Fig. 6), which in turn

contains at least two line segments. When given a third

argument specifying a length, the constraint near states

that two points are near to each other relative to a given

length.
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Fig. 5. Shape description of a polygon.

Fig. 6. Description of a dashed line and a dashed open arrow.

Stroke 0: Line 1:0  Arc 2:0

 Stroke 1:
 Stroke 2:

Stroke 3:
 Curve 4: 0 1 2 3

 Line 5: 1
 Line 6: 2

 Line 7: 3

A: B:Interpretations Interpretations

Fig. 7. (A) An ambiguous stroke that can be a LINE or an ARC.

(B) An ambiguous stroke that can be a CURVE or a POLYLINE.
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3. Multi-domain recognition system

3.1. Recognition of primitive shapes

The base customizable recognition system contains

domain independent modules that can recognize,

exhibit, and edit all of the primitive shapes in

LADDER. These modules are noted by the shaded

boxes without their inner white domain modules on the

right side of Fig. 1.

When a stroke is drawn (and has not been identified

as an editing gesture, described below), low-level

recognition is performed on the stroke. The domain

independent modules determine if the stroke can be

classified as an ELLIPSE, LINE, CURVE, ARC, POINT,

POLYLINE or some combination using techniques by

[21]. In many cases the stroke is ambiguous and has

more than one interpretation. When this happens both

interpretations are produced and sent off to the higher

level recognizer.

We want to ensure that the domain shape recognition

system only chooses one interpretation of a single

stroke. In order to ensure that only one interpretation

is chosen, each shape has an ID, and each shape keeps a

list of its subshapes, including its strokes. At any

particular time, each subshape is allowed to belong to

only one final recognized domain shape. (A final shape is

a chosen interpretation as opposed to the myriad of

possible interpretations that are created and kept until

one is finally chosen.) To give an example, the STROKE in

Fig. 7A has two interpretations: a LINE and an ARC. The

figure specifies each shape’s ID followed by the IDs of

all of the subshapes. Note that the LINE and the ARC

share the same STROKE subpart. If a shape has a
POLYLINE interpretation, or some other combination

interpretation, the STROKE must be divided into seg-

ments. The original full STROKE then has the substrokes

added as subparts. These substrokes are then included in

any interpretation that uses the full stroke. For example

in Fig. 7B the CURVE contains all of the substrokes as

subshapes. Since the set of final shapes cannot share any

subshapes, this prevents the CURVE and the POLYLINE

from both being chosen in a final interpretation.

A limitation with this bottom-up recognition method

is that if the primitive shape recognizer does not provide

the correct interpretation of a stroke, the domain shape

recognizer will never be able to correctly recognize a

higher level shape using this stroke. In the future, it may

be advantageous to add a top-down recognition process

that re-examines lower level shapes if an item is missing

from the template, such as that done in [22].
3.2. Recognition of domain shapes

Recognition of domain shapes occurs as a series of

bottom-up opportunistic data driven triggers where the

recognized shapes in the drawing represent the facts

about the world. Domain shape recognition is per-

formed by the Jess rule-based system [23]. When a new

shape primitive shape is recognized, it is added as a fact

into the Jess rule-based system. We created several Jess

rules to perform higher level clean-up on the shapes,

such as merging lines together.

Each domain shape recognizer is actually a Jess rule

defined to recognize the shape (the translation process

creating the Jess rule is explained below). The Jess rule-

based system searches for all possible combinations of

shapes that can satisfy the rule. When choosing between

competing shapes we use Okhams razor, choosing the

shape that accounts for more of the underlying data. If

two choices are equivalent, we choose the shape created

first, assuming that a sketcher prefers his shapes to

remain constant on the screen. As the number of lower

level shapes increases, the rule-based system slows down

exponentially, since as each new stroke is drawn the

system tries to join it with every other existing stroke to

attempt to form higher level shapes. To improve

efficiency and to allow the application to continue to

react in real time, we have implemented a greedy

algorithm that removes subshapes from the rule-based
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system once a final higher level shape is chosen. Our

greedy approach is limited in that in cases of higher level

ambiguity, the system may select the wrong higher level

shape.

For the same reasons as above, the higher level

recognizer also slows down if there are a large number of

unrecognized strokes on the screen since the system

continues to try to match each of the unrecognized

strokes with every new stroke. A quick fix to this is to

simply prune unrecognized strokes from the recognition

tree after some time. However, this is not ideal as the

user may decide to finish a shape after some time, and

we would like to be able to recognize this shape. Future

work will investigate ways of solving this problem in the

future.

When the shapes are more constrained, the recognizer

performs faster since the system will hold fewer partial

templates to examine later. For instance, if a line

direction is constrained, the recognizer only tries to fit

the line in one direction, and if a line is horizontal, the

recognizer only needs to try the subset of the lines that

are horizontal.

We should note that even during these extreme cases

when the higher level domain shape recognition begins

to slow down and stops reacting in real time, the rest of

the system continues to run in real time since the

drawing panel, primitive recognition and, domain shape

recognition all run in three separate threads, with the

drawing panel being given priority to ensure that the pen

markings always appear in real time.
3.3. Editing recognition

A stroke may be intended as an editing gesture rather

than a drawing gesture. If an editing gesture such as

click-and-hold or double-click occurs, the system checks

to see (1) if an editing gesture for that trigger is defined

for any shape, and (2) if the mouse is over the shape the

gesture is defined for. If so then the drawing gesture is

short-circuited and the editing gesture takes over (for

instance, the shape may then be dragged). Other

triggers, such as shape-over, may require that the

drawing gesture be completed and recognized before

the action, such as deleting the shape underneath,

occurs. For example, consider the editing gesture

(trigger (drawOver Cross Shape)) (action
(delete Shape) (delete Cross)); in this example
when a CROSS is drawn over a SHAPE, the SHAPE is

deleted (as is the CROSS).
3.4. Constraint solver

As mentioned earlier, each shape can be displayed by

its original strokes, best-fit primitives, the best-fit

primitives with all of the constraints solved (which we
will refer to as the shape’s ideal strokes), or through Java

Swing objects.

To display a shape’s ideal strokes, the system uses a

shape constraint solver which takes in a shape descrip-

tion and initial locations for all of the subshapes and

outputs the shape with all of the constraints satisfied

while moving the points as little as possible. Because the

positions of the shape’s components, its properties,

and its constraints are all interrelated, we need to

generate and solve algebraic equations demonstrat-

ing these relations. We have constructed this shape

constraint solver using optimization functions from

Mathematica.

To generate a shape we first convert each shape’s

components, properties (such as, width, height, area),

and constraints into a set of algebraic equations. These

equations are then solved to find a mathematical

solution representing a shape that satisfies the descrip-

tion.

We translate each shape, its components, and its

properties using the schema listed below. This produces

a set of equations describing the object. For example,

one equation produced is arrow.area ¼ ¼ ar-
row.width * arrow.height.
�
 Minimize: To prevent the shape from shifting too

much, we minimize the distance from the value in the

initial hand-drawn example and the final solved value

for each component.
�
 Require: To prevent the lines from collapsing to a

point, all lines must have a length greater than 10

pixels.
�
 We define the bounding box of a shape (minx, miny,

maxx, maxy), so that we can enforce area-related

constraints such as equalArea, larger, contains, as

follows:

� Define shape.minx recursively:

if (shape is line):

Require: shape.minx o shape.p1.x

Require: shape.minx o shape.p2.x

else for each component:

Require: shape.minxoshape.component.minx

� Define shape.miny, shape.maxx, shape.maxy

similarly

� Minimize: shape.maxx

� Minimize: shape.maxy

� Minimize: �1 * shape.minx

� Minimize: �1 * shape.miny
�
 Require: shape.width ¼ ¼ shape.maxx - shape.

minx
�
 Require: shape.height ¼ ¼ shape.maxy - shape.

miny
�
 Require: shape.area ¼ ¼ shape.width * shape.

height
�
 Require: shape.center.x ¼ ¼ (shape.minx + shape.

maxx)/2
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�
 Require: shape.center.y ¼ ¼ (shape.miny + shape.

maxy)/2

Next we translate each constraint into a set of equations

on the variables defined above. For example:

horizontal line1 becomes line1:p1:y ¼¼ line1:p2:y
contains shape1 shape2 becomes

ðshape1:minxoshape2:minxÞ &&
ðshape1:minyoshape2:minyÞ &&
ðshape1:maxx4shape2:maxxÞ &&
ðshape1:maxy4shape2:maxyÞ

equalLength line1 line2 becomes

ðline1:p1:x � line1:p2:xÞ2 þ ðline1:p1:y�
line1:p2:yÞ2 ¼¼

ðline2:p1:x � line2:p2:xÞ2

þðline2:p1:y � line2:p2:yÞ2

not sameX shape1 shape2 becomes

ðshape1:center:x þ 20oshape2:center:xÞ
jjðshape1:center:x4shape:center:x þ 20Þ

(Because perceptually, small differences in ‘x’

values may not be detected, when constraining

the shape to have different ‘x’ values we require

the difference to be at least 20 pixels.)

Finally, we use the NMinimize function in Mathe-

matica, which finds constrained global optima, to

find a solution that satisfies all of the equations

above. We now have new positions for each of the

shape’s components which satisfy the constraints in the

description. The system will then display the beautified

shape.
4. Code generation

Domain shape recognizers, exhibitors, and editors are

automatically generated during the translation process

shown in the middle of Fig. 1. A shape definition is

composed of three parts: how to recognize the shape,

how to display the shape once it is recognized, and how

to edit the shape once it is recognized. The translation

process parses the description and generates code

specifying how to recognize shapes and editing triggers

as well as how to display the shapes once they are

recognized and what action to perform once an editing

trigger occurs.

The components and constraints sections of a shape

description are automatically translated into a Jess rule

defining how to recognize that shape. The Jess rule

created for the arrow definition listed in Fig. 1 is shown

in Fig. 9. The Jess rule created first searches for the

appropriate combination of subshapes, and then tests

the constraints between them.3 We have built our
3Our current implementation does not yet support soft

constraints.
customizable base recognition system in an effort to

keep the translation process as simple as possible.

If a shape consists of a variable number of compo-

nents such as a polyline (as opposed to an arrow which

is composed of a fixed (3) number of components), the

shape description is translated into two Jess rules, one

recognizing the base case (a polyline composed of two

lines) and the other recognizing the recursive case (a

polyline composed of a line and a polyline).

A shape exhibitor is automatically generated as a Java

paint method for the shape, which calls functions in the

base recognition system defined to work for any shape.

A shape can be displayed by one or more of the

following: its original strokes, its best-fit primitives, its

best-fit primitives with the constraints solved, a collec-

tion of Java Swing shapes, or a bitmap image. To

display the ideal strokes (the best-fit primitives with the

constraints solved), an IDEAL-PAINT method is automa-

tically generated that defines the constraints to be solved

by the shape-based constraint solver.

A shape editor is automatically generated defining

which triggers are turned on for the shape or its

subshapes. If the trigger is turned on, then the

corresponding actions are defined in an automatically

generated method. The base recognition system includes

methods to identify triggers and perform actions for

each shape, and the generated method needs only to turn

them on.
5. Evaluation

We have written LADDER domain descriptions for a

variety of domains including UML class diagrams,

mechanical engineering, finite state machines, flow-

charts, and a simplified version of the course of action

diagrams (Fig. 8). Using the system presented in this

paper, the descriptions have been automatically trans-

lated into a sketch interface which recognizes, displays,

and allows editing in real time as specified by the domain

description. These descriptions include over one hun-

dred shapes, some containing text.4 Figs. 10–12 show the

unrecognized and recognized strokes from a drawing

made in an automatically generated mechanical engi-

neering, flowchart, and finite state machine sketch

interfaces.
6. Related work

This paper discusses in more detail work from [17,18].

In particular this paper gives more details on the
4Text is also a primitive shape. Text can be entered using a

keyboard or a handwriting recognizer GUI provided in

Microsoft Tablet XP. The text appears at the last typed place.
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Fig. 8. Variety of shapes and domains described and auto-generated.
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primitive and domain shape recognizers, the handling of

ambiguous primitive shapes, and the techniques used for

beautifying shapes.

6.1. Visual or sketching languages

Shape definition languages, such as shape grammars,

have been around since the early 1970s [24]. Shape

grammars are studied widely within the field of

architecture, and many systems are continuing to be

built using shape grammars [25]. Shape grammars have,

however, been used largely for shape generation rather

than recognition, and do not provide for non-graphical

information, such as stroke order, that may be helpful in

recognition. They also lack ways for specifying shape

editing.

More recent shape definition languages have been

created for use in diagram parsing [26]. These shape

definition languages are not intended for use with an

online system and do not provide ways for specifying

how to display or edit a shape. Also, since they are not

created with sketching in mind they do not provide ways

for describing non-graphical information, such as stroke

order or direction.
Within the field of sketch recognition, there have been

other attempts to create languages for sketch recogni-

tion. Bimber describes a simple sketch language using a

BNF-grammar [27]. The language describes three-

dimensional shapes hierarchically. This language allows

a programmer to specify only shape information and

lacks the ability to specify other helpful domain

information such as stroke order or direction and

editing behavior, display, or shape interaction informa-

tion.

Mahoney uses a language to model and recognize

stick figures. The language currently is not hierarchical,

making large objects cumbersome to describe [28].

Caetano et al. use fuzzy relational grammars to describe

shape [29]. Both Mahoney and Caetano lack the ability

to describe editing, display, or shape grouping informa-

tion.

Shilman has developed a statistical language model

for ink parsing with a similar intent of facilitating

development of sketch recognizers. The language con-

sists of seven constraints: distance, delta X, delta Y,

angle, width ratio, height ratio, and overlap, and allows

you to specify concrete values using either a range or

gaussian [30]. We find it difficult to describe some shapes
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using this technique as the language requires providing

quantitative discrete values about a shape’s probable

location. We feel it is more intuitive to say (contains
Fig. 9. Automatically generated Jess rule for the

Fig. 10. Auto-generated mechan
shape1 shape2), rather than having to specify two

deltaX and two deltaY constraints using discrete

constraints, each of the form deltaX (shape1.WEST
arrow definition in the left box of Fig. 1.

ical engineering interface.
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Fig. 12. Auto-generated finite state machine interface.

Fig. 11. Auto-generated flowchart interface.
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o shape2.WEST).range(0, 100)) This work also

lacks the ability to describe editing and display.

Our recognition system is based on template filling of

a shape’s structural description. These structural de-

scriptions are often represented in relational graphs. Lee

performs recognition using attribute relational graphs
[31]. Their attribute language differs from ours in that

ours is more topological or geometrical, whereas their

language is more quantitative, requiring specific details

of the shape’s position. Keating also performs recogni-

tion by matching a graph representation of a shape; the

main difference between their limited graphical language
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and ours is that their language is statistical and specifies

the probable location of each subpart, whereas our

language is categorical and describes the ideal location

of the shape [32]. Calhoun also uses a semantic network

representing the shape in recognition, but as far as we

can tell the language is limited, specifying only relative

angles and the location of intersections [33].

6.2. Building recognition systems

Quill [20] is a feature-based graffiti-type domain-

independent gesture recognition system that allows

designers of a gesture recognition system to sketch the

gestures to be recognized. The system then provides

advice about how well the gestures will be recognized by

the computer and how well they will be learned and

remembered by people. The Quill framework differs

from ours in using recognizers based on features and in

focusing on the way the shape is drawn (e.g., the number

of strokes, as well as stroke, speed, curvature, order,

direction, etc.). In order for their strokes to be

recognized, sketchers of this system must sketch a

gesture in the same way as the developer who trained

the system. Our focus is on removing as many sketching

restrictions as possible, to provide a more natural

sketching medium. We want users’ sketches to be

recognized no matter how many strokes they used or

in what direction or order they were drawn. Thus,

our framework includes a symbolic language for

describing the geometry of shapes from which to base

recognition.

The Electronic Cocktail Napkin project [34] allows

users to define domain shapes by drawing them. A shape

is described by the shapes it is built out of and the

constraints between them. The Cocktail Napkin’s

language is able to describe only shape.

Jacob [35] has created a software model and language

for describing and programming fine-grained aspects of

interaction in a non-WIMP user interface, such as a

virtual environment. The language is low level, making it

difficult to define new interactions, and, in the domain of

sketching, does not provide a significant improvement in

comparison to coding the domain dependent recognition

system from scratch.

6.3. Translation

The translation process is analogous to work done on

compiler compilers, in particular, visual language

compiler compilers by Costagliola et al. [36]. A visual

language compiler compiler allows a user to specify a

grammar for a visual language, and then compiles it into

a recognizer which can indicate whether an arrangement

of icons is syntactically valid. The main difference

between Costagliola’s work and ours is that (1) ours

handles hand-drawn images and (2) their primitives are
the iconic shapes in the domain whereas our primitives

are geometric.
7. Future work

While we have attempted to make LADDER as

intuitive as possible, shape definitions can be difficult to

describe textually, and we are currently integrating

Veselova’s work to automatically generate shape de-

scriptions from a drawn example [37]. However, even

automatically generated shapes will need to be checked

and modified. Thus we are in the process of building a

graphical debugger which tests if shapes are over- or

under-constrained by generating suspected near-miss

example shapes [38].

We want to ensure that our framework and language

are robust and thus we are continuing to test our system

on more domains. For the same reason, we would like to

test our syntax on a wide user base.

We are in the process of building an API to allow the

designer to connect to a CAD system to build more

sophisticated sketch systems. We would also like to

allow users building systems in languages other than

Java to access recognition events by registering for them.
8. Contributions

We have developed an innovative framework in which

developers need to write only a LADDER domain

description, and then this description is automatically

transformed into a sketch recognition interface for that

domain. We have implemented a prototype system and

tested our framework by writing descriptions for several

domains and then automatically generating a sketch

interface for each of these domains. To accomplish our

goal, we have created (1) LADDER, the first symbolic

domain description language to describe how sketched

diagrams in a domain are drawn, displayed, and edited,

(2) a customizable base recognition system, which

performs the domain independent parts of recognition

usable for many domains, and (3) a code generator that

translates a domain description into higher level domain

specific recognition code to be used by the customizable

base recognition system.
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Abstract

Feature point detection is generally the first step in
model-based approaches to sketch recognition. Feature
point detection in free-hand strokes is a hard problem
because the input has noise from digitization, from nat-
ural hand tremor, and from lack of perfect motor control
during drawing. Existing feature point detection meth-
ods for free-hand strokes require hand-tuned thresholds
for filtering out the false positives. In this paper, we
present a threshold-free feature point detection method
using ideas from the scale-space theory.

Introduction
There is increasing interest in building systems that can rec-
ognize and reason about sketches. Among different ap-
proaches to sketch recognition, model-based recognition
techniques model objects in terms of their constituent ge-
ometric parts and how they fit together (e.g., a rectangle is
formed by four lines, all of which intersect at right angles
at four distinct corners). In order to be able to match scene
elements to geometric model parts, it is necessary to convert
the free-hand strokes in the scene into geometric primitives,
which results in a more concise and meaningful description
of the scene compared to a raw representation only in terms
of sampled pen positions. As described in (Sezginet al.
November 2001), feature point (i.e., corner) detection is a
major part of generating such geometric descriptions.

Issues
The major issue in feature point detection is the noise in the
data. We consider noise from two sources: imprecise motor
control and digitization. We describe characteristics of each
kind of noise with examples to make the distinction clear.

Imperfect motor control
Examples of noise due to imperfect motor control include
line segments that were meant to be straight but are not, or
corners that look round as opposed to having a precise turn-
ing point. This kind of noise gives sketches their “messy”
appearance. Easiest way of characterizing this kind of noise
is to ask if the noise would still be present if the user drew

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

very carefully perhaps using a ruler. If the answer is nega-
tive, then the noise is due to imperfect motor control.

Digitization noise
Digitization noise is the kind of noise that cannot be re-
moved even if one draws very carefully. Although visually
less apparent, it hinders feature point detection because dig-
itization corrupts curvature and speed data, which are pri-
mary sources of information in feature point detection. Dig-
itization noise can be present in the(x, y) positions and in
their timestamps. Source of the spatial digitization noiseis
the conversion to screen coordinates. For example, in the
Acer C110 Tablet PC, the pen positions are digitized into a
1024x768 grid. Spatial digitization can be so poor that the
point stream returned by digitization may occasionally have
points with repeating(x, y) positions.

In the same platform, timestamps too have digitization
noise. Because the concept of having digitization noise in
timestamps is less intuitive, we illustrate the point with an
example. Consider the stroke in Fig. 1 captured using an
Acer c110 Tablet PC. In this platform, we know that the
hardware samples points uniformly at a high resolution, dig-
itizing the timestamps once. Then, the operating system dig-
itizes the timestamps again at 100 Hz. Although the times-
tamps are good when read at the higher resolution directly
using Microsoft’s Tablet PC API, they get corrupted during
digitization. For the stroke in Fig. 1, Fig. 2 shows the devia-
tion of the digitized timestamps from their predicted ground
truth values computed by a least squares linear regression
line. The slope of the least squares regression gives us the
hardware sampling rate (which is about 133 Hz). The dif-
ference in the sampling frequencies causes a skew to accu-
mulate between the real timestamps of the points and those
obtained after digitization. The timestamps are occasion-
ally adjusted for the skew by repeating a timestamp, which
occurs about every four points with a standard deviation
of 0.53. Furthermore, although less frequent, the digitizer
consistently returns a point which is 11ms apart from the
previous one (as opposed to the more frequent 10ms time
difference). This happens roughly once every 92 points
(µ = 92.25, σ = 0.95). If we consider that the time res-
olution at a sampling rate of 100Hz is 10 ms, the deviations
in Fig. 2 which range between(−8, 6) with σ = 3.02ms
is quite significant. Digitization noise of this nature causes



Figure 1: A free-hand stroke captured using Acer c110.
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Figure 2: This graph shows the deviation of the timestamps
from their linear regression line measured in milliseconds.

speed data computed by taking the time derivative of posi-
tion to be noisy.

Similar digitization noise behavior is also present in the
HP tc1100. Although different in nature, digitization noise
is also present for mouse based interfaces, digitizing tablets
such as the Wacom PL-400 and the Mimio, a whiteboard
capture hardware. The case of Acer c110 and HP tc1100 is
more interesting in part because there is a two layer digiti-
zation process.

The mainstream approach to dealing with noise is to use
filtering criteria based on thresholds preset either by handor
learned from labeled calibration data.

Another approach to dealing with noise is down-sampling
points in an effort to achieve a less noisy signal, but such
methods throw away potentially useful information when
they use fewer than all the points. Furthermore free-hand
sketching data is already sparse1. Here, we describe a fea-
ture point detection system that doesn’t depend on preset
thresholds or constants, and uses all the points in the stroke.

System Description
Feature Point Detection
Feature point detection is the task of finding corners (ver-
tices) of a stroke. We want to be able to find corners of piece-
wise linear strokes. For strokes that have curved parts (com-
plex shapes), we want to be able to identify points where

1Data sampled using a traditional digitizing tablet or a Tablet
PC may have resolution as low as 4-5 dpi as opposed to scanned
drawings with up to 1200-2400 dpi resolution. This is because
sometimes users draw so fast that even with high sampling rates
such as 100Hz only few points per inch can be sampled.

curved and straight segments connect. Our technique works
for piecewise linear shapes and complex shapes. Requiring
the ability to handle complex shapes complicates the prob-
lem significantly and rules out well studied piecewise linear
approximation algorithms.2 For strokes with curved por-
tions, we would like to avoid picking points on the curved
regions resulting in a piecewise linear approximation of the
curved regions.

Our approach takes advantage of the availability of point
timestamps during online sketching and combines informa-
tion from both curvature and speed data, while avoiding a
piecewise linear approximation.

Feature points are indicated by maxima of curvature3 and
the minima of pen speed. The strategy of corner detection
through local extrema in curvature and speed data would
work perfectly in an ideal noiseless setup. In practice it re-
sults in many false positives, because local extrema due to
the fine scale structure of the noise and those due to the high
level structure of the stroke get treated the same way.

One could try setting parameters to filter out these false
positives but selecting a priori parameters has the problemof
not lending itself to different scenarios where object features
and noise may vary. Our experience with the average based
feature detection method in (Sezginet al. November 2001)
is that its parameters need adjustment for different stroke
capture hardware and sometimes for different users. For ex-
ample, some people tend to make corners more rounded than
others. This requires adjusting the parameters of the system
for different conditions, a tedious task for the user who must
supply data on each platform for calibration purposes, and
for the programmer who should find a good set of param-
eters for each case. Our aim is to remove this overhead by
removing the dependence of our algorithms on preset thresh-
olds.

As indicated by our experiments, the extrema due to noise
disappear if we look at the data at coarser scales while those
due to the real feature points persist across coarser scales.
We base our feature point detection technique on our obser-
vation that features due to noise and real features exist at
different scales. We use the scale-space framework to derive
coarser and smoother versions of the data and use the way
the number of feature points evolves over different scales to
select a scale where the extrema due to noise don’t exist. We
give details of how we achieve this after a brief introduction
to the scale space concept.

Scale-space representation
An inherent property of real-world objects is that they ex-
ist as meaningful entities over a limited range of scales. The
classical example is a tree branch. A tree branch is meaning-
ful at the centimeter or meter levels, but looses its meaning
at very small scales where cells, molecules or atoms make

2Vertex localization for piecewise linear shapes is a frequent
subject in the extensive literature on graphics recognition. (e.g.,
(Rosin 1996) compares 21 methods).

3Defined as|∂θ/∂s| whereθ is the angle between the tangent
to the curve at a point and the x axis ands is the cumulative curve
length.



sense, or at very large scales where forests and trees make
sense.

A technique for dealing with features at multiple scales is
to derive representations of the data through multiple scales.
The scale-space representation framework introduced by
Witkin (Witkin 1983) allows us to derive such multi-scale
representations in a mathematically sound way.

The virtues of the scale-space approach are twofold. First,
it enables multiple interpretations of the data. These inter-
pretations range from descriptions with a fine degree of de-
tail to descriptions that capture only the overall structure of
the stroke. Second, the scale-space approach sets the stage
for selecting a scale or a set of scales by looking at how the
interpretation of the data changes and features move in the
scale-space as the scale is varied.

The basic idea behind the scale-space representation is to
generate successively higher level descriptions of a signal by
convolving it with a filter. As our filter, we use the Gaussian
defined as:

g(s, σ) =
1

σ
√

2π
e−s2/2σ2

whereσ is the smoothing parameter that controls the scale.
A higher σ means a coarser scale, describing the overall
features of the data, while a smallerσ corresponds to finer
scales containing the details. The Gaussian filter does not
introduce new feature points as the scale increases. This
means that as scales get coarser, the number of features (ob-
tained by extrema of the data in question) either remains the
same or decreases (i.e., neighboring features are merge caus-
ing a decrease in the total number of feature points). The
Gaussian kernel is unique in this respect for use in scale-
space filtering as discussed in (Yuille & Poggio 1986) and
(Babaudet al. 1986).

In the continuous case, given a functionf(x), the convo-
lution is given by:

F (x, σ) = f(x)∗g(x, σ) =

∫ ∞

−∞

f(u)
1

σ
√

2π
e(x−u)2/2σ2

du

We use the discrete counterpart of the Gaussian function
which satisfies the property:

n∑
i=0

g(i, σ) = 1

Given a Gaussian kernel, we convolve the data using the fol-
lowing scheme:

x(k,σ) =

n∑
i=0

g(i, σ)xk−bn/2+1c+i

There are several methods for handling boundary conditions
when the extent of the kernel goes beyond the end points. In
our implementation, we assume that fork−bn/2+1c+i < 0
andk − bn/2 + 1c + i > n the data is padded with zeroes
on either side.

Scale selection
The scale-space framework provides a concise representa-
tion of the behavior of the data across scales, but doesn’t tell
us what scale(s) to attend to. In our case, we would like to

Figure 3: A freehand stroke.

know what scale to attend to for separating noise from real
features. The next two sections explain how we used the fea-
ture count for scale selection for curvature and speed data.

Application to curvature data
We start by deriving direction and curvature data, then de-
rive a series of functions from the curvature data by smooth-
ing it with Gaussian filters of increasingσ. We build the
scale-space by finding the zero crossings of the curvature at
various scales.

Scale-space is the(x, σ)-plane wherex is the dependent
variable of functionf(.) (Witkin 1983). We focus on how
maxima of curvature move in this 2D plane asσ is varied.

Fig. 3 shows a freehand stroke and Fig. 4 the scale-space
map corresponding to the features obtained using curvature
data. The vertical axis in the graph is the scale indexσ (in-
creasing up); the horizontal axis ranges from 0 to 178 indi-
cating which of the points in the original stroke is calculated
to be a feature point. The stroke in question contains 179
points. We detect the feature points by finding the negative
zero-crossings of the derivative of absolute value of the cur-
vature. We do this at each scale and plot the corresponding
point(σ, i) for each indexi in the scale-space plot. An easy
way of reading this plot is by drawing a horizontal line at
a particular scale index, and then look at the intersection of
the line with the scale-space lines. The intersections giveus
the indices of the points in the original stroke indicated tobe
feature points at that scale.

As seen in this graph, for smallσ (near the bottom of the
scale-space graph), many points in the stroke are classified
as vertices, because at these scales the curvature data has
many local maxima, most of which are caused by the noise
in the signal. For increasingσ, the number of feature points
decreases gradually.

Our next step is to choose a scale where the false positives
due to noise are filtered out and we are left with the real ver-
tices of the data. We want to achieve this without having
any particular knowledge about the noise4 and without hav-
ing preset scales or constants for handling noise.

The approach we take is to keep track of the number of
feature points as a function ofσ and find a scale that pre-
serves the tradeoff between choosing a fine scale where the
data is too noisy and introduces many false positives, and
choosing a coarse scale where true feature points are filtered

4The only assumption we make is that the noise is at a different
scale than the feature size.
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Figure 4: The scale-space for the maxima of the absolute
curvature for the stroke in Fig. 3. This plot shows how the
maxima move in the scale-space. The x axis is the indices
of the feature points, the y axis is the scale index.

Figure 5: This plot shows the drop in feature point count (y
axis) for increasingσ (x axis) and the scale selected by our
algorithm for the stroke in Fig. 3.

out. For example, the stroke in Fig. 3, has 101 feature points
for σ = 0. On the coarsest scale, we are left with only
5 feature points, two of which are end points. This means
4 actual feature points are lost by the Gaussian smoothing.
Because the noise in the data and the shape described by the
true feature points are at different scales, it becomes possi-
ble to detect the corresponding ranges of scales by looking
at the feature count graph.

Fig. 5 gives the feature count graph for the stroke in Fig. 3.
In this figure, the steep drop in the number of feature points
that occurs for scales in the range[0, 40] roughly corre-
sponds to scales where the noise disappears, and the region
[85, 357] roughly corresponds to the region where the real
feature points start disappearing. Fig. 6 shows the scale-
space behavior during this drop by combining the scale-
space with the feature-count graph. In this graph, thex,
y, axisz, respectively correspond to the feature point index
[0,200],σ [0,400], and feature count [0,120]. We read the
graph as follows: givenσ, we find the corresponding loca-
tion in they axis. We move up parallel to thez axis until
we cross the first scale-space line.5 Thez value at which we

5The first scale-space line corresponds to the zeroth point inour
stroke, and by default it is a feature point and is plotted in the scale
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Figure 6: Joint scale-space feature-count graph for the stroke
in Fig. 3, simultaneously showing feature point movements
in the scale-space and the drop in feature point count for
increasingσ.

cross the first scale-space line gives the feature count at scale
indexσ. Now, we draw a line parallel to thex axis. Move-
ments along this line correspond to different feature indices,
and its intersection with the scale-space plot correspondsto
indices of feature points present at scale indexσ. The steep
drop in the feature count is seen in both Fig. 5 and Fig. 6.

Our experiments suggest that this phenomena (i.e., the
drop) is present in all hand drawn curves, except in singu-
lar cases such as a perfectly horizontal or perfectly vertical
line drawn at a constant speed. We model the feature count
- scale graph by fitting two lines and derive the scale where
the noise is filtered out using their intersection. Specifically,
we compute a piecewise linear approximation to the feature
count - scale graph with only two lines, one of which tries
to approximate the portion of the graph corresponding to the
drop in the number of feature points due to noise, and the
other that approximates the portion of the graph correspond-
ing to the drop in the number of real feature points. We then
find the intersection of these lines and use its x value (i.e.,
the scale index) as the scale. Thus we avoid extreme scales
and choose a scale where most of the noise is filtered out.

Fig. 5 illustrates the scale selection scheme via fitting two
lines l1, l2 to the feature count - scale graph. The algo-
rithm to get the best fit simply finds the indexi that min-
imizes OD(l1, {Pj}) + OD(l2, {Pk}) for 0 ≤ j < i,
i ≤ k < n. OD(l, {Pm}) is the average orthogonal distance
of the pointsPm to the linel, P is the array of points in the
feature count - scale graph indexed by the scale parameter,
and0 ≤ i < n wheren is the number of points in the stroke.
Intuitively, we divide the feature count - scale graph into two
regions, fit an ODR line to each region, and compute the or-
thogonal least squares error for each fit. We search for the
division that minimizes the sum of these errors, and select
the scale corresponding to the intersection of the lines for
which the division is optimal (i.e., has minimum error).

Interestingly enough, we have reduced the problem of
stroke approximation via feature detection to fitting linesto

space plot. This remark also applies to the last point in the stroke.
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Figure 7: The summed error for the two lines fit to Fig. 5
during scale selection for the stroke in Fig. 3.

the feature count graph, which is similar in nature to the
original problem. However, now we know how we want to
approximate the data (i.e., with two lines). Therefore even
an exhaustive search fori corresponding to the best fit be-
comes feasible. As shown in Fig. 7 the error as a function of
i is U shaped. Thus, if desired, the minima of the summed
error can be found using gradient descent methods, by pay-
ing special attention to not getting stuck in the local minima.
For the stroke in Fig. 3, the scale selected by our algorithm
is 47.

While we try to choose a scale where most of the false
maxima due to noise are filtered out, feature points at this
scale may still contain some false positives. This problem
of false extrema in the scale space is also mentioned in (Rat-
tarangsi & Chin 1992), where these points are filtered out by
looking at their separation from the line connecting the pre-
ceding and following feature points. They filter these points
out if the distance is less than one pixel.

The drawback of the filtering technique in (Rattarangsi
& Chin 1992) is that the scale-space has to be built differ-
ently. Instead of computing the curvature forσ = 0 and
then convolving it with Gaussian filters of largerσ to obtain
the curvature data at a particular scale, they treat the stroke
as a parametric function of a third variables, path length
along the curve. Thex andy components are expressed as
parametric functions ofs. At each scale, thex andy coordi-
nates are convolved with the appropriate Gaussian filter and
the curvature data is computed. It is only after this step that
the zero crossings of the derivative of curvature can be com-
puted for detecting feature points. Thex andy components
should be convolved separately because filtering out false
feature points requires computing the distance of each fea-
ture point to the line connecting the preceding and following
feature points, as explained above. This means the Gaussian
convolution, a costly operation, has to be performed twice
in this method, compared to a single pass in our algorithm.

Because we convolve the curvature data instead of the
x and y coordinates, we can’t use the method mentioned
above. Instead we use an alternate 2-step method to mini-
mize the number of false positives. First we check whether
there are any vertices that can be removed without increas-
ing the least squares error between the generated fit and the
original stroke points. The second step in our method takes
the generated fit, detects consecutive collinear6 edges and

6Measure of collinearity is determined by the task in hand. We

Figure 8: The input stroke (left) and the features detected by
looking at the scale-space of the curvature (right).

Figure 9: A very noisy stroke.

combines these edges into one by removing the vertex in be-
tween. After performing these operations, we get the fit in
Fig. 8.

One virtue of the scale-space approach is that works ex-
tremely well in the presence of noise. In Fig. 9 we have
a very noisy stroke. Figure 10 shows the feature-count
and scale-space behaviors respectively. The output of the
scale-space based algorithm is in Fig. 11. This output con-
tains only 9 points. For comparison purposes, the output of
the average based feature detection algorithm (Sezginet al.
November 2001) based on curvature is also given in Fig. 11.
This fit contains 69 vertices. (The vertices are not marked
for the sake of keeping the figure clean.)
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Figure 10: The feature count for increasingσ and the scale-
space map for the stroke in Fig. 9. Even with very noisy
data, the behavior in the drop is the same as it was for Fig. 3.

Application to speed change
We also applied the scale selection technique described
above to speed data. The details of the algorithm for de-
riving the scale-space and extracting the feature points are
similar to that of the curvature data except for obvious dif-
ferences (e.g., instead of looking for the maxima, we look
for the minima).

Fig. 12 has the scale-space, feature-count and joint graphs

consider lines with|∆θ| ≤ π/32 to be collinear.
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c. (69) d. (82)

Figure 11: Above, curvature (a) and speed (b) fits generated
for the stroke in Fig. 9 with scale-space filtering. Below, fits
generated using average based filtering (c,d). For each fit,
the number of vertices is given in parenthesis.

for the speed data of the stroke in Fig. 9. As seen in these
graphs, the behavior of the speed scale-space is similar to
the behavior we observed for the curvature data. We use
the same method for scale selection. In this case, the scale
index picked by our algorithm was 72. The generated fit is
in Fig. 11 along with the fit generated by the average based
filtering method using the speed data.

For the speed data, the fit generated by scale-space
method has 7 vertices, while the one generated by the av-
erage based filtering has 82. In general, the performance of
the average based filtering method is not as bad as this ex-
ample may suggest. For example, for strokes as in Fig. 3,
the performance of the two methods are comparable, but for
extremely noisy data as in Fig. 9, the scale-space approach
pays off when using curvature and speed data.

Because the scale-space approach is computationally
more costly7, using average based filtering is preferable for
data that is less noisy. There are also scenarios where only
one of curvature or speed data may be noisier. For example,
in some platforms, the system-generated timing data for pen
motion required to derive speed may not be precise enough,
or may be noisy. In this case, if the noise in the pen location
is not too noisy, one can use the average based method for
generating fits from the curvature data and the scale-space
method for deriving the speed fit. This is a choice that the
user has to make based on the accuracy of the hardware used
to capture the strokes, and the computational limitations.

Combining information sources
Above, we described two feature point detection methods
but didn’t give a way of combining the results of each

7Computational complexity of the average based filtering is lin-
ear with the number of points where the scale-space approachre-
quires quadratic time if the scale index is chosen to be a function
of the stroke length.
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Figure 12: The scale-space, feature-count and joint graphs
for the speed data of the stroke in Fig. 9. In this case, the
scale selected by our algorithm is 72.
method. The hybrid fit generation method described in (Sez-
gin et al. November 2001) can be used to combine the re-
sults from two methods to utilize both information sources.

Handling complex strokes
As we mentioned earlier, we would like our method to work
for strokes even if they have curved segments. In such cases,
we would like to avoid piecewise linear approximations for
the curved portions. In our framework, each curved region
behaves like a big and smooth corner. Some arbitrary point
on the curve (which happens to be the local extreme at the
scale selected by our algorithm) gets recognized as a corner.
This makes it possible to avoid a piecewise linear approxi-
mation of the curved segments. The curve detection method
described in (Sezginet al. November 2001) can be applied
to detect the curved portions of a stroke.

Evaluation
We measured the performance of our scale-space based fea-
ture detection method on strokes from three different setups:
Two Tablet PCs (an Acer c110 and an HP tc1100), and a
Wacom digitizing LCD tablet PL-400. We chose the average
based filtering method as our baseline method and compared
our method’s performance against it.

We collected data from 10 users. For each platform, the
users were asked to draw three instances of 8 shapes. Six
of these are shown in Fig. 13, the other two are rectan-
gles rotated45o and−45o. For each user on each platform,
we counted the total number of errors (in our case either a



Figure 13: Shapes used in evaluation.

Acer c110 HP tc1100 Wacom PL-400
T 14 9 11.5

Figure 14: T values for the Wilcoxon matched-pairs signed-
ranks test for our feature point detection method and the
baseline with data collected using three different setups.

false positive or a false negative) using our feature detection
method and the baseline method. For the baseline method
we used hand-tuned parameters that gave the best possible
fitting results. For each platform, we compared the total
number of errors made by each method using the Wilcoxon
matched-pairs signed-ranks test (Siegel 1956) with the null
hypothesis that the feature detection methods have compa-
rable performance. The T values we obtained for each plat-
form is given in table 14.

Although we were unable to reject the null hypothesis for
any platform with a significance of 5% for a two tailed test,
in one case we obtained a T value of 9, very close to the
value 8 required for rejectingH0 in favor of our method with
level of significance 2.5% for a one tailed test. Overall, our
approach compared favorably to the average based filtering
method, without the need to hand-tune thresholds for deal-
ing with the noise on each platform.

Related and Future Work
Previous methods on feature point detection either rely on
preset constants and thresholds (Sezginet al. November
2001; Calhounet al. 2002), or don’t support drawing ar-
bitrary shapes (Schneider 1988; Banks & Cohen 1990).

In the pattern recognition community (Bentsson & Ek-
lundh 1992; Rattarangsi & Chin 1992; Lindeberg 1996)
apply some of the ideas from scale-space theory to sim-
ilar problems. In particular (Bentsson & Eklundh 1992;
Rattarangsi & Chin 1992) apply the scale-space idea to de-
tection of corners of planar curves and shape representation,
though they focus on shape representation at multiple scales
and don’t present a scale selection mechanism. The work

by (Lindeberg 1996) presents a way of normalizing opera-
tor responses (feature strengths) for differentσ values such
that values across scales become comparable. He presents a
scale selection mechanism which finds maxima of the data
across scales. Although this method has the merit of making
no assumptions about the data, its merit is also its weakness
because it doesn’t use observations specific to a particular
domain as we do for scale selection. It may be an interesting
exercise to implement this method and compare its perfor-
mance to our approach.
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ABSTRACT
Freehand sketching is a natural and crucial part of every-
day human interaction, yet is almost totally unsupported
by current user interfaces. We are working to combine the
flexibility and ease of use of paper and pencil with the pro-
cessing power of a computer, to produce a user interface
for design that feels as natural as paper, yet is considerably
smarter. One of the most basic steps in accomplishing this is
converting the original digitized pen strokes in a sketch into
the intended geometric objects. In this paper we describe
an implemented system that combines multiple sources of
knowledge to provide robust early processing for freehand
sketching.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: User interfaces;
H.5.2 [User Interfaces]: Input Devices and strategies; J.6
[Computer Aided Engineering]: CAD

General Terms
Design, Human Factors

Keywords
freehand sketching, natural interaction, multiple sources of
knowledge

1. INTRODUCTION
Freehand sketching is a familiar, efficient, and natural way

of expressing certain kinds of ideas, particularly in the early
phases of design. Yet this archetypal behavior is largely un-
supported by user interfaces in general and by design soft-
ware in particular, which has for the most part aimed at
providing services in the later phases of design. As a re-
sult designers either forgo tool use at the early stage or end
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up having to sacrifice the utility of freehand sketching for
the capabilities provided by the tools. When they move to
a computer for detailed design, designers usually leave the
sketch behind and the effort put into defining the rough ge-
ometry on paper is largely lost.

We are working to provide a system where users can sketch
naturally and have the sketches understood. By “under-
stood” we mean that sketches can be used to convey to the
system the same sorts of information about structure and
behavior as they communicate to a human engineer.

Such a system would allow users to interact with the com-
puter without having to deal with icons, menus and tool se-
lection, and would exploit direct manipulation (e.g., specify-
ing curves by sketching them directly, rather than by spec-
ifying end points and control points). We also want users
to be able to draw in an unrestricted fashion. It should,
for example, be possible to draw a rectangle clockwise or
counterclockwise, or with multiple strokes. Even more gen-
erally, the system, like people, should respond to how an
object looks (e.g., like a rectangle), not how it was drawn.
This will, we believe, produce a sketching interface that feels
much more natural, unlike Graffiti and other gesture-based
systems (e.g., [9], [14]), where pre-specified motions (e.g.,
an L-shaped stroke or a clockwise rectangular stroke) are
required to specify a rectangular shape.

The work reported here is part of our larger effort aimed at
providing natural interaction with software, and with design
tools in particular. That larger effort seeks to enable user
to interact with automated tools in much the same man-
ner as they interact with each other: by informal, messy
sketches, verbal descriptions, and gestures. Our overall sys-
tem uses a blackboard-style architecture [6], combining mul-
tiple sources of knowledge to produce a hierarchy of succes-
sively more abstract interpretations of a sketch.

Our focus in this paper is on the very first step in the
sketch understanding part of that larger undertaking: inter-
preting the pixels produced by the user’s strokes and pro-
ducing low level geometric descriptions such as lines, ovals,
rectangles, arbitrary polylines, curves and their combina-
tions. Conversion from pixels to geometric objects is the
first step in interpreting the input sketch. It provides a
more compact representation and sets the stage for further,
more abstract interpretation (e.g., interpreting a jagged line
as a symbol for a spring).

2. THE SKETCH UNDERSTANDING TASK

1



Sketch understanding overlaps in significant ways with the
extensive body of work on document image analysis gener-
ally (e.g., [2]) and graphics recognition in particular (e.g.,
[16]), where the task is to go from a scanned image of, say,
an engineering drawing, to a symbolic description of that
drawing.

Differences arise because sketching is a realtime, interac-
tive process, and we want to deal with freehand sketches,
not the precise diagrams found in engineering drawings. As
a result we are not analyzing careful, finished drawings, but
are instead attempting to respond in real time to noisy, in-
complete sketches. The noise is different as well: noise in
a freehand sketch is typically not the small-magnitude ran-
domly distributed variation common in scanned documents.
There is also an additional source of very useful information
in an interactive sketch: as we show below, the timing of
pen motions can be very informative.

Sketch understanding is a difficult task in general as sug-
gested by reports in previous systems (e.g., [9]) of a recogni-
tion rate of 63%, even for a sharply restricted domain where
the objects to be recognized are limited to rectangles, circles,
lines, and squiggly lines (used to indicate text).

Our domain–mechanical engineering design–presents the
additional difficulty that there is no fixed set of shapes to
be recognized. While there are a number of traditional sym-
bols with somewhat predictable geometries (e.g., symbols for
springs, pin joints, etc.), the system must also be able to deal
with bodies of arbitrary shape that include both straight
lines and curves. As consequence, accurate early processing
of the basic geometry–finding corners, fitting both lines and
curves–becomes particularly important.

3. SYSTEM DESCRIPTION
Sketches can be created in our system using any of a vari-

ety of devices that provide the experience of freehand draw-
ing while capturing pen movement. We have used tradi-
tional digitizing tablets, a Wacom tablet that has an LCD-
display drawing surface (so the drawing appears under the
stylus), and a Mimio whiteboard system. In each case the
pen motions appear to the system as mouse movements,
with position sampled at rates between 30 and 150 points/sec,
depending on the device and software in use.

In the description below, by a single stroke we mean the
set of points produced by the drawing implement between
the time it contacts the surface (mouse-down) and the time
it breaks contact (mouse-up). This single path may be com-
posed of multiple connected straight and curved segments
(see, Fig. 1).

Our approach to early processing consists of three phases
approximation, beautification, and basic recognition. Ap-
proximation fits the most basic geometric primitives–lines
and curves–to a given set of pixels. The overall goal is to
approximate the stroke with a more compact and abstract
description, while both minimizing error and avoiding over-
fitting. Beautification modifies the output of the approxi-
mation layer, primarily to make it visually more appealing
without changing its meaning, and secondarily to aid the
third phase, basic recognition. Basic recognition produces
interpretations of the strokes, as for example, interpreting a
sequence of four lines as a rectangle or square. (Subsequent
recognition, at the level of mechanical components, such as
springs, and pin joints is accomplished by another of our
systems [1]).

Figure 1: The stroke on the left contains both
curves and straight line segments. The points we
want to detect in the vertex detection phase are in-
dicated with large dots in the figure on the right.
The beginning and the end points of the stroke are
indicated with smaller dots.

3.1 Stroke Approximation
Stroke processing consists of detecting vertices at the end-

points of linear segments of the stroke, then detecting and
characterizing curved segments of the stroke.

3.1.1 Vertex detection
We use the sketch in Fig. 1 as a motivating example of

what should be done in the vertex detection phase. Points
marked in Fig. 1 indicate the corners of the stroke, where
the local curvature is high.

Note that the vertices are marked only at what we would
intuitively call the corners of the stroke (i.e., endpoints of
linear segments). There are, by design, no vertices marked
on curved portions of the stroke because we want to handle
these separately, modeling them with curves (as described
below). This is unlike the well studied problem of piecewise
linear approximation [13].

Figure 2: Stroke representing a square.

Our approach takes advantage of the interactive nature of
sketching, combining information from both stroke direction
and speed data. Consider as an example the square in Fig. 2;
Fig. 3 shows the direction, curvature (change in direction
with respect to arc length) and speed data for this stroke.
We locate vertices by looking for points along the stroke that
are minima of speed (the pen slows at corners) or maxima
of the absolute value of curvature.1

While extrema in curvature and speed typically corre-
spond to vertices, we cannot rely on them blindly because
noise in the data introduces many false positives. To deal
with this we use average based filtering.

1From here on for ease of description we use curvature to
mean the absolute value of the curvature data.
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Figure 3: Direction, curvature and speed graphs for
the stroke in Fig. 2

Average based filtering
We want to find extrema corresponding to vertices while
avoiding those due to noise. To increase our chances at do-
ing this, we look for extrema in those portions of the curva-
ture and speed data that lie beyond a threshold. Intuitively,
we are looking for maxima of curvature only where the cur-
vature is already high and minima of speed only where the
speed is already low. This will help to avoid selecting false
positives of the sort that would occur say, when there is
a brief slowdown in an otherwise fast section of a straight
stroke.

To avoid the problems posed by choosing a fixed threshold,
we set the threshold based on the mean of each data set.2

We use these thresholds to separate the data into regions
where it is above/below the threshold and select the global
extrema in each region that lies above the threshold.
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Figure 4: Curvature graph for the square in Fig. 2
with the threshold dividing it into regions.
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Figure 5: Speed graph for the stroke in Fig. 2 with
the threshold dividing it into regions.

2The exact threshold has been determined empirically; for
curvature data the threshold is the mean, while for the speed
the threshold is 90% of the mean.

Figure 6: At left the original sketch of a piece of
metal; at right the fit generated using only curvature
data.

Figure 7: At left the speed graph for the piece; at
right the fit based on only speed data.

Application to curvature data

Fig. 4 shows the curvature graph partitioned into regions
of high and low curvature. Note that this reduces but doesn’t
eliminate the problem of false positives introduced by noise
in the stroke. We deal with the false positives using the
hybrid fit generation scheme described below.3

While average based filtering performs better than simply
comparing the curvature data against a hard coded thresh-
old, it is still clearly not free of empirical constants. As we
explain when considering future work, scale space provides
a better approach for dealing with noisy data without hav-
ing to make a priori assumptions about the scale of relevant
features.

Application to speed change
Our experience is that curvature data alone rarely provides
sufficient reliability. Noise is one problem, but variety in
angle changes is another. Fig. 6 illustrates how curvature
fit alone misses a vertex (at the upper right) because the
curvature around that point was too small to be detected
in the context of the other, larger curvatures. We solve this
problem by incorporating speed data into our decision as an
independent source of guidance.

Just as we did for the curvature data, we reduce the num-
ber of false extrema by average based filtering, then look for
speed minima. The intuition here is simply that pen speed
drops when going around a corner in the sketch. Fig. 7
shows (at left) the speed data for the sketch in Fig. 6, along
with the polygon drawn from the speed-detected vertices (at
right).

3An alternative approach is to detect consecutive almost-
collinear edges (using some empirical threshold for collinear-
ity) and combine them into one edge, removing the vertex
in between. Our hybrid fit scheme deals with the problem
without the need to decide what value to use for “almost-
collinear.”

3



Using speed data alone has its shortcomings as well. Poly-
lines formed from a combination of very short and long line
segments can be problematic: the maximum speed reached
along the short line segments may not be high enough to
indicate the pen has started traversing another edge, with
the result that the entire short segment is interpreted as the
corner. This problem arises frequently when drawing thin
rectangles, common in mechanical devices. Fig. 8 illustrates
this phenomena. In this figure, the speed fit misses the up-
per left corner of the rectangle because the pen failed to
gain enough speed between the endpoints of the short verti-
cal segment. The curvature fit, by contrast, detects all cor-
ners, along with some other vertices that are artifacts due to
hand dynamics during freehand sketching. This illustrates
the utility of having both fits available.

(a) Input, 63
points

(b) Using
speed data,
4 vertices

(c) Using
curvature
data, 7
vertices

Figure 8: Average based filtering using speed data
misses a vertex. The curvature fit detects the missed
point (along with vertices corresponding to the ar-
tifact along the left edge of the rectangle).

We use information from both sources, generating hybrid
fits by combining the set of candidate vertices derived from
curvature data Fd with the candidate set from speed data
Fs, taking into account the system’s certainty that each can-
didate is a real vertex.

Generating hybrid fits
Hybrid fit generation occurs in three stages: computing ver-
tex certainties, generating a set of hybrid fits, and selecting
the best fit.

Our certainty metric for a curvature candidate vertex vi

is the scaled magnitude of the curvature in a local neighbor-
hood around the point, computed as |di−k − di+k|/l. Here
l is the curve length between points Si−k, Si+k and k is a
small integer defining the neighborhood size around vi. The
certainty metric for a speed fit candidate vertex vi is a mea-
sure of the pen slowdown at the point, 1 − vi/vmax, where
vmax is the maximum pen speed in the stroke. The certainty
values are normalized to [0, 1].

While both of these metrics are designed to produce val-
ues in [0, 1], they have different scales. As the metrics are
used only for ordering within each set, they need not be
numerically comparable across sets. Candidate vertices are
sorted by certainty within each fit.

The initial hybrid fit H0 is the intersection of Fd and Fs. A
succession of additional fits is then generated by appending
to Hi the highest scoring curvature and speed candidates
not already in Hi.

To do this, on each cycle we create two new fits: H ′
i =

Hi+vs (i.e., Hi augmented with the best remaining speed fit
candidate) and H ′′

i = Hi + vd (i.e., Hi augmented with the
best remaining curvature candidate). We use least squares
error as a metric of the goodness of a fit: the error εi is

computed as the average of the sum of the squares of the
distances to the fit from each point in the stroke S:

εi =
1

|S|
∑

s∈S

ODSQ(s, Hi)

Here ODSQ stands for orthogonal distance squared, i.e., the
square of the distance from the stroke point to the relevant
line segment of the polyline defined by Hi. We compute the
error for H ′

i and for H ′′
i ; the higher scoring of these two (i.e.,

the one with smaller least squares error) becomes Hi+1, the
next fit in the succession. This process continues until all
points in the speed and curvature fits have been used. The
result is a set of hybrid fits.

In selecting the best of the hybrid fits the problem is as
usual trading off more vertices in the fit against lower error.
Here our approach is simple: We set an error upper bound
and designate as our final fit Hf , the Hi with the fewest
vertices that also has an error below the threshold.

3.1.2 Handling curves
The approach described thus far yields a good approxima-

tion to strokes that consists solely of line segments, but as
noted our input may include curves as well, hence we require
a means of detecting and approximating them.

The polyline approximation Hf generated in the process
described above provides a natural foundation for detecting
areas of curvature: we compare the Euclidean distance l1
between each pair of consecutive vertices in Hf to the accu-
mulated arc length l2 between those vertices in the input S.
The ratio l2/l1 is very close to 1 in the linear regions of S,
and significantly higher than 1 in curved regions.

We approximate curved regions with Bézier curves, de-
fined by two end points and two control points. Let u = Si,
v = Sj , i < j be the end points of the part of S to be ap-
proximated with a curve. We compute the control points
as:

c1 = kt̂1 + v

c2 = kt̂2 + u

k =
1

3

∑

i≤k<j

|Sk − Sk+1|

where t̂1 and t̂2 are the unit length tangent vectors pointing
inwards at the curve segment to be approximated. The 1/3
factor in k controls how much we scale t̂1 and t̂2 in order to
reach the control points; the summation is simply the length
of the chord between Si and Sj .

4

As in fitting polylines, we want to use least squares to
evaluate the goodness of a fit, but computing orthogonal dis-
tances from each Si in the input stroke to the Bézier curve
segments would require solving a fifth degree polynomial.
(Bézier curves are described by third degree polynomials,
hence computing the minimum distance from an arbitrary
point to the curve involves minimizing a sixth degree poly-
nomial, equivalent to solving a fifth degree polynomial.) A
numerical solution is both computationally expensive and
heavily dependent on the goodness of the initial guesses for

4The 1/3 constant was determined empirically, but works
very well for freehand sketches. As we discovered subse-
quently, the same constant was independently chosen in [15].

4



Figure 9: Examples of arbitrary stroke approxima-
tion. Boundaries of Bézier curves are indicated with
crosses, detected vertices are indicated with dots.

roots [12], hence we resort to an approximation. We dis-
cretize the Bézier curve using a piecewise linear curve and
compute the error for that curve. This error computation is
O(n) because we impose a finite upper bound on the number
of segments used in the piecewise approximation.

If the error for the Bézier approximation is higher than
our maximum error tolerance, the curve is recursively sub-
divided in the middle, where middle is defined as the data
point in the original stroke whose index is midway between
the indices of the two endpoints of the original Bézier curve.
New control points are computed for each half of the curve,
and the process continues until the desired precision is achieved.

Examples of the capability of our approach is shown in
Fig. 9, a hastily-sketched mixture of lines and curves. Note
that all of the curved segments have been modeled curves,
rather than the piecewise linear approximations that have
been widely used previously.

3.2 Beautification
Beautification refers to the (currently minor) adjustments

made to the approximation layer’s output, primarily to make
it look as intended. We adjust the slopes of the line seg-
ments in order to ensure the lines that were apparently
meant to have the same slope end up being parallel. This
is accomplished by looking for clusters of slopes in the fi-
nal fit produced by the approximation phase, using a simple
sliding-window histogram. Each line in a detected cluster is
then rotated around its midpoint to make its slope be the
weighted average of the slopes in that cluster. The (new)
endpoints of these line segments are determined by the in-
tersections of each consecutive pair of lines. This process
(like any neatening of the drawing) may result in vertices
being moved; we chose to rotate the edges about their mid-
points because this produces vertex locations that are close
to those detected, have small least square errors when mea-

Figure 10: At left the original sketch of a piece of
metal revisited, and the final beautified output at
right.

sured against the original sketch, and look right to the user.
Fig. 10 shows the original stroke for the metal piece we had
before, and the output of the beautifier. Some examples of
beautification are also present in Fig. 13.

3.3 Basic Object Recognition
The final step in our processing is recognition of the most

basic objects that can be built from the line segments and
curve segments produced thus far, i.e., simple geometric ob-
jects (ovals, circles, rectangles, squares).

Recognition of these objects is done with hand-tailored
templates that examine various simple properties. A rectan-
gle, for example, is recognized as a polyline with 4 segments
all of whose vertices are within a specified distance of the
center of the figure’s bounding box; a stroke will be recog-
nized as an oval if it has a small least squares error when
compared to an oval whose axes are given by the bounding
box of the stroke.

3.4 Evaluation
We have conducted a user study to measure the degree to

which the system is perceived as easy to use, natural and
efficient. Study participants were asked to create a set of
shapes using our system and Xfig, a Unix tool for creating
diagrams. Xfig is a useful point of comparison because it
is representative of the kinds of tools that are available for
drawing diagrams using explicit indication of shape (i.e.,
the user indicates explicitly which parts of the sketch are
supposed to be straight lines, which curves, etc.) As in other
such tools, XFig has a menu and toolbar interface; the user
selects a tool (e.g., for drawing polygons), then creates the
shapes piece by piece.

Thirteen subjects participated in our study, including com-
puter science graduate students, computer programmers and
an architecture student. Subjects were given sufficient time
to get familiar with each system and then asked to draw a
set of 10 shapes (examples given in Fig 11). All of the sub-
jects reported our system being easier to use, efficient and
more natural feeling. The subjects were also asked which
system they would prefer when drawing these sort of infor-
mal shapes on a computer. All but one subject preferred
our system; the sole dissenter preferred a tablet surface that
had the texture and feel of paper.

Overall users praised our system because it let them draw
shapes containing curves and lines directly and without hav-
ing to switch back and forth between tools. We have also
observed that with our system, users found it much easier
to draw shapes corresponding to the gestures they routinely
draw freehand, such as a star.

While the central point of this comparison was to deter-
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Figure 11: Examples of the shapes used in the user
study.

mine how natural it felt to use each system, we also evalu-
ated our system’s ability to produce a correct interpretation
of each shape (i.e., interpret strokes appropriately as lines
or curves). Overall the system’s identification of the vertices
and approximation of the shapes with lines and curves was
correct 96% of the time on the ten figures.

In addition to the user studies we have conducted, we
wrote a higher level recognizer for evaluation purposes. The
higher level recognizer takes the geometric descriptions gen-
erated by the basic object recognition module of our system
and combines them into domain specific objects.

Fig. 13 shows the original input and the program’s anal-
ysis for a variety of simple but realistic mechanical devices
drawn as freehand sketches. The last two of them are differ-
ent sketches for a part of the direction reversing mechanism
for a tape player. Recognized domain specific components
include gears (indicated by a circle with a cross), springs (in-
dicated by wavy lines), and the standard fixed-frame symbol
(a collection of short parallel lines). Components that are
recognized are replaced with standard icons scaled to fit the
sketch.

An informal comparison of the raw sketch and the sys-
tem’s approximations shows whether the system has selected
vertices where they were drawn, fit lines and curves accu-
rately, and successfully recognized basic geometric objects.
While informal, this is an appropriate evaluation because
the program’s goal is to produce an analysis of the strokes
that “looks like” what was sketched.

We have also begun to deal with overtracing, one of the
(many) things that distinguishes freehand sketches from care-
ful diagrams. Fig. 12 illustrates one example of the limited
ability we have thus far embodied in the program.

4. RELATED WORK
In general, systems supporting freehand sketching lack

one or more of the properties that we believe a sketching
system should have:

Figure 12: An overtraced oval and a line along with
and the system’s output.

• It should be possible to draw arbitrary shapes with a
single stroke, (i.e., without requiring the user to draw
objects in pieces).

• The system should do automatic feature point detec-
tion. The user should not have to specify vertex posi-
tions by hand.

• The system should not have sketching modes for draw-
ing different geometric object classes (i.e., modes for
drawing circles, polylines, curves etc.).

• The sketching system should feel natural to the user.

The Phoenix sketching system [15] had some of the same
motivation as our work, but a more limited focus on inter-
active curve specification. While the system provided some
support for vertex detection, its focus on curves led it to
use Gaussian filters to smooth the data. While effective for
curves, Gaussians tend to treat vertices as noise to be re-
duced, obscuring vertex location. As a result the user was
often required to specify the vertices manually.

Work in [5] describes a system for sketching with con-
straints that supports geometric recognition for simple strokes
(as well as a constraint maintenance system and extrusion
for generating solid geometries). The set of primitives is
more limited than ours: each stroke is interpreted as a line,
arc or as a Bézier curve. More complex shapes can be formed
by combinations of these primitives, but only if the user lifts
the pen at the end of each primitive stroke, reducing the
feeling of natural sketching.

The work in [3] describes a system for generating realtime
spline curves from interactively sketched data. They focus
on using knot removal techniques to approximate strokes
known to be composed only of curves, and do not handle sin-
gle strokes that contain both lines and curves. They do not
support corner detection, instead requiring the user to spec-
ify corners and discontinuities by lifting the mouse button,
or equivalently by lifting the pen. We believe our approach
of automatically detecting the feature points provides a more
natural and convenient sketching interface.

Zeleznik [7] describes a mode-based stroke approxima-
tion system that uses simple rules for detecting the drawing
mode. The user has to draw objects in pieces, reducing
the sense of natural sketching. Switching modes is done by
pressing modifier buttons in the pen or in the keyboard.
In this system, a click of the mouse followed by immediate
dragging signals that the user is drawing a line. A click fol-
lowed by a pause and then dragging of the mouse tells the
system to enter the freehand curve mode. Our system allows
drawing arbitrary shapes without any restriction on how the
user draws them. There is enough information provided by
the freehand drawing to differentiate geometric shapes such
as curves, polylines, circles and lines from one another, so
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we believe requiring the user to draw things in a particu-
lar fashion is unnecessary and reduces the natural feeling of
sketching. Our goal is to make computers understand what
the user is doing rather than requiring the user to sketch in
a way that the computer can understand.

Among the large body of work on beautification, Igarashi
et al. [8] describes a system combining beautification with
constraint satisfaction, focusing on exploiting features such
as parallelism, perpendicularity, congruence and symmetry.
The system infers geometric constraints by comparing the
input stroke with previous ones. Because sketches are inher-
ently ambiguous, their system generates multiple interpreta-
tions corresponding to different ways of beautifying the in-
put, and the most plausible interpretation is chosen among
these interpretations. The system is interactive, requiring
the user to do the selection, and doesn’t support curves. It
is, nevertheless, more effective then ours at beautification,
but beautification is not the main focus of our work and is
present for the purposes of completeness.

The works in [15] and [3] describe methods for generating
very accurate approximations to strokes known to be curves
with precision several orders of magnitude below the pixel
resolution. The Bézier approximations we generate are less
precise but are sufficient for approximating free-hand curves.
We believe techniques in [15] and [3] are excessively pre-
cise for free-hand curves, and the real challenge is detecting
curved regions in a stroke rather than approximating those
regions down to the numerical machine precision.

5. FUTURE WORK
We are working to link this early processing to other work

in our group that has focused on recognition [1] of higher
level mechanical objects. This will provide the opportunity
to add model-based processing of the stroke, in which early
operations like vertex localization may be usefully guided by
knowledge of the current best recognition hypothesis.

In addition, incorporating ideas from scale space theory
looks like a promising way of detecting different scales in-
herent in the data and avoiding a priori judgments about
the size of relevant features. In the pattern recognition com-
munity [4], [11] and [10] apply some of the ideas from scale
space theory to similar problems. We are currently working
on ways of applying these techniques to speed and curvature
data. We believe this may allow us to deal more effectively
with sketches that contain relevant details at a variety of
scales. There is no guaranteed way of deciding which scales
are important at the geometric level, so using constraints
and/or information provided by the domain of application
may help in scale selection.

Humans naturally seem to slow down when they draw
things carefully as opposed to casually, so another inter-
esting research direction would be to explore the degree to
which one can use the time it takes to draw a stroke as an
indication of how careful and precise the user meant to be.

6. CONCLUSION
We have built a system capable of using multiple sources

of information to produce good approximations of freehand
sketches. Users can sketch on an input device as if drawing
on paper and have the computer detect the low level geome-
try, enabling a more natural interaction with the computer,
as a first step toward more natural user interfaces generally,

and toward earlier use of automated tools in the design cycle
in particular.
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Figure 13: Performance examples: The first two pair are sketches of a marble dispenser mechanism and a
toggle switch. The last two are sketches of the direction reversing mechanism in a tape player.
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Abstract. This paper presents a sketch-based modeling system for cre-
ating objects that have internal structures. The user input consists of
hand-drawn sketches and the system automatically generates a volu-
metric model. The volumetric representation solves any self-intersection
problems and enables the creation of models with a variety of topolog-
ical structures, such as a torus or a hollow sphere. To specify internal
structures, our system allows the user to cut the model temporarily and
apply modeling operations to the exposed face. In addition, the user can
draw multiple contours in the Create or Sweep stages. Our system also
allows automatic rotation of the model so that the user does not need
to perform frequent manual rotations. Our system is much simpler to
implement than a surface-oriented system because no complicated mesh
editing code is required. We observed that novice users could quickly
create a variety of objects using our system.

1 Introduction

Geometric modeling has been a major research area in computer graphics. While
there has been much progress in rendering 3D models, creating 3D objects is still
a challenging task. Recently, attention has focused on sketch-based modeling sys-
tems with which the user can quickly create 3D models using simple freehand
strokes rather than by specifying precise parameters for geometric objects, such
as spline curves, NURBS patches, and so forth [15, 6]. However, these systems
are primarily designed for specifying the external appearance of 3D shapes, and
it is still difficult to design freeform models with internal structures, such as
internal organs. Specifically, the existing sketch-based freeform modeling system
[6] can handle 3D models only with spherical topology. This paper introduces a
modeling system that can design 3D models with complex internal structures,



while maintaining the ease of use of existing sketch-based freeform modelers.
We used a volumetric data structure to handle the dynamically changing topol-
ogy efficiently. The volumetric model is converted to a polygonal surface and
is displayed using a non-photorealistic rendering technique to facilitate creative
exploration. Unlike previous systems, our system allows the user to draw nested
contours to design models with internal structures. In addition, the user can cut
the model temporarily and apply modeling operations to the exposed face to
design internal structures. The underlying volumetric representation simplifies
the implementation of such functions. Moreover, our system actively assists the
user by automatically rotating the model when necessary.

The heart of our technique is automatic “guessing” of 3D geometry from 2D
gestural input, and it is done by making certain assumptions about the target
geometry. To be specific, the system assumes that the target geometry has a
rotund, smooth (low curvature) surface [6] other than the places where the user
explicitly defined the geometry by the input strokes. In other words, the user
specifies the information about important features (silhouette, intersection, and
sweep path) and the system supplies missing information based on the above
assumption.

Our system is designed to facilitate the communication of complicated ge-
ometric information, such as surgical plans. Like other sketch-based modeling
systems, however, our system is not suitable for creating the final output of any
serious production, because of its lack of accuracy.

2 Previous Work

Three-dimensional shape modeling systems that use a volumetric data structure
directly are relatively new [14, 4] as compared with other popular modeling prim-
itives, such as polygons, NURBS, and subdivision surfaces. Recently, a scripting
language [2], octree [11], subdivision volume [10], and level set [1] have been
used as volumetric modeling methodologies. Some systems use 3D haptic input
devices [4, 3, 5, 10].

Sketch-based modeling using standard mouse operations became popular in
the past decade. Instead of creating precise, large-scale objects, a sketching in-
terface provides an easy way to create a rough model to convey the user’s idea
quickly. One of the earliest sketching systems was Viking [12], which was de-
signed in the context of prototypic CAD models. Later works include SKETCH
[15] and Teddy [6]. The SKETCH system is intended to sketch a scene consisting
of simple primitives, such as boxes and cones, while the Teddy system is designed
to create rotund objects with spherical topology. Although improvements to the
original Teddy system have recently been proposed [7], extending the topological
variety of creatable models is still an unsolved problem.

Although the user interface of our system is based on the Teddy system,
our system is free from topological limitations, provides multiple interfaces for
specifying internal structures, and actively assists the user by automatically
rotating a model when necessary.



3 User Interface

The entire editing operation is performed in a single window. Modeling oper-
ations are specified by freeform strokes drawn on the screen and by pressing
buttons on a menu bar. The freeform strokes provide necessary geometric infor-
mation and the buttons apply specific modeling operations using the strokes as
input. The drawing of strokes is assigned to the left mouse button and rotating
the model is assigned to the right mouse button. The current implementation
uses four buttons, as shown in Fig. 1. The leftmost button is used to initial-
ize the current scene; the second one is to create items; the third is for the
extrusion/sweep function; and the last is for undo.

Fig. 1. Buttons in our system

3.1 Create

Objects are created by drawing one or more contours on the canvas and pressing
the “Create” button. This operation inflates the intermediate region between
the strokes leaving holes (Fig. 2).

Fig. 2. Nested contours are allowed in the Create operation.

3.2 Extrusion

Extrusion is an operation that generates a protuberance or a dent on a model.
The user draws a single closed stroke on the object’s surface specifying the con-
tour (Fig. 3 (b)) and presses the “Extrusion/sweep” button. After rotating the
model (Fig. 3 (c)), the user draws a second stroke specifying the silhouette of the
extruded area (Fig. 3 (d, f)). The user should place each end of the silhouette



stroke close to each end of the projected surface contour (otherwise the second
stroke is interpreted as a sweep path; see Section 3.4.) A protuberance is created
if the second stroke is drawn on the outside of the object (Fig. 3 (d,e)). The user
can also create a hole by drawing a stroke into the object (Fig. 3 (f,g)). Vol-
umetric representation automatically prevents self-intersection problems, where
specialized care must be taken when using a polygonal representation. A hidden
silhouette is rendered as broken lines.

(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Examples of Extrusion

3.3 Loop Extrusion

In addition, it is also possible to create a hollow object using extrusion. To do
this, the user first cuts the model to expose the internal region (Fig. 4 (a-c)),
then draws a contour on the exposed plane (Fig. 4 (d)), and finally draws a
circular stroke that entirely surrounds the contour (Fig. 4 (e)). We call this
operation “Loop Extrusion”. The cutting operation that we use differs from the
standard Cut operation in the Teddy system [6] in that the removed region is
just deactivated temporarily. The system distinguishes these two operations by
checking whether there is a corner at the end of a stroke. The system performs a
standard cutting operation when there is no corner, while the system deactivates
a region when there is a corner. The direction of the stroke end is used to
determine which area to deactivate. The silhouette of the deactivated parts is
rendered as broken lines.

Deactivation is provided in order to make the inside of an object accessible.
The user can draw a contour and have it extrude on an internal surface in
exactly the same way as done on an external surface (Fig. 5). The following
sweep operation can also be used in conjunction with deactivation.

3.4 Sweep

After pressing the “Extrusion/Sweep” button, the user can also draw an open
stroke specifying the sweep path. If a single contour is drawn in the first step,



(a) (b) (c) (d) (e) (f)

Fig. 4. An example of creating a hollow object: first, the user defines the desired cross-
sectional plane by deactivating part of the object (a-c). Then, the user draws a contour
on the cut plane (d). Finally, the user draws a extruding shape surrounding the contour,
which we call “Loop Extrusion” (e). This creates a hollow object (f).

(a) (b) (c)

Fig. 5. A extrusion from an internal surface of an object using deactivation

both ends are checked to determine whether they are close to the projected
contour. Unlike extrusion, the user can draw multiple contours to design tube-
like shapes (Fig. 6).

(a) (b) (c)

Fig. 6. Sweeping double contours: drawing contours on the surface of an object (a)
and sweeping them (b) produces a tube (c).

3.5 Animation Assistance

In extrusion or sweep, the model must be rotated approximately 90 degrees after
pressing the “Extrusion/Sweep” button to draw the last stroke. To automate
this process, our system rotates the model after the “Extrusion/Sweep” button
is pressed; the contours are then moved so that they are perpendicular to the
screen (Fig. 7 (a-c)). This animation assistance is also performed after a Cut
operation, because it is likely that a contour will be drawn on the cut plane in



the next step. When a model is cut, it is automatically rotated so that the cut
plane is parallel to the screen (Fig. 7 (d-f)).

(a) (b) (c) (d) (e) (f)

Fig. 7. Examples of animation assistance: as soon as the user presses the “Extru-
sion/Sweep” button, the model is rotated so that the contours are perpendicular to
the screen (a-c). When the user cuts a model, the /model is automatically rotated so
that the cut plane is parallel to the screen (d-f).

4 Implementation

We use a standard binary volumetric representation. The examples shown in
this paper require approximately 4003 voxels. The volumetric data are polygo-
nized using the Marching Cubes algorithm [9]. The polygonized surface is then
smoothed [13] and displayed using a non-photorealistic rendering technique [8].
The silhouette lines of invisible or deactivated parts are rendered as broken lines.

The Create and Extrusion operations can be implemented using the algo-
rithms described in the original Teddy system, converting the resulting polygonal
model into a volumetric model and performing a CSG operation. In Extrusion,
our system adds the additional geometry to the original model when an out-
ward stroke is drawn and subtracts it when an inward stroke is drawn. Note
that complex “sewing” of polygons is not necessary and no self-intersection will
occur because of the volumetric data structure. Loop Extrusion applies the stan-
dard inward (subtract) extrusion in both directions. The Sweep operation in our
system requires two-path CSG operations to add a new geometry to the original
model. First, the sweep volume of the outermost contour is subtracted from the
original model (Fig. 8 (a-c)). Then, the regions between the contours are swept
and the sweep volume is added to the model (Fig. 8 (d)). This avoids the inner
space being filled with the original geometry.

The volumetric representation significantly simplifies the implementation of
the Cut operation and enables the change in topology. A binary 2D image is
computed from the cutting stroke in the screen space to specify a “delete” region
and a “remain” region. Both ends of the cutting stroke are extended until they
intersect or reach the edges of the screen. Then, one of the separated regions is
set as the “delete” region (usually the region to the left of the stroke, following



(a) (b) (c) (d)

Fig. 8. Handling the sweep operation. The outmost contour is swept along the specified
path (a,b) and extracted from the original model (c). Then, every contour is swept and
added to the model.

the original Teddy convention). Each voxel is then projected to the screen space
to check whether it is in the deleted region; if so, the voxel is deleted. This process
is significantly simpler than traversing the polygonized surface and remeshing it.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 9. Examples created using our system. (a-c) were created by novices, while (d-g)
were created by an expert.

5 Results

We used a Dell Dimension 8200 computer that contained a Pentium 4 2-GHz
processor and 512 MB of RAM. The graphics card was an NVIDIA GeForce3
Ti500 with 64 MB of memory. Users can create models interactively on this
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Fig. 10. An undesired effect caused by the lack of depth control. Since there is no
depth information in the original model, the newly created cavity can pierce the wall.

machine. We also used a display-integrated tablet as an input device, with which
the user can edit an object more intuitively. However, some users found it difficult
to rotate an object because they needed to press a button attached to the side
of the pen and move the pen without touching the display.

Figure 9 shows some models created using our system. Fig. 9 (a-c) were cre-
ated by novices within fifteen minutes of an introductory fifteen-minute tutorial;
the others were created by an expert. Our observations confirmed that users
could create models with internal structures quickly and easily. Nevertheless,
one limitation also became clear. The users occasionally found the behavior of
Extrusion unpredictable because there was no depth control. Specifically, when
a user tried to create a cavity in an object, the hole sometimes penetrated the
wall of the original model (Fig.10).

6 Conclusions and Future work

We presented a sketch-based modeling system for creating objects with internal
structures. The underlying volumetric data structure simplifies the handling of
a dynamically changing topology. The user can modify the topology easily in
various ways, such as by cutting an object, forming a extrusion, specifying mul-
tiple contours with create or sweep operations, or specifying internal structures
in conjunction with temporal deactivation. In addition, automatic rotation of
the object frees the user from tedious manual labor.

Our system is designed for the rapid construction of coarse models and is
not appropriate for precise modeling. Currently, it is difficult to modify shapes
locally and we are exploring ways to add small details. As mentioned above, the
absence of depth control causes difficulty. Finally, our current implementation
can produce only binary volumetric data and we plan to explore a new interface
in which the user can define the internal volumetric textures of a model.
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Abstract 

This paper proposes a user-friendly modeling system 
that interactively generates 3D organic-like shapes from 
user drawn sketches. A skeleton, in the form of a graph 
of branching polylines and polygons, is first extracted 
from the user's sketch. The 3D shape is then defined as a 
convolution surface generated by this skeleton. The 
skeleton's resolution is adapted according to the level of 
detail selected by the user. The subsequent 2D strokes 
are used to infer new object parts, which are combined 
with the existing shape using CSG operators. We 
propose an algorithm for computing a skeleton defined 
as a connected graph of polylines and polygons. To 
combine the primitives we propose precise CSG 
operators for a convolution surfaces blending hierarchy.  

Our new formulation has the advantage of requiring 
no optimization step for fitting the 3D shape to the 2D 
contours. This yields interactive performances and 
avoids any non-desired oscillation of the reconstructed 
surface. As our results show, our system allows non-
expert users to generate a wide variety of free form 
shapes with an easy to use sketch-based interface. 

Keywords: sketch based modeling, implicit surfaces, 
convolution surfaces, CSG. 

1. Introduction 

The complexity of user interaction is the main 
obstacle to the use of standard modeling systems. This 
impacts both the user and the possibilities of expression 
this system provides. Achieving a simple and faithful 
translation of the user's idea without requiring 
sophisticated input and a long training process remains a 
challenge for the modeling software. One of the 
simplest and user-friendliest modeling metaphors is 
drawing. This kind of communication is useful in 
educational applications such as teaching, and already 
has industrial purposes such as story boarding. It is 
generally used in the early stages of design, because 
drawing a sketch is both much faster than creating a 3D 
model, and more convenient for expressing ideas. 
However, the obvious drawback of 2D sketches is their 
limitation to a single viewpoint. The user cannot move 
around the drawn object, nor view it from different 

angles, except in [4] where the sketch cannot be used 
for extracting a 3D shape. The aim of the sketch-based 
modeling is to combine the simplicity of 2D sketching 
with powerful 3D capabilities. Since the first sketch 
based interface [11] the concept has been largely 
developed and explored, from architectural design [5] to 
artistic design [8] and free form shapes [6, 7, 10]. The 
latter are difficult to model with sketches, though among 
the most interesting because of the large modeling 
possibilities they provide. The main difficulty in 
reconstructing a 3D model from a 2D contour is 
extrapolating lacking information. There are two main 
approaches for constructing smooth, rounded shapes 
from 2D contours. The first one consists in perspective 
projections of the contour point samples to reconstruct 
the 3D geometry. These points are then interpolated 
using variational implicit surfaces [7, 12, 5]. The second 
is to construct a skeleton from the 2D contour and use it 
to generate a 3D shape [6, 10, 1]. The main drawback 
for the first approach is that the surface has to be 
recalculated every time it is edited and the time taken to 
compute the coefficients for the variational implicit 
surfaces increases with the number of points. Also, 
small details are lost when blending the object parts 
because preserving them would require too many 
constraints and too much computation. Therefore we 
prefer the second approach. Previous research in this 
field has raised some difficulties. One of these is the 
necessity of an optimization step to adjust the implicit 
surface to the drawn contour. This leads to a better 
contour approximation in terms of error but the surface 
oscillates [10, 1]. Moreover it is time consuming and in 
the context of sketch based interface providing very 
accurate reconstruction is not necessary. Indeed, the 
user drawn contour is seldom noisy so we rather aim at 
getting a smooth shape with close appearance to the 
contour. Removing the optimization step saves time and 
reconstructs a smooth non-oscillating surface. Of course 
the contour approximation constraints have to remain 
satisfied. Another drawback of most of the previous 
approaches is that the shape thickness is automatically 
inferred so the result may differ from what the user 
wanted. For example if the user draws the shape of the 
palm of a hand, the fingers will be smoothly 
reconstructed as cylinders, whereas the palm will look 
like a sphere, far from the user’s expectation. In [10] the 
problem is addressed by asking the user to provide 
additional information about the cross section's profile. 



This increases the complexity of the interface and for 
this reason the technique might not be intuitive enough 
for non-expert users.  

Our contribution  
We propose a representation that allows for a great 

variety of topological shapes, a richer collection of 
sketch-based operations, an adaptive level of detail for 
sketch modeling with precise control of the result up to 
small details, while keeping a very simple and friendly 
user interface. For this purpose we reconstruct the 3D 
shape using convolution surfaces [3] with both polylines 
and polygons skeletons. The primitives are composed 
with CSG blending in a blending hierarchy.  

Section 2 presents our system from the user's point of 
view. Section 3 presents the application from the 
system's point of view, i.e. the algorithms and the 
techniques used. Section 4 shows and discusses some 
results and also draws the conclusions and perspectives 
of our work. 

2. From the user viewpoint 

The purpose of our system is to enlarge the 
possibilities offered by the paper-pencil 3D modeling 
metaphor, while keeping a simple and intuitive input 
interface. The modeling process iterates the following 
steps until modeling is complete:  

1. The user draws one or several strokes  
2. The strokes are interpreted to reconstruct a 3D 

object part  
3. The part is added to the current object (or 

subtracted if carving)  
As the user draws a stroke, its thickness and color 

intensity vary proportionally with the pressure on the 
digital pen, as to imitate the irregular density and 
thickness of the strokes produced by a real pen. Several 
strokes accumulated in the same pixel result in a darker 
color for that pixel. The other end of the pen is used as 
an eraser. As long as the stroke has not been 
reconstructed, the user is free to erase and modify it. 
This way the user's input is allowed to be noisy and 
irregular, as it is naturally on paper. To create a new 
shape, the user draws a contour on the graphic tablet 
using the digital pen. Once the contour has been 
completed the user presses the digital pen against the 
tablet. This produces the 3D reconstruction of the stroke 
(see Fig. 1 (a),(b)). To add part to an existing shape, the 
mechanism is the same as for creation. The first surface 
point hit by the user gives the depth of the shape to be 
constructed. When the stroke is complete, the user 
presses the stylus if he wishes to add the shape to the 
existing object, or the eraser (at the opposite pen's end) 
if he wishes to carve it into the object. The shape is 
reconstructed in such a manner that the projection of the 
shape on the screen fits the contour that has been drawn 
by the user (see Fig. 1 (c),(d),(e) and (f),(g),(h)). The 
user controls the thickness of the shape using the pen’s 

bend (see Fig. 1 (i),(j),(k)). Small details can be 
modeled by zooming to get closer to the object. The 
large object parts will smoothly blend with each other, 
while the small details (e.g. eyes, nose of a character) 
will have a sharper blending. The user can paint directly 
on the objects or in space next to them. In this way 
additional information or annotation can be added to the 
model. 

Figure 1: (a), (b) Creating a part. (c),(d),(e) 
Adding a part to an object. (f),(g),(h) Carving. 
(i),(j),(k) Thickness control (side view). 

3. From the system viewpoint 

A pressure threshold indicates that the drawing is 
finished. When the stylus pressure has reached this 
threshold, the strokes image is recovered as a 2D 
bitmap, then compressed and reduced in size using a 
pixel averaging technique. This also reduces the amount 
of computation for the skeleton. In order to perform the 
skeleton extraction we iteratively construct a connected 
pixels skeleton, which is then sampled in order to obtain 
a segments and triangles graph [13]. This will be used to 
define a convolution surface [3]. In order to obtain 
interactive modeling, we use the pseudo Cauchy [9] 
convolution kernel, which gives a closed form solution 
for the convolution integral for the primitives that we 
use (segments and triangles). See [13] for a full 
algorithm description. 

The addition and subtraction operations are defined 
using CSG, for which we have adapted the composition 
model shown in [2] and rewrote the union and 
difference operators in order to allow hierarchical exact 
composition. The level of detail of the skeleton remains 
constant in the image space, but it is automatically 
adapted to the level of detail of the 3D shape, given by 
the distance between the object and the camera. The 
level of detail determines the blending parameters, the 
skeleton weights and the size of the polygonization cell 
for the shape to be reconstructed. The polygonization 
for the reconstructed stroke is computed and displayed 
immediately, while a process in the background 
computes the final surface polygonization. The final 
mesh is displayed as soon as it is available. This allows 



maintaining interactive rates and rapid application 
response during the modeling process so that the user 
feels free to pursue his modeling activity.  

Figure 2: Objects modelled with our system. The 
user took 2 to 5 minutes overall modelling time and 3 
to 9 strokes for each object. 

5. Results and conclusions 

Convolution surfaces allow much better shape 
representation than standard skeleton based implicit 
surfaces, due to their possibility to represent flat 
surfaces, as well as a large topological variety. Fig. 2 
shows objects modeled with our system. The system 
provides a real simplicity for the non-expert user, for 
example three strokes only are necessary to create each 
one of the birds in Fig. 2 (with symmetry enabled for 
the wings and legs). The Fig. 2 also shows flat surfaces 
(table and chairs). The shapes have no oscillations and 
no bulges. The CSG composition is a generalized 
composition more flexible and accurate than the simple 
sum, allowing a better blending control, from smooth to 
sharp transitions. The small details of the objects are 
well preserved due to the parametrable CSG.  

For example, the sun's eyes and mouth are small 
details compared to the face but they are well preserved 
by the blending. The shape may have various topologies 
(ex. chairs, teapot) and can be carved (teapot, mugs). 
The applications of our system are educational, but also 

story boarding for films making (ex. cartoons, see Fig. 
2) where the scenarios writer is not necessary a 3D 
designer. The system could be extended to design the 
internal structure of organic shapes because the 
composition model is suitable for this.  

In the future we would also like to focus on 
accelerating the polygonization time for generating the 
final implicit surface and investigate adaptive 
polygonization. 
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SmoothSketch: 3D free-form shapes from complex sketches

Olga A. Karpenko∗
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Figure 1: The user draws the visible contours of a shape; our program infers the hidden contours, including hidden cusps, and then creates
a fairly smooth 3D shape matching those contours. The 3D shape can be viewed from any direction. A smoothed version of Penrose’s
polyhedral impossible triangle shows that the algorithm can handle objects with complex holes.

Abstract

We introduce SmoothSketch—a system for inferring plausible 3D
free-form shapes from visible-contour sketches. In our system, a
user’s sketch need not be a simple closed curve as in Igarashi’s
Teddy [1999], but may have cusps and T-junctions, i.e., endpoints
of hidden parts of the contour. We follow a process suggested by
Williams [1994] for inferring a smooth solid shape from its vis-
ible contours: completion of hidden contours, topological shape
reconstruction, and smoothly embedding the shape via relaxation.
Our main contribution is a practical method to go from a contour
drawing to a fairly smooth surface with that drawing as its visible
contour. In doing so, we make several technical contributions:

• extending Williams’ and Mumford’s work [Mumford 1994]
on figural completion of hidden contours containing T-
junctions to contours containing cusps as well,

• characterizing a class of visible-contour drawings for which
inflation can be proved possible,

• finding a topological embedding of the combinatorial surface
that Williams creates from the figural completion, and

• creating a fairly smooth solid shape by smoothing the topo-
logical embedding using a mass-spring system.

We handle many kinds of drawings (including objects with holes),
and the generated shapes are plausible interpretations of the
sketches. The method can be incorporated into any sketch-based
free-form modeling interface like Teddy.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Modeling Packages; I.2.10 [Artifi-
cial Intelligence]: Vision and Scene Understanding—Shape

∗e-mail: koa@cs.brown.edu
†e-mail: jfh@cs.brown.edu

1 Introduction

Our visual system, presented with a line-drawing, makes nearly-
instant inferences about the shape that the drawing represents.
Some aspects of this inference mechanism are surely based on ex-
pectation — when we see something that looks like an ear, it’s easy
to infer that the nearby protrusion must be a nose, for instance. But
other aspects depend on local cues — a contour that ends, or that
disappears behind another — and a gestalt view that helps us inte-
grate these local cues into a coherent whole [Hoffman 2000].

Dual to this recognition ability is our ability to learn to draw con-
tours of objects in a way that lets us communicate their shape to
others. While drawing well can be difficult, even children can draw
easily recognizable shapes. On the other hand, while drawing out-
lines or contours is relatively easy, we know few people who can
reliably draw the hidden contours of even simple shapes.

When we seek to create shapes with a computer, however, there are
few interfaces based directly on drawing; inferring a shape from
a complex contour-sketch has generally proved too difficult. The
value in doing so, from the sketching point of view, is that it allows
a user to draw what he or she is thinking of directly. Teddy’s in-
flation algorithm is a good step, but limited to simple closed curve
contours. Our work extends this substantially, although it is by no
means a final answer. Such a final answer may never be found,
though—it’s easy to draw contour sets that are so complicated that
different viewers make different inferences about them. The best
one can hope for is to create plausible shapes for a fairly large class
of contours on which users agree on the interpretation. That is what
our work does.

Our work, therefore, is not about a system like Teddy; it’s about a
component that can be used in a free-form-sketching interface like
Teddy. We believe that a sketching program should let the user and
the computer share the work, each doing what it does best. The
computer can infer a plausible shape from a moderately complex
contour like the ones shown in this paper. Then, to create more
complex objects (or to, say, modify the thickness of the inflated
models), a user would use various gestures like the ones available
in Teddy and other sketch-based systems. We believe we succeeded
in the first step, and thus provided a new starting-point for sketch-
based systems.

Our system takes a user’s contour-drawing of a smooth, compact,
oriented, embedded surface-without-boundary (which we’ll call a
good surface) and determines a 3D surface whose contours match
those that the user drew. Because this is an under-determined
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problem—is that circle a contour drawing of a pancake? a sphere? a
cigar viewed end-on?—we aim to generate surfaces that have gen-
erally low curvatures, to the degree allowed by the constraints of
the contours. The contours must be oriented, i.e., drawn so the sur-
face lies on the left. Thus to draw a torus, a user would draw a
counter-clockwise outer stroke and a clockwise inner stroke.

Williams’ thesis [1994] and subsequent work lay out a plan for find-
ing a surface fitting a given collection of visible contours1. The
steps involved are

1. Complete the drawing by inferring the hidden contours, and
provide a Huffman-labeling for it [Huffman 1971].

2. Convert the completed-drawing to an abstract topological sur-
face, and map this surface to ℜ2 so that the “folds” of the
mapping match the contours of the drawing.

3. Lift this mapping to a smooth embedding in ℜ3 whose projec-
tion is the mapping to ℜ2.

Having laid out this scheme, Williams then completes several sig-
nificant parts: he completes step 1 for “anterior surfaces” – roughly
the front-facing parts of scenes, which generically have no cusps,
and does step 2 for both these and for drawings of smooth sur-
faces. For our purposes, we need step 1 for good surfaces, and we
need step 3, which we do in two steps: first we lift to a topologi-
cal embedding in ℜ3, and then we smooth that. We cannot claim
to produce a smooth embedded manifold; with our current tuning
constants, our results are usually immersed (i.e., have self inter-
sections) rather than embedded. Furthermore, the contours of the
surfaces we construct cannot in general project exactly to the input
drawing, because, for example, the projection of the contour near a
cusp always has infinite curvature at the cusp [Koenderink 1990],
while our user’s input may not satisfy that constraint. We produce a
fairly smooth mapping of the manifold into 3-space, whose visible-
contour projection nearly matches the user’s drawing.

In carrying out step 2, Williams (a) observes that the projection
of the complete contours of a generic view of a good surface onto
an image plane gives a knot-drawing-with-cusps which can be la-
beled by Huffman’s labeling scheme for smooth surfaces (see fig-
ure 2) [Huffman 1971], and (b) gives a method (the paneling con-
struction) [Griffiths 1981] to build an abstract manifold M that can
be embedded so that its projection has contours matching the knot-
drawing. (He does not actually construct an embedding e : M →ℜ3,
but instead describes a map f : M → ℜ2 with the property that if
such an embedding e exists, and if P is projection onto the drawing
plane, then f = P◦ e.)

To carry out step 1 for good surfaces, we must establish which
drawings of visible contours can be extended to complete contour
drawings; not all can, as figure 3 shows. We partially solve this
problem by exhibiting a large class of drawings that admit such ex-
tensions; the general problem of characterizing extendable visible-
contour drawings remains open, however.

For the anterior-surface case, Williams and Jacobs [1997] (and
Mumford [1994]) describe an approach to completing the hidden
contours, which generically join tee-points in the drawing (see fig-
ure 4). To join a pair of tees, they consider all C1 random walks
(i.e., random walks in which the tangent direction θ changes by an
amount X at each point, where X is a Gaussian random variable)
starting at the first tee, headed in the right direction, and ending at
the second, and assign to each a probability based on the product

of the probabilities of each angle-change and e−λ , where λ is the

1The reader interested in implementing the ideas of this paper will need

first to become acquainted with Williams’ work.

Figure 2: Huffman’s labeling scheme for contours of generic
smooth projections. Labels indicate the number of surfaces in front
of the contour (visible contours have label zero); the surface on
which the contour lies is to the left when you traverse it in the di-
rection shown by the arrow. Any cusped knot diagram—i.e., col-
lection of circles in the plane, possibly intersecting themselves and
each other, and smoothly immersed except at finitely many cusp
points, which are distinct from the crossing points—that can be so
labeled corresponds to the projection of a smooth surface in 3-space
(mostly proved by Williams), and all generic projections of smooth
surfaces have this property (proved by Huffman). The first picture
shows the surfaces corresponding to the first case of Huffman’s la-
beling (the second picture). Figure 6 (left) corresponds to the last
case.

Figure 3: None of these drawings can be extended by invisible con-
tours to be the contour set of any good manifold projection. They
exhibit two problems: in the first, a cusp appears in the outer region
of the plane surrounding the figure. In the second, the outermost
path around the drawing is clockwise. Although the third has nei-
ther of these problems, it is still not extendable.

length of the curve. They posit that the maximum-likelihood ran-
dom walk is a good candidate for the completion; when multiple
pairs of tees might be joined, they compute which pairings have
largest likelihoods and choose those.

Figure 4: How can we join the two tee-points on the left? With
an optimal completion, as shown in the middle. Optimality is de-
termined by choosing, among all C1 random walks from p1 to p2,
the most likely one, under a simple probabilistic model. Mumford
shows such curves are elastica, which had been studied by Euler.

We extend this approach, in Section 4.2, to the cases where a T-
point must be joined to a cusp, or two cusps must be joined. To
determine which visible endpoints (tees or cusps) should be joined
to which, we use a greedy search similar to Nitzberg et al. [1993].

To carry out step 3, we take the results of Williams’ paneling con-
struction — an abstract manifold and a continuous mapping f of
it to ℜ2 and “lift” it to a mapping e into ℜ3 whose projection is
f . We construct e a dimension at a time, first placing the vertices
of the paneling construction, then embedding the edges, and finally
each panel. This algorithm is described in section 5.1. The result is
a topological embedding (i.e., a 1-1 continuous map from the sur-
face into ℜ3). Finally, in section 6 we talk about smoothing out
the creases in this topological embedding by an ad-hoc mass-spring
system to produce the desired fairly smooth mesh in 3-space.
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2 Related Work

Shape from drawings. The problem of inferring 3D shape from
2D drawings has been studied in a great many forms; if one extends
it to include determining drawings from images as a first step, it oc-
cupies much of the computer vision literature [Witkin 1980]. We’ll
only describe the work most closely related to this paper.

Much early shape-from-drawing work applied to blueprint-like
drawings of machined surfaces. The important features of such
shapes are sharp bends, like the edges of a cube – and their tri-
hedral intersections. Lipson and Shpitalni [1997] introduced a sys-
tem in which a user sketches both visible and hidden contours and
boundaries of a rectilinear CAD-like geometric object, and the sys-
tem infers a shape. Their approach is based on correlations among
arrangements of lines in the drawing and lines in space.

Pentland and Kuo [1989] presented a system that infers simple 3D
curves and surface patches from 2D strokes by minimizing the en-
ergy of the corresponding snakes.

A classic paper in this area is by Huffman [1971], who devel-
oped two labeling schemes—one for objects made from planar
surfaces, one for smooth objects—and proved that their complete
contour drawings must have the corresponding sorts of labeling.
Williams [1994] [1997] did the defining work in inverting the
smooth-surface labeling scheme, as described in the introduction.

Contour completion. Of course, Huffman labelings are for com-
plete contour projections — the projections of both the visible and
invisible parts of an object’s contours. Given a drawing of the vis-
ible parts of a contour, we must infer where the invisible parts lie.
Kanizsa’s work [1979] on contour completion (and its relationship
to the mechanisms of the human visual system) forms the basis for
much of the later work in the area.

A solution proposed first by Grenander [1981] was to use a stochas-
tic process to model the space of all possible edges. Mumford
proves that elastica that arise in the completion problem described
in the introduction could be modeled by a white noise stochastic
process and gives needed formulas. Williams [1997] approximates
the solution by considering a sampling of the space of all random
walks (with varying ∆θ — the direction of the walk) starting from
the first point with the first direction and coming to the second point
with the second direction, and taking the random walk with the
highest probability as the best path connecting two edges.

Although contour completion is a well-studied research topic, many
problems are still open; in section 4.2 we propose our solution, in-
spired by the work of Williams and Mumford, to the problem of
finding a hidden cusp for a cusp-contour completion case.

Sketching interfaces. Several gestural interfaces for sketching
3D shapes have been developed for different classes of models.
For rectilinear objects, the Sketch system described by Zeleznik
et al. [1996] lets a user create and edit models through gestural
interface, where geometric aspects of gestures determine numeri-
cal parameters of the objects; a cuboid is created by drawing three
lines meeting at a point; the lengths of the lines and position of the
point determine the geometry of the cuboid. These ideas were ex-
tended by several research groups [Shesh and Chen 2004] [Pereira
et al. 2004], and appear in the SketchUp [SketchUp ] architectural
design software.

For free-form objects, Igarashi’s Teddy [1999] was the first inter-
face for free-form modeling via sketching. In it, a user inputs a
simple closed curve and the system creates a shape matching this
contour. Then the user can add details by editing the mesh with
operations like extrusion, cutting and bending, all done gesturally.

The Smooth Teddy [Igarashi and Hughes 2003] system extended
this by adding algorithms for beautification and mesh refinement,
as well as organizing the shapes into a hierarchy.

Karpenko et al. [2002] described a system for creating shapes
from free-form sketches; the primitive objects were variational im-
plicit surfaces, which facilitated operations like surface blending.
ShapeShop [Schmidt et al. 2005] uses hierarchical implicit vol-
ume models to let a user interactively edit complex models via a
sketching interface. Alexe et al. [2005] extract the skeleton from
the sketch and then construct a convolution surface. None of these
systems handle complex strokes containing tees and cusps.

Nealen et al. [2005] presented a sketch-based interface for laplacian
mesh editing where a user draws reference and target curves on
the mesh to specify the mesh deformation. A similar interface was
developed by Kho and Garland [2005] for posing 3D characters, in
particular, bodies and limbs.

Finally, Karpenko and Hughes [2005] demonstrated a method for
inferring certain free-form shapes from sketches by detecting ’tem-
plates’ in the sketches and building a part of the 3D surface from a
standard recipe for each template.

Pseudo-3D models. Tolba et al. [2001] describe a system that lets
a user draw a scene with 2D strokes and then view it from several
new locations as if a 3D scene had been created. This is done by
projecting the 2D strokes on a sphere centered at the eye point and
then viewing them in perspective. Bourguignon et al. [2001], de-
scribe a system that takes a set of 3D strokes representing contours
and creates a small piece of surface near each stroke whose contour
is the given stroke; contours of this surface, seen from nearby view-
points, give the appearance of a full-fledged 3D model, although in
distant viewpoints the illusion is lost. Johnston [2002] computes
lighting on 2D drawings without reconstructing 3D geometry by
estimating surface normals from the drawing.

Shape from contours for special classes, and other shape-from
methods. Ulupinar et al. [1995] solve the “shape-from-contour”
problem for images by considering only a special class of symmet-
rical 3D shapes: straight homogeneous- and constant cross section
generalized cylinders. Apart from inferring the shape from the con-
tour, researchers have long tried to infer shape from texture, shad-
ing, and other cues. An overview of some of these methods can be
found in the paper by Ulupinar [1993].

3 Notation and problem formulation

Much of the material that follows relies on ideas from differential
geometry and combinatorial and differential topology. We refer the
reader to the books of Guillemin and Pollack [1974] and Koen-
derink [1990] for clear expositions of the necessary background.

Suppose that S is a smooth, closed, compact, orientable surface-
without-boundary (i.e., a good surface) embedded in the z > 0 half-
space of ℜ3. The orthogonal projection of S onto the z = 0 plane
will have a compact image. Following Williams and Mumford, we
will assume that the embedding and this projection are generic, i.e.,
that no probability-zero events occur, e.g., no projector meets three
contours, no cusp projects to a point on another contour, etc. If the
projector through the point s ∈ S lies in the tangent plane at s, then
s is called a contour point; if the projector first meets S at s, then
s is a visible contour point (see figure 5). For a generic projection,
the set of all contour points forms a compact 1-manifold-without-
boundary C in S, i.e., a collection of disjoint topological circles in S.
The set of visible contour points form a compact 1-manifold-with-
boundary, V in S, i.e., a collection of disjoint topological circles and
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line-segments. The projection of C to the z = 0 plane is the contour
drawing of S; the projection of V to the z = 0 plane is the visible
contour drawing of S.

Figure 5: (Adapted from Williams’ [1997]) The contour, in blue, of
a good surface embedded generically in 3-space projects to a con-
tour drawing, in green; the visible contour (drawn bold) projects to
the visible-contour drawing. A point where the projector is tangent
to the contour projects to a cusp in the contour drawing. The re-
striction of the projection to just the contour is 1-1 except at finitely
many points, where two contours cross in the drawing; these are
called T-points.

The projection from the contour to the contour drawing is an em-
bedding at most points; the exceptions are crossings, where two
contours meet, and cusps. A cusp is a point s ∈ S where the projec-
tor through s is tangent to C at s. The projection of a cusp appears
as a point where the contour drawing “reverses direction” (see fig-
ure 6, left). When an arc of the visible contour drawing reaches a
crossing, it appears as a T-point: one part of the contour becomes
invisible there.

Figure 6: (Left) The generic projection of a contour at a cusp re-
verses direction at the cusp. (Right) A drawing with the tee-points
and cusps marked; hidden contours and hidden cusps that must be
inferred are shown in dotted lines.

For a generic smooth surface and viewpoint, tees and cusps of the
contour will be isolated, as will curvature zeroes of the contour;
this guarantees a unique osculating plane at a cusp, which means
the projected contour must reverse direction rather than emanating
from the cusp in any other direction (see figure 6, left).

The “bean” example (figure 5) is something of an archetype for the
method described in this paper, in the sense that it’s the simplest
shape that has a cusp; the way that this single cusp is processed
is the key to processing more general drawings, hence we use the
bean as an example throughout.

In Figure 6 (right) we show in solid lines a typical input drawing;
in dotted lines are the projections of invisible contours. Certain
hidden contour points are also cusp-points; the visible cusps are
marked with a “C” while the hidden cusps are marked with an “H”.

Note that the user input is the part of the contour drawn in solid
lines. Everything marked by a dashed line is a part of a hidden
contour and needs to be inferred by our program.

With this terminology, our goal is to take a user-provided directed
visible-contour drawing of a good surface as above and to deter-
mine a surface S whose visible contours match the given drawing.
Note that we do not seek to reconstruct exactly the surface that the
user was drawing; the map from surfaces to drawings is many-to-
one, hence non-invertible. Note too that we require that the drawing
arise from some surface, so that the problem has at least one solu-
tion; a drawing consisting of a single line segment, for instance,
cannot be the projection of the visible contours of any surface.

Our system currently produces a surface consistent with the user’s
drawing, and one which we generally find to be plausible. Eventu-
ally, we would like to solve a more general problem: we want not
only to produce one of the reasonable-looking shapes, we would
like to return the most natural shape. Of course, “most natural”
can be very subjective and depend on a user’s preferences, but ex-
perience shows that people generally agree about what a drawing
conveys. We could take cartoon illustrations (see figure 7) as an ex-
ample. These pictures vary from simple to very sophisticated, but
their expressiveness is such that people interpret them immediately.
Such a degree of “naturalness” (or indeed, any way of measuring
it) appears to be a very long-range goal.

Figure 7: This cartoon-like illustration shows us how even the sim-
plest drawings can have complex contours.

4 Figural Completion for Smooth Surfaces

Given the visible contour drawing, in the z = 0 plane, for a good
surface in ℜ3, we describe an approach to completing the drawing,
i.e., adding hidden contours so that the resulting drawing can be
Huffman-labeled. The approach works in a large number of cases,
although not all. We begin by showing a construction that provably
works for a large class of drawings, but often produces “unlikely”
completions according to the Williams-Mumford measure of like-
lihood; we then describe our actual implementation, which approx-
imates the construction while preferring ‘more likely’ completions
that occasionally lead to problems.
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4.1 Completable drawings

Although the class of visible-contour drawings that can be com-
pleted has not been characterized, to the best of our knowledge, we
can demonstrate that a large class can be completed. Once again
we consider the ‘bean’ as our example (see figure 8). Taking a di-
rected visible contour as input, we consider the regions into which
it divides the plane; traversing the boundaries of these regions, and
pushing slightly into each region, gives a collection of disjoint em-
bedded curves (which we call red curves), each of which may pass
by some number of T-points or cusps. We give the key steps in an
argument that if (a) the curve for the outermost region passes no
such points, and has turning number one (i.e., can be smoothly de-
formed to a counter-clockwise circle) and (b) all other curves pass
an equal number of “starting” and “ending” points, then there is a
Huffman-label-able completion of the visible contour. The formal
proof involves careful application of the tubular neighborhood the-
orem, the isotopy extension theorem, and other standard techniques
from topology; we present only the essential insights here.

Figure 8: The visible contours of the bean divide the plane into two
regions; traversing a path slightly displaced from the boundaries of
these regions gives the two red curves shown. The inner one passes
the cusp and then the T-point (we don’t count where it makes a turn
at the T-point as “passing” it); the passages are marked with dots.
The outer one passes no endpoints at all.

The first step is to assign depth 0 to all visible edges. Now consider
one of the red curves that meets at least two endpoints. Starting
from any point of the red curve, we traverse it, noting whether the
points we encounter are “starting points” (S) or “ending points”
(E) of the visible contour arcs. The resulting circular sequence of
Ss and Es contains at least one of each, by hypothesis; there must
therefore be an adjacent pair of points, one a starting point and one
an ending point. We’ll show how to remove these from the se-
quence by completing the two contours; induction then shows that
all contours can be completed and we are done.

The adjacent S and E points can be either cusps or Ts. Figure 9
shows how these can be joined. In the cusp-tee case, we can add a
hidden contour and a hidden cusp, all within the region between the
red curve and the contour between the two points being processed;
after this addition, the red arc can be redrawn; the points S and E are
no longer arc endpoints, and thus the start-end sequence for the arc
is now two characters shorter. Similarly, in the T-T case, we can add
a short completion arc. The only remaining case is the cusp-cusp
case. Depending on whether the cusps appear in S-E order or E-S
order, one of two standard solutions shown provides the necessary
completion.

We note that there are drawings that do not satisfy the criterion
above, but which nonetheless admit completions, so this class, al-
though large, is not exhaustive.

4.2 Practical contour completion

The completions described in the previous section are formally cor-
rect, but since many of them have sharp turns in the hidden con-
tours, they are, from the Williams-Mumford random-walk perspec-

Figure 9: Adjacent cusp-T pairs can be joined with two arcs and a
hidden cusp; adjacent T-T pairs can be joined with a single arc, as
can adjacent cusp-cusp pairs; the side on which the arc lies, in this
case, depends on the order in which the two cusps were encoun-
tered.

tive, unlikely. As a practical matter, therefore, we take a differ-
ent approach in our program: we consider all visible-contour end-
points, and estimate the likelihood of a hidden contour joining each
possible pair. Following Nitzberg et al. [1993], we pair up points
using their greedy algorithm, testing multiple configurations for (a)
probability, and (b) consistency (can they be Huffman-labeled?); if
the most-likely configuration is inconsistent, we move to the next-
most-likely, and so on.

Pairwise completions. First, for each pair of endpoints of the vis-
ible contour we compute an initial estimate of the probability that
they are connected by a hidden contour. Each endpoint has a loca-
tion and associated direction for the completion curve (for T-points,
the direction is given by the tangent ray of the visible contour; for
cusps it is the opposite). To compute the likelihood of joining two
tees or two cusps, we compute an energy function for the pairing,
inversely proportional to the likelihood. The energy function of the
pairing is a sum of two energy functions E = Ecurve + Eend points,
where Ecurve is the energy of the curve that would connect them
were they to be matched and Eend points is the energy corresponding
to the heuristic defined by the endpoint tangent directions. We now
describe each in detail. First, we approximate the elastica curve
with a Bézier spline connecting the endpoints given their tangent
vectors. The Bézier curve is defined by the two endpoints and the
points displaced from the endpoints along the tangent vectors. The
distance by which the endpoints are displaced along the tangents is
1
3 of the distance between the endpoints. The Bézier curve is then
uniformly sampled and the energy function of the resulting polyline
is computed as follows (see figure 10):

Ecurve = e∑i li ·∑
i

∆θi

where li is the length of the i-th segment of the polyline, and ∆θi

is the absolute value of the angle change between two consecutive
segments of the polyline. Eend points corresponds to another heuris-
tic similar to [Nitzberg et al. 1993], where we use the tangents at
the endpoints to estimate the likelihood of the matches. Intuitively,
if the tangent directions at the two endpoints are very similar, it is
likely for them to be paired even if the length of the curve con-
necting them would be long (think of a fat snake whose tail passes
behind its body). Similarly, if the tangents at the endpoints are very
different, it should be pretty unlikely for them to be paired up. Cur-
rently, Eend points is a constant 1.0 if the angle between the tangents
at the endpoints is between ε1 = 0.3 and ε2 = 2.5, 0 if the angle

between them is ≤ ε1 and proportional to eangle if the angle is ≥ ε2.
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Figure 10: The energy of the polyline approximating the Bézier
spline is computed as a product of the sum of angle changes be-
tween the consecutive segments and the exponent of the sum of the
segment lengths.

Figure 11: When we have a T-point and a cusp to match it to,
we seek the location of a hidden cusp such that the two hidden
contour parts joining our points to the hidden cusp have the highest
probability.

When we want to join a T and a cusp (see figure 11), we ask the
question “for all possible locations of a hidden cusp, and all pos-
sible tangent directions there, what are the probabilities of a C1

random walk joining the T to this cusp and of another joining the
visible cusp to the hidden cusp?” We treat the product of these
probabilities as the probability of this point-and-direction being the
hidden cusp. We posit that the ideal location of the hidden cusp is
the one with the highest probability. Unfortunately, computing this
probability directly by generating many random walks, etc., is im-
practical and slow. We therefore did this once, offline, and stored
the precomputed probabilities in a table. That is to say, we placed
one point at the origin, with a tangent ray along the positive x-axis;
we generated many (ca. 108) C1 random walks from there and
recorded (in a discretized form) where each ended, and in which
direction it was going. We did the same for a second point, situated
on a unit circle, and with a given initial direction; we then found the
point and direction that was most likely to be an endpoint of both
sets of random walks. This was repeated for multiple points on the
unit circle, and multiple initial directions, and the results stored in
a table. This table, then, represents the function (P,φ) = h(Q,θ) =
the location and direction of the hidden cusp when one point is at
the origin and has horizontal tangent, and the other is at Q and has
tangent direction θ . Given an actual tee and cusp, we can translate
one to the origin and rotate so that its tangent is in the positive-x di-
rection; we then use the other point’s location and direction to look
up an answer in the table. (Note that this assumes that the optimal
answer is scale-invariant, in that the second point may not be at a
unit distance from the first, and we must scale this distance to one
in order to use our table.) We connect the hidden cusp to the tee
point and the visible cusp with Bezier curves, and compute Ecurve

for their union as described above.

Greedy search for the best configuration. After a likelihood for
each pair of endpoints is computed, we need to match up pairs to
find the best total configuration (a configuration consists of end-
point pairs, where each endpoint appears in only one pair). For
instance, if we have 4 endpoints numbered 1 to 4, the possible con-
figurations are: {(1,2),(3,4)}, {(1,3),(2,4)} and {(1,4),(2,3)}.
The likelihood of a configuration is defined as the product of like-
lihoods of its pairs. It is not practical to compute the likelihoods
of all possible configurations as the number of them grows expo-
nentially in the number of tees and cusps. Instead, we do a greedy
search similar to [Nitzberg et al. 1993]; starting with several best
pairs, for each of them we choose the next best pairs from the set
of valid configurations, and so on; we keep track of the 10 best
configurations at any time.

4.2.1 Limitations of the figural completion algorithm

The figural completion approach that we presented has a number of
limitations.

The location of the hidden cusp provided by the method above may
be unsatisfactory. Indeed, in the bean-like case shown in figure 12,
the hidden cusp is estimated to lie at a point that is not, in fact, hid-
den. Figure 12 (right) shows another example where the locations
of hidden cusps are estimated incorrectly because of the failed as-
sumption that the precomputed positions of hidden cusps are scale-
invariant.

Figure 12: Problem cases: our method can produce a contour com-
pletion which places the hidden cusps in impossible locations. This
happens because our method only considers local probabilities, and
not the shape of the remainder of the visible contour.

Consider a dog’s body with one leg on the left hand side, seen from
the right hand side (see figure 13). This is a case that our contour-
completion algorithm cannot handle. The “completion” of the ob-
scured contours consists of two hidden cusps connected by a U-
shaped hidden contour, and two “straight” segments connecting the
hidden cusps to two t-points. In the two-hidden-cusp completion,
the location of the two cusps is ambiguous. The algorithm for find-
ing a hidden cusp for a t-point/visible-cusp pair will not work for
this case, because there are no visible cusps.

(b)  (a) (c) (d)

Figure 13: (a) The back-leg drawing case; (b),(c), and (d) show
possible completions; our system would produce completion (d),
but would fail at later stages (although if we allowed multiple-
component surfaces, then (d) could be created).

The figural completion for this case could equally well consist of
just an arc joining the two t-points — there’s no a priori reason
for the system to assume that the shape being drawn has only one
connected component. Without the context (knowing that this is
a leg), we do not know of any principled algorithm to guess the
locations of the hidden cusps.

The back legs issue is something that can be handled pretty easily
by adding gestures to our system (where, say, a user could change
the view and draw a stroke corresponding to the back leg), or, by
incorporating our system as an inflation component into one of the
existing free-form sketch-based interfaces like Teddy. Such a sys-
tem would also ideally include the ability to sketch or edit the hid-
den contours (i.e., provide user-guidance to the optimization algo-
rithm).

Our contour-completion algorithm, based on the table-lookup,
should probably be improved. We would like to find a good approx-
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imation to the data in the table so that a lookup (and the computa-
tion and storage of the table) is unnecessary; if such a function were
based on a deep understanding, the unprincipled “scale-invariance”
assumption might also be eliminated.

Given that figural completion is an expensive search problem, it
becomes slower for a large number of tee/cusps (say, more than 15)
and is more likely to make incorrect inferences as the drawing gets
more and more complicated (we find only an approximate solution
to the optimization problem to make it tractable; as a result, the
approximate minimum is not always the global minimum).

We have shown that a large class of visible contour drawings admit
completions; it is known that others do not. But we do not know a
complete characterization of which drawings admit completions.

5 From drawing to topological embedding

At this point we have a completed contour drawing, with a
Huffman-labeling. This drawing consists of directed arcs (which
we call edges) between vertices corresponding to T-points and
cusps. The drawing partitions the plane into regions; Williams’
paneling construction tells how to take a disjoint union of multiple
copies of these regions and identify edges in pairs to produce an
abstract manifold. Williams’ description misses one subtlety: the
regions he is identifying must be closed sets so that they contain
their boundary points, for it is boundary points that are identified in
pairs. For regions like the large region of the bean, the “crossing
point” at the top must be counted twice – once as a point on the
left half of the contour, and once as a point of the right half, or the
object resulting from the identification of edges will not in fact be
a manifold. This can be addressed by examining the boundary of
each region for self-intersections and, if any are present, subdivid-
ing the region into two smaller regions; the details are finicky but
not difficult. We’ll simply treat that crossing point as two ever-so-
slightly-separated points for the purpose of this explanation.

In our implementation, each copy of the region at this point is a 2D
mesh created by triangulating the boundary of the region. We use
Triangle [Shewchuk 1996] which performs the constrained Delau-
nay triangulation algorithm on the given boundaries of the regions.

We consider (see figures 14, 15) the disjoint copies of a region R
as being of the form Ri = R×{i}, where the index i never appears
more than once in all copies of all regions. A typical identification
in Williams’ scheme is then that the point (r, i) is identified with
(r, j), where r is a point on the boundary of region R, and (r, i)
and (r, j) lie in Ri and R j respectively; another might be that (r, i)
is identified with (s, j), where R and S are adjacent regions in the
plane both containing the point r = s on their boundaries, (r, i) ∈ Ri

and (s, j)∈ S j. The disjoint union of all the copies of all the regions

will be called U ; there’s a natural map π : U → ℜ2 : (r, i) 7→ r in
which the multiple copies of any point r are all mapped to r.

For a point P in the plane, the set π−1(P) is a set of points of the
form (P, i); we call this the “stack over P.” Similarly, we can con-
sider the stack of edges over an edge in the plane, or the stack of
panels over a panel in the plane. If an edge e in the plane goes from
P to Q, we write ∂e = (P,Q) to denote that the boundary of edge e
consists of the points P and Q, in that order. If ei is an edge in the
stack over e, then ∂ei = (Pi,Qi) as well.

Williams identifies certain panel edges in pairs (see figure 15), that
is, for certain i and j, he declares that ei is to be identified with
e j , which means that the point (x, i) ∈ ei, is identified with the
point (x, j) ∈ e j. This identification induces an identification on the
stacks above vertices: if ei is identified with e j, and ∂e = (P,Q), we

Figure 14: Schematic view of the disjoint union of panels that are
glued to form the topological manifold homeomorphic to the bean.
Each copy of each panel lies in a different layer; the union of all
these copies is called U . The map π is “projection back to ℜ2

along z.” The collection of all points that project to A (the red dots)
is called the “stack above A”. The magenta edges are the stack
above the edge e. Each panel is indexed by its height in z, so all
panels have different indices.

declare Pi ∼ Pj , and Qi ∼ Q j. The transitive closure of the relation
∼ partitions stacks into equivalence classes that we call clusters;
each cluster in each stack corresponds to a vertex in Williams’ sur-
face, which we’ll eventually embed.

Ordering the clusters. Williams’ construction gives a depth order
to the panels in each panel-stack; this order is generally unrelated
to the indices above. This order induces an order on the clusters as
follows: if Pi and Pj are in two clusters, and R is a region containing
P = π(Pi) = π(Pj) consider all the faces in the stack over R that
are adjacent to vertices in the first cluster, and all those adjacent to
vertices in the second cluster. By Williams’ construction, faces in
the first group will either be all in front of or all behind the faces in
the second group; we say that the first cluster is in front of or behind
the second group accordingly. Again by construction, this order is
independent of the adjacent region R that we choose.

Figure 15: The panels, re-ordered for visibility; edges with the
same colors are identified. This identifies clusters of vertices in
each stack; vertices with the same color form a cluster. Note that
the near vertex in the two large panels has been split into two copies.

Extra vertices. One important issue remains: if two edges e and e′

in the same edge-stack have the same clusters as their endpoints but
are not identified in the topological manifold, these distinct edges
would be assigned the same depth in the constructed surface, which
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would result in a non-embedding. Figure 16 shows two such edges
in the lower portion of the leg case. In such cases, we add a new
vertex at the midpoint of each of the edges e and e′ of the contour
(and to any other edges that are identified with these). The stacks
and the clusters within these stacks are then created for these newly-
inserted points in the same way we described above.

Figure 16: (a) A contour-completed drawing of a leg attached to a
body, with panels colored. (b) The two panels for the bottom of the
leg, colored to show edge identifications and vertex clusters. Note
that the top edges e and e′ share endpoints but are not identified.
(c) We add mid-edge vertices, sort, and cluster them as before.

5.1 Constructing a topological embedding

We now present a novel algorithm that constructs a topological em-
bedding from Williams’ abstract manifold.

Embedding vertices To each cluster of the vertex stack over a ver-
tex P, we associate a vertex whose xy-coordinates are those of P,
and whose z coordinate is yet to be determined (we call these clus-
ter vertices). We determine the z-placements using a mass-spring
system. Suppose that the vertices corresponding to the clusters of
one stack are Xα , where α ranges over the clusters. If cluster α is
behind cluster β , we want the z-coordinate, zα of Xα to be less than
that of Xβ . For each such order-relation between two of the Xs, we
attach a spring whose rest-length z0 is one, and for which the spring
force follows the rule

F(d) =

{

0 d ≥ 1,
Ce1−d d < 1

which ensures that if the z-order is inverted, there’s a substantial
force pushing back towards the proper ordering.

This ordering and set of z-values could also be found by simply
sorting the vertices; we use the mass-spring system as a way to
relate the z-depths for vertices in separate stacks. In particular, if
P and Q are distinct vertices joined by an edge e, then each cluster
over P is joined to one or more clusters over Q by edges in the
stack over e. For each such connection, we add a spring with rest-
length zero between the corresponding cluster-vertices; we use a
sufficiently small spring constant that the intra-stack ordering is not
disturbed. Our goal is to make each edge want to be somewhat
parallel to the z = 0 plane, rather than having vertices associated
with one stack be far in front of all others, for instance.

The mass-spring system acts on the points, which are constrained
to move only in z. Clearly if the spring constant for the inter-stack
springs is small enough, each stack will be ordered correctly. In our
implementation, we use the constant 1.3, which seems to perform
well on examples like the ones shown in this paper and the asso-
ciated video. The points of the drawings in our system lie in the
bounding box of −1.0 to 1.0 in each direction.

Embedding edges Having embedded the cluster vertices (i.e., the
vertices of the manifold that Williams constructs), we can extend
the embedding to edges by linearly interpolating depth along each
edge. The ordering of edges in Williams’ construction is generally

sufficient to show that if ei and e j are distinct edges of the manifold
corresponding to contour edge e, then they do not intersect except,
perhaps, at endpoints which they share. In the event that ei and e j

share both their endpoints, linear interpolation would assign them
the same depths at all points, and our mapping would not be an em-
bedding. Fortunately, the “extra vertices” step above inserts points
exactly when necessary to prevent this; thus we have an embedding
of both the vertices and the edges of Williams’ manifold.

Embedding faces We extend the embedding over the panel interi-
ors using Poisson’s formula to find a harmonic function on the panel
whose values on the boundary are the given depth values that we’ve
already assigned to the edges of the panel. Each interior point is
assigned a depth that is a weighted average of the depths of points
on the boundary edges. To prove that two panel interiors in the
same stack never intersect, suppose that P is a point of some panel
R, and that X and Y are points in the panel-stack over R, and that
π(X) = π(Y ) = P. Suppose that the panel to which X belongs, Ri, is
in front of the panel to which Y belongs, R j, so that the z-value for
X should be larger than the z-value for Y . Then points on the edges
of Ri are in front of (or equal to) the corresponding points on the
edges of R j. The z-coordinates of corresponding points cannot all
be equal unless the boundaries of Ri and R j are identical, in which
case the union of Ri and R j is a spherical connected component
of the manifold, and is handled as a special case. In the remain-
ing cases, since the z-values for Ri are greater than or equal to the
corresponding values for R j, and the z value for X is a weighted
sum of these values with all nonzero weights, and the z-values for
Y is the corresponding weighted sum of the other z-values, with the
same weights, we find that the z value for X is strictly greater than
that for Y . Thus the interiors of faces do not intersect. We have thus
constructed a continuous 1-1 map from Williams’ abstract manifold
into ℜ3, i.e., a topological embedding.

6 Smoothing the embedding

Now that mesh vertices corresponding to each panel have been as-
signed depths, we “stitch” the meshes of individual panels into a
single mesh. We start with the first panel, and stitch panels to it
one at a time. If two panels are identified along an edge e, we al-
ter the vertex indices on second to match those of the first. The
edge correspondences for the stitched panel (excluding the edge we
stitched along) come from the correspondence information of the
two component panels. Although the resulting stitched mesh has
the proper “contour projection” (for an appropriately modified def-
inition of “contour”), its shape is generally unsatisfactory, as can
be seen in the accompanying video. We therefore perform several
optimization steps. During these steps, we constrain the vertices
lying on the visible silhouette to remain on the silhouette so that the
contours will match the drawing. That is, these vertices can only
move in z, while others may move in x,y, and z.

First, we remesh the model using the algorithm proposed in
[Kobbelt et al. 2000] in order to create more regular triangles, as
the behavior of the mass-spring system is sensitive to the quality
of the triangulation. Then, ten iterations of Taubin’s λ/µ smooth-
ing [1995] are applied to the mesh.

At this point, the mesh is smoother, but rather flat and sharp along
the edges (because the silhouette constraints have not been incor-
porated smoothly). The next goal is to “inflate” the model, making
it more rounded. To achieve this, we construct a mass-spring sys-
tem on the initial mesh, with masses at the vertices and with two
types of springs: length springs and what we call “pressure force”
springs. The length springs try to keep the length of each edge as
close to zero as possible, while the “pressure springs” simply push
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each triangle outward along its normal with a force proportional
to the area of the triangle. We relax this mass-spring system and
although the convergence in general is not guaranteed, in practice
it converges quite fast. A model like the ones shown in the paper
inflates in several seconds on an AMD Athlon 64 3000+ processor.

Our mass-spring approach has several drawbacks; some of them
common to all mass-spring systems, others are particular to our
choice of springs. First, most mass-spring systems approximate the
physics of deformable models very crudely. Further, in our case,
even the underlying “physical” model is quite ad hoc. We intu-
itively think of the current model as inflating the initial flat shape
as a balloon, but with the restriction on the movement of silhouette
points and disregard for surface curvature, it is a very weak analogy.

Secondly, our mass-spring system has several tuning constants that
have to be chosen so that they work for most of the examples user
draws. Thirdly, there is currently no mechanism in the system to
prevent self-penetrations of the surfaces. We would like to address
this issue in the future. Sometimes, though, we would like to allow
self-penetrations: think of a body-with-two-legs example; there, the
legs being slightly pushed inside the body is often more desirable
than having them stick out far away from the body. Finally, there
is a known problem of stiffness [Gibson and Mirtich 1997] with all
mass-spring systems that leads to their potential instability.

Having said all this, the mass-spring system we created seems to
work reasonably well on most examples. The results of the relax-
ation of the mass-spring system are satisfactory except at the areas
that were completely flat and skinny initially (like the tips of the
legs). Finally, we may choose to apply a few iterations of Taubin’s
anisotropic smoothing [Taubin 2001], which first filters the normals
using λ/µ algorithm, and then filters the vertices, integrating the
new normal field in the least squares sense. The final results are
shown in figure 17.

7 Discussion, Limitations, Conclusions

Our system creates 3D shapes for a wide class of contour drawings;
certain limitations prevent it from working universally. One is that
the contour-completion approach is local–the completed contour
shape depends on the geometry of the starting and ending points,
but ignores the remainder of the input shape; it will require a much
deeper understanding of contour completion to address this.

Williams’ topological manifold construction, followed by our lift-
ing, creates a mesh embedding with “folds” matching the drawn
contour. But mesh contours and smooth contours are different. In
particular, the curvature of a smooth contour at a cusp goes to infin-
ity, which a mesh-cusp simply projects to some non-zero angle in
the contour-drawing. The problem of exactly fitting the drawing is
therefore generally impossible, unless users respect the conditions
on curvature at cusps. We need to develop a means to characterize
when we have adequately approximated the user’s drawing.

Our inflation algorithm currently requires tuning constants; the
constants that produce the most satisfactory-looking results actu-
ally produce self-intersecting surfaces, especially in locations like
“armpits” (i.e., between a limb and a body). We would like to find
an algorithm that produces embeddings instead. A more princi-
pled approach would optimize something about expected shapes of
the inflated surface, conditioned on the known shapes of the visi-
ble contours, but lacking a prior distribution on all smooth surface
shapes, such an approach seems intractable. We anticipate that a
minimization of some fairness functional might hold promise.

We would also like to extend our work to include minor surface
discontinuities—things like ridges or creases on a surface, which
often are perceptually significant (and indeed, in cases like armpits,
creased shapes are what a user might want to create).

Finally, although we have developed our system to be agnostic
about shape, treating it purely geometrically, users are familiar with
many shapes. We imagine the possibility of a hybrid system, in
which the user’s sketch is both inflated and matched against a large
database of known forms, for possible suggestions (“You seem to
be drawing a dog; would you like us to add the hidden legs for
you?”). The problems of searching such a database and forming
reliable hypotheses, however, seems daunting.
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Sketching Mesh Deformations

Youngihn Kho∗ Michael Garland†

University of Illinois at Urbana-Champaign

Figure 1: Step-by-step editing of a dragon character in under 3 minutes using our system. Each step represents 1–3 individual deformations.

Abstract

Techniques for interactive deformation of unstructured polygon
meshes are of fundamental importance to a host of applications.
Most traditional approaches to this problem have emphasized pre-
cise control over the deformation being made. However, they are
often cumbersome and unintuitive for non-expert users.

In this paper, we present an interactive system for deforming un-
structured polygon meshes that is very easy to use. The user in-
teracts with the system by sketching curves in the image plane. A
single stroke can define a free-form skeleton and the region of the
model to be deformed. By sketching the desired deformation of this
reference curve, the user can implicitly and intuitively control the
deformation of an entire region of the surface. At the same time,
the reference curve also provides a basis for controlling additional
parameters, such as twist and scaling. We demonstrate that our sys-
tem can be used to interactively edit a variety of unstructured mesh
models with very little effort. We also show that our formulation of
the deformation provides a natural way to interpolate between char-
acter poses, allowing generation of simple key framed animations.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric Transformations I.3.6
[Computer Graphics]: Methodology and Techniques—Interaction
Techniques

Keywords: interactive mesh deformation, sketch-based editing,
intuitive interfaces
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1 Introduction

While many techniques for geometric mesh deformation have been
developed, finding effective interactive techniques is still a chal-
lenging topic in modeling and animation. Observing that direct
interaction in 3-D space is often a confusing task for non-expert
users, we propose an intuitive interface for mesh deformation by
sketching curves in the image plane. Our system allows a user to
easily apply a broad range of deformations to unstructured polygon
meshes.

In our system, users sketch a reference curve in the image plane
both to determine a region of interest and to serve as a means of
controlling an individual deformation. By sketching a second curve
indicating the desired deformation of the reference curve, users can
easily achieve the deformation of the entire region of interest spec-
ified by the reference curve. By constructing a mapping of the re-
gion of interest onto the reference curve, our system also provides
a simple method for controlling additional parameters such as local
twisting or scaling.

Our system provides a great deal of flexibility to the user. It can
accept as input triangulated manifold meshes of any genus, contain-
ing any number of boundary loops. No further structural informa-
tion about the object is required. The user can use free-form ref-
erence curves without being constrained by geometrically defined
skeletal structures. The deformation curves can be significantly dif-
ferent than the “natural” skeleton of the surface, and work well even
when such skeleton structures would be ill-defined.

By using a sketch-based screen space interface, we avoid the
need for complex 3-D interactions that can be cumbersome for non-
expert users. Users can achieve relatively complex deformations by
simply drawing two strokes on the screen. Furthermore, we can
use these sketch-based deformations to achieve a natural interpo-
lation between character poses, thus producing simple key framed
animations.



Figure 2: A simple sketch-based mesh deformation. The user draws
a reference curve along the leg, followed by a second target curve.
This induces a deformation of the leg itself.

2 Related Work

There has been a great deal of work done in the past on developing
techniques for the modeling and deformation of geometric objects.
Here we survey only the most relevant work, with an emphasis on
techniques for interactive deformation.

Free-Form Deformations (FFD) are one of the most important
techniques for deforming surfaces [Sederberg and Parry 1986; Co-
quillart 1990; MacCracken and Joy 1996]. While their complex
control lattices provide very precise control over the resulting de-
formation, editing these lattices can be an unintuitive and time-
consuming process. Handle-manipulation approaches [Kobbelt
et al. 1998; Bendels and Klein 2003; Yu et al. 2004] are also pop-
ular and can produce pleasingly smooth deformations. However,
the range of deformations that can be produced with a single han-
dle manipulation is generally quite limited. Therefore a user must
perform a sequence of several individual step to achieve a more
complex result.

Curve-based deformation approaches such as Wires [Singh and
Fiume 1998] or medial-based shape deformations [Bloomenthal
2002; Yoshizawa et al. 2003] have received considerable attention
in recent years. Curves or skeletons in this type of methods can pro-
vide a natural means of capturing the structure of surfaces. Thus,
deforming surfaces by editing those entities provides a good means
of achieving large scale deformations. For this reason, our system
uses a curve-based approach with an emphasis on providing an ex-
tremely easy method for specifying free-form control curves.

There has been substantial interest of late in developing intuitive
interactive techniques, such as deformation by painting over sur-
faces [Lawrence and Funkhouser 2003]. Sketch-based interfaces
have emerged as one of the more popular approaches to building
user-friendly deformation tools. In Teddy [Igarashi et al. 1999],
users can create and edit objects by simply sketching strokes in the
screen. The system also proposes a deformation method based on
warp [Corrêa et al. 1998]. Recently, a sketching interface to FFDs
has been developed [Hua and Qin 2003]. Here sketch strokes are
used to manipulate scalar field embeded in 3-D space. In our sys-
tem, we employ sketching both to specify and deform the regions
of interest.

3 Overview

In our system, the user initiates a deformation by drawing a refer-
ence curve on the image plane. This curve implicitly defines a re-
gion of interest — that part of the surface which will be deformed.
The user then applies the deformation either by sketching a new
target shape for the reference curve or by directly manipulating a
deformation parameter such as twist or scaling.

(a) (c) (d)

(b)

Figure 3: Preparing for deformation of the left leg. We compute
two cutting planes (b) that will define the two loops bounding the
region of interest (c). Each vertex in the region is mapped to the
closest point on the reference curve (d).

Figure 2 shows a simple example of our system in action. The
user begins by drawing a reference curve along the leg. The re-
gion of interest is highlighted with a red-to-blue color ramp. The
user then draws a target curve indicating the desired deformation.
From this pair of curves, the system automatically generates the
deformation of the leg. A more complex editing session is shown
in Figure 1. Each step in this editing sequence corresponds to 1–3
individual deformations.

4 Beginning a Deformation

The user begins the process of deformation by drawing a reference
curve, which must be projected into the 3-D world space. From the
reference curve, we implicitly recognize the region of the surface
that the user wishes to deform. The user can optionally refine this
region selection using an interactive partitioning scheme. Once the
region of interest is identified, a “skinning” step associates each
vertex within this region with the closest point on the 3-D reference
curve. This basic process is illustrated in Figure 3.

4.1 Building the Reference Curve

We begin with a free-form sketch of the reference curve in the im-
age plane. We represent the raw sketch curve as a collection of line
segments taken directly from mouse events produced by the user’s
stroke. This raw curve is likely to be fairly noisy, especially when
drawn with a mouse rather than a tablet device. Therefore, before
proceeding, we smooth and regularize the raw sketch. We apply a
simple averaging filter and simplify the polyline by merging neigh-
boring segments so that each segment will be at least 5 pixels in
length.

Having regularized the reference curve in the image plane, we
must project it into the 3-D world space of the model. We first com-
pute the point of intersection of a ray from the view point through
the first point on the sketch curve. This hit point, along with the
normal of the viewing plane, defines a plane in world space parallel
to the image plane. We project the sketch curve onto this plane to
compute the 3-D reference curve.

4.2 Recognizing the Region of Interest

After the user-drawn reference curve is mapped into 3-D space, we
implicitly partition the model into three parts: (1) a static compo-
nent, (2) the region of interest, and (3) a rigid component. The static
component of the mesh will be unchanged by the deformation. The



Figure 4: (Top) Deformation of the body without partitioning. The
legs and feet are undesirably distorted. (Bottom) The two legs
are partitioned so that they can be transformed rigidly, producing
a more natural result.

region of interest is that part of the mesh to which the deformation
will actually be applied. The rigid component will be transformed
rigidly to maintain its connectivity with the region of interest. Fig-
ure 3 shows a simple example in which (1) the whole body beyond
the upper thigh forms the static component, (2) the leg is the region
of interest, and (3) the foot below the ankle is the rigid component.

The underlying assumption of our system is that the region of in-
terest is the part of the surface “covered” by the user’s sketch curve.
At each end point of the curve, the system computes a cutting plane
perpendicular to the reference curve (see Figure 3b). The intersec-
tion of these planes with the surface define triangle loops that par-
tition the input mesh. We define these triangle loops using a graph
cut formulation outlined in Section 4.2.1. In cases where a plane
defines multiple intersection loops, we select the loop containing
the nearest triangle to the end point. Having selected one boundary
loop per cutting plane, we now have two triangle loops bounding
the region of interest (as in Figure 3c). The vertices in each of
the 3 regions are labelled by a breadth first style “flood fill”. The
static component will be the region bounded by the loop created by
the starting point of the reference curve and the rigid component is
bounded by its ending point.

In higher genus cases, a single loop may fail to cut the object
into two parts. In such cases, multiple loops are required for the
partition. We begin with the set of all loops defined by the cutting
plane; these must collectively partition the object, as the plane itself
does. We then consider each loop other than the initially one in suc-
cession. We remove a candidate loop from the cut only if does not
merge the two components separated by the initially selected loop.
This process eventually produces exactly two disjoint components.

Our implicit recognition scheme works well in many cases.
However, additional explicit partitioning is useful in certain circum-
stances. For example, in Figure 4, when we lift up the back part of
the dragon, we probably want to rigidly transform each leg, while
the body is smoothly deformed. To do this, users can interactively

augment (or override) the automatically generated partition.

4.2.1 Interactive Partitioning

In our system, we adopt a graph cut partitioning scheme controlled
by the selection of cutting planes. The user draws a line to de-
fine a cutting plane containing that line and perpendicular to the
view plane. In general, this cutting plane will not follow existing
edges in the mesh but will cut across many triangles. Therefore,
we apply a fuzzy decomposition technique [Katz and Tal 2003] to
find the actual boundaries. We collect all triangles within a certain
screen-space distance from the cutting plane — we typically adopt
a 5 pixel distance limit. In general, the cutting plane might cre-
ate multiple separated fuzzy regions. In this case, the system picks
the region which is nearest to the view point. Then this set of tri-
angles serves as a fuzzy region. To compute the boundary, a dual
graph of the fuzzy region is created, where the weight of an edge
in the dual graph is the dihedral angle of the corresponding primal
edge multiplied by its length. Finally, a min-cut method on the dual
graph produces a cut corresponding to the boundary. The method
produces natural and smooth boundaries since the resulting cut fol-
lows relatively lower dihedral angles which are a good criterion for
natural boundaries. The freely deformable region is bounded by
only one partition. All other parts will be rigidly transformed.

4.3 Skinning and Parameterization

At this point, all the vertices in the region of interest have been
collected. We skin the surface by associating each vertex with the
closest point on the reference curve. Note that these closest points
are simply required to be on the curve; they need not be vertices of
the curve. Figure 3d shows an example of this association, connect-
ing each vertex with its corresponding point on the curve.

We represent each point on the reference curve by its normal-
ized arc length s. That is, for a given point we add up the length
of all segments from the origin of the curve to the point. We nor-
malize these values so that they range between 0 and 1. Thus s = 0
and s = 1 are, respectively, the origin and end points of the curve.
This induces a parameterization of the region of interest onto the
range [0,1]. For each vertex v we have the normalized arc length
parameter s(v) corresponding to the associated point on the refer-
ence curve. This parameterization is shown by the color ramp on
the leg in Figure 3a, with blue corresponding to s = 0 and red to
s = 1.

As outlined earlier, one or more regions of the surface will be
rigidly transformed. To assign the single transformation to each
partition, we introduce a virtual vertex for each of them. The virtual
vertex is placed in the center of the boundary between partitions
and is associated with the closest point on the reference curve. The
transformation of a virtual vertex determines the transformation of
all vertices in its partition.

5 Deformation Techniques

In the previous section, we have discussed the preparation steps
necessary to begin a deformation. The user draws a reference curve,
which is filtered and projected into 3-D. The region of interest is
determined, and each vertex within this region is mapped to a point
on the 3-D reference curve. Once this initial phase is complete, the
user can apply any one of the fundamental deformations described
in this section.

5.1 Sketch-Based Mesh Deformation

The primary deformation that we support is accomplished by
sketching. The user simply draws a new target curve, which we
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Figure 5: Illustration of sketch-based deformation. For each ver-
tex v in the mesh, we compute the closest point vr in the reference
curve. The total turning angle for the vertex v is linearly interpo-
lated in the line segment vr lies on.

interpret as a deformation of the original reference curve. Our sys-
tem then deforms the entire region of interest in an analogous way.
This provides the user with intuitive and flexible control over the
object’s shape. Figure 2 shows a simple example of this style of
deformation.

Recall that we have already assigned a value s(v) to each vertex
v which connects it to a corresponding point on the reference curve.
We can thus think of the deformation process as follows. The refer-
ence curve is scaled and bent to match the target curve. The vertices
of the mesh are connected to the reference curve through rigid iron
wires, so they are translated and rotated along with the reference
curve.

Preparation We begin by filtering and smoothing the target
curve in the image plane, just as we did the reference curve. To
prevent the mesh from tearing, we translate the target curve so that
it’s starting point is coincident with the starting point of the ref-
erence curve. We then map the target curve to the sketch plane
constructed in Section 4.1. Consequently, the user is not allowed to
change viewing parameters while drawing the two curves.

For each vertex v in the region of interest, we have a correspond-
ing normalized arc length value s(v) that provides us with the cor-
responding closest point vr on the reference curve. Similarly, we
use the same normalized arc length parameter to compute the cor-
responding point vt on the target curve. This provides us with all
the information necessary to compute to desired transformation at
v.

Computing Rotational Angles We deform the surface by rotat-
ing each vertex v about the corresponding reference point vr. The
axis of rotation is simply the normal of the sketch plane and the
rotational angle θ(v) is the signed angle between the tangents at vr

and vt . However, since our curves are sequences of line segments,
we must interpolate rotational angles along the curve in order to
avoid significant discontinuities.

To compute the rotational angle θ(v), we must first locate the
line segment [si,si+1] of the reference curve on which vr lies. We
define φi to be the signed exterior turning angle of the curve at node
i (see Figure 5). We will define the tangent direction at the node si
by the total turning angle Φi:

Φi =
i−1

∑
j=0

φ j +
φi

2
(1)

Note that we use the half-angle φi
2 so that the tangent at si will be

the average direction of the two incident line segments. This defines

(a) (b) (c)

Figure 6: An example of twisting the neck of a dinopet model.
(a) We first specify the approximate part of the neck to twist. (b)
The neck is twisted by specifying the rotation axis (black) and the
amount of angles (grey). Note that in this example, rotational angle
is linear to the parametrization which is color ramp coded. (c) The
result from a different view point.

the total turning angle at the nodes of the curve. For a point on the
interior of a segment [si,si+1] we interpolate the turning angle

Φ(s) = Φi +
φi

2
b(2α)+

φi+1

2
b(2α −1) (2)

where
α =

s− si

si+1 − si
(3)

and

b(x) =

⎧

⎪

⎨

⎪

⎩

1 if x > 1,
x if 0 ≤ x ≤ 1,
0 otherwise.

(4)

The blending function b is chosen so that Φ( si+si+1
2 ) = Φi +

φi
2 . In

other words, so that the tangent direction at the midpoint of the
segment will be parallel to the segment.

We can compute these total turning angles for both the reference
and target curves. They tell us the signed angle difference between
the initial segment of the curves and the given points vr and vt .
We also need to account for the global rotation θg, which is the
angle between the initial segments of the two curves. Our desired
rotational angle is now simply

θ(v) = Φr(s(v))−Φt(s(v))+θg (5)

Once we have computed the target position and the desired rota-
tional angle for a vertex, the final deformed position v′ of the vertex
v will be

v′ = T (vt)R(θ(v))T (−vr)v (6)

where T indicates translation and R indicates rotation about the nor-
mal of the sketch plane.

5.2 Twisting

We can also achieve twisting deformations by locally rotating the
the region of interest about the reference curve. For example, con-
sider the simple twisting operation shown in Figure 6. The refer-
ence curve is now the rotational axis and the user’s second mouse
stroke is used to control the amount of twisting being performed.

To use the reference curve as a rotational axis, it must be placed
inside of the the model. To do this, we must alter the way in which
we project the reference curve into world space. We first compute
a set of joints. For each node in the reference curve in the image



plane, a joint is defined as the average of hit points on the nearest
front face and the back face by the ray from the viewpoint to the
vertex. Consequently, we disallow twisting if any of nodes in the
sketch curve has only one hit point. Now, the rotational axis is
the curve connecting these joints. Note that this new curve looks
the same from the user’s perspective, as it still projects to the same
image space sketch curve. As we did in sketch-based deformation,
the rotational axis for the vertex v (i.e., the tangent direction at s(v))
is linearly blended.

We must now compute the rotational angle θ(v). Obviously
using the same rotational angle at all vertices would not produce
the desired result. We have found that the most natural twisting
is achieved when the rotational angles θ(v) vary linearly with the
normalized arc length s(v). Thus, we compute a maximum angle
θmax proportional to the length of the second line drawn by the user
and use a rotational angle θ(v) = s(v)θmax at the vertex v. The new
position for vertex v will therefore be

v′ = T (vr)R(tr(v),θ(v))T (−vr)v (7)

where tr(v) is the interpolated tangent direction of the reference
curve at s(v).

5.3 Indirect Control Using Parameterization

The parameterization s(v) that we have established to map the re-
gion of interest onto the reference and target curves also provides
a natural mechanism for adjusting deformation parameters. We al-
low the the user to gain finer control over the deformation by using
a standard spline control to specify modifications of the deforma-
tion parameters as a function of s. In this section, we briefly outline
three such controls.

Adjusting Target Curve Turning Angles In our sketch-based
deformation, the end result is obviously controlled by the shape
of the target curve. By fine tuning the target curve, we can fine
tune the deformation. This allows the user to draw a fairly simple
base target curve and then interactively adjust its shape to achieve a
specific intended deformation.

We control the shape of the target curve by adjusting the exterior
turning angles φi, which were discussed in Section 5.1. By con-
trolling these angles, we can radically alter the shape of the target
curve.

We present to the user a standard spline box with which they can
define an offset function F(s), which we initialize to the identity
function F(s) = s. For each vertex at position si along the target
curve, we compute an adjusted turning angle φ ′

i as:

φ ′
i = φi +F(si)− si (8)

and use these adjusted turning angle to compute an adjusted defor-
mation.

An example of this type of deformation is shown in Figure 7. We
begin by sketching a very simple deformation that achieves a coarse
deformation of the overall shape. We then adjusted the rotational
angles to achieve a final S-shaped shark.

Scaling Control The scaling control allows users to locally in-
flate or deflate the surface along the reference curves. This tech-
nique can be thought as an interactive version of generalized cylin-
ders [Snyder and Kajiya 1992]. We achieve local scaling by con-
trolling the magnitude of the offset vector v−vr of a vertex v. We
use the same skeleton curve connecting joints as in twisting for
computing these offsets. The magnitude of the offset vectors is
scaled by a function F(s) which is initially the constant function
F(s) = 1. We see a typical example in Figure 8. We have locally
inflated and deflated the left Queen along a vertical reference curve
using the spline function shown on the right.

(a) (b)

(c) (d)

(e) (f)

Figure 7: Adjusting target curve turning angles can fine tune the
deformation. An initial coarse deformation (b) is adjusted using a
spline control (c) to produce a more nuanced pose (d–f).

Figure 8: By locally scaling offset vectors, we can locally inflate
and deflate the initial shape.

Rotational Angle Control for Twisting As discussed in Sec-
tion 5.2, we linearly increase the twisting angle as a function of
s. We can just as easily add an additional scaling adjustment to
produce θ(v) = F(s(v))θmax. This allows the user to control the
relative “speed” of the twist along the region of interest.

5.4 Increasing Smoothness

In most cases, our techniques produce pleasingly smooth deforma-
tions. However, local jaggedness can occur as the result of factors
such as excessive noise in the user’s sketch or the limited screen
resolution. For these circumstances, we introduce a deformation
optimization technique that can automatically smooth away such
artifacts. It also provides a straightforward mechanism to blend the
boundaries between rigidly transformed components and the freely
deformable region.

Any one of the many general mesh smoothing algorithms could
be applied to smooth the deformation. However, this would have
the undesirable side-effect of removing actual small-scale features
from the surface as well. Therefore, we seek to directly optimize
deformation parameters to produce a smooth result. The central
idea is neighboring vertices should undergo similar transformations
to maintain smoothnes, while still remaining faithful to the user’s



Figure 9: The benefits of automatically smoothing the deformation.
(Left) Sketch-based deformation. The top picture is before the opti-
mization, and the bottom picture is after the process. (Right) Twist
deformation. The left one shows non-optimized twisting deforma-
tion, and the right one shows the result of the optimization.

specified transformation.
For each vertex vi in the region of interest, let us consider its de-

formation parameter ui. For sketch-based deformation, we would
separately consider both rotational angles θ(vi) and the normal-
ized arc length s(vi). Starting from an initial set of parameters
(u1, . . . ,un) generated from the user’s input, we wish to find a new
set of parameters (u′1, . . . ,u

′
n) that minimizes the following energy:

E = ∑
i

(

∑
j∈Ni

wi j(u
′
i −u′j)

2

)

+wc(ui −u′i)
2 (9)

where Ni is the set of vertices adjacent to vertex vi.
The first term of this energy function provides a measure of the

smoothness of the parameter ui. We choose the edge weights wi j
to be the inverse edge length wi j = ‖v j − vi‖

−1. The second term
in the summation measures the deviation of the new parameters u′i
from the parameters ui derived from the user’s input. Empirically,
we find that setting the weight wc such that ∑ j∈N(i) wi j = 10wc pro-
vides a generally good balance between smoothness and this fidelity
term.

We solve this optimization problem using a traditional Newton
method. The initial values are simply those before the optimization,
which makes the second cost term zero. Since our cost function is
quadratic and the number of neighboring vertices are usually very
small, the Hessian matrix is constant and sparse. Therefore, the
optimization problem can be very efficiently computed by solving
a linear system through one-time LU factorization. Furthermore,
the initial values tend to be fairly close to the optimal solution, so
we observe that the number of iterations necessary is generally very
small.

The result of this automatic optimization process are shown in
Figure 9. The fairly obvious artifacts in the unoptimized deforma-
tion are entirely removed following the optimization process.

5.5 Adaptive Mesh Refinement

If the user applies a significant deformation to the model, the res-
olution of the input mesh may be insufficient to support smooth
deformation. The result will be a locally jagged deformation. To
account for this, we propose a simple adaptive refinement scheme
for smooth deformation. Our refinement primitive is the edge split.
For each edge, we test two criteria to decide whether to split or not.
We split the edge only if the two criteria are both satisfied.

The first criterion is edge stretching, defined as the ratio of the
edge length in the original mesh to its length in the deformed mesh.

Figure 10: When performing significant deformations, the result
can appear jagged if the input mesh is too coarse. Adaptive mesh
refinement removes these artifacts.

We will consider splitting any edge whose ratio exceeds a specified
limit. We also apply this criterion recursively to new edges pro-
duced by splitting previous edges. Experimentally, we find that a
ratio of 1.5 works well as a threshold; here an edge will be split if
it is stretched by more than 50%. This criterion will tend to refine
more along the direction of deformation, but less in the orthogonal
direction, as can be seen in Figure 10. In this example, we subdi-
vide more along the direction in which the neck is stretched, but
relatively less around the neck.

The second criterion is edge curvature. We only wish to split
those edges that are sufficiently bent by the deformation. Each can-
didate edge in the original mesh is tentatively splitted by inserting a
vertex at the midpoint of the edge. Then the inserted vertex is also
transformed to a deformed position. If the angle between the two
new edges in the deformed mesh is less than some threshold, we
accept the split. Otherwise, the split is cancelled. This means that
if the split edges are close to parallel, the split is not necessary. We
have found that an angle threshold of π − π

24 produces good results.
In Figure 10, the bent part in the lower neck is more refined, while
the middle part is less refined.

Our refinement scheme is designed to minimize the number of
faces added while maintaining the smoothness of the deformation.
However, the resulting mesh might have many triangles of bad as-
pect ratio. If more nearly equilateral triangles are desired, then a
regularization process that can perform additional operations such
as edge flipping could be considered [Welch and Witkin 1994;
Kobbelt et al. 2000].

6 Results

In this section, we consider several examples of using our system
to edit unstructured polygon meshes. All results were generated
by interactive editing on a standard consumer-level Windows PC.
We render all sample models with flat shading in order to better
highlight the structure of the surface mesh.

Figure 1 provides a step-by-step illustration of an editing ses-
sion in which we repose a dragon character. We begin by opening
the mouth, which requires only two sketch-based deformations or
exactly 4 lines to be drawn by the user. We subsequently twisted
both arms and the neck. We conclude by using two sketch-based
deformations to bend the tail. The entire editing session — includ-
ing program startup, loading the mesh from disk, and interactive
editing — required less than 3 minutes.

In Figure 11 we see an example of using sketch-based deforma-
tion to bend an initial cylinder into multiple letter forms. Each let-
ter was created by drawing a single reference curve on the cylinder
followed by a single target curve in the shape of the intended letter.
Even though the original cylinder has been stretched and bent fairly
significantly, the deformed surface remains smooth. Note that, in
order to keep the number of triangles fixed across all examples, we
have not applied our adaptive refinement scheme in this case.



Figure 11: Applying significant deformations to bend a cylinder
into various letter forms still results in smooth surfaces.

Figure 12: Reposing a horse with 4 simple deformations.

Figure 12 demonstrates the deformation of another more com-
plex figure. We begin by interactively partitioning the front two
legs. The body is then deformed by a single sketch-based deforma-
tion (requiring only 2 strokes). We conclude by twisting the neck,
and bending the front legs by a single sketch-based deformation for
each.

We can deform the hand shown in Figure 13 into a number of
other poses quite easily. For the examples shown, we applied 1–2
sketch-based deformations to each of the fingers. Total modelling
time is a mere 1 minute per hand pose. Note that the input is fairly
smooth and the mesh is rather dense. Our system can still handle
this mesh at interactive speeds and the deformed meshes are just as
smooth as the input.

Figure 14 demonstrates a leg deformation using three different
reference curves. We can clearly see that the system behaves well
even when given quite different reference curves. The user is not
constrained to draw a reference curve that follows the “natural”
skeleton of the leg, and indeed can even draw a reference curve
beyond the edge of the surface. All of these reference curves are
sufficient to unfold the leg. We can also see that by drawing some-
what different reference curves, the user can easily excercise con-
trol over the nuances of the deformation result. For instance, the
middle result bends the leg more rigidly than the others because the
reference curve follows the shape of the leg less closely.

6.1 Skeleton Based Morphing

In our sketch-based deformation, the reference curves can be
thought of as skeletons for the regions of interest. Utilizing these
implicit skeletons, we can produce quite natural pose transitions
that are much more pleasing than using simple linear interpolation
(see Figure 15).

To morph using the skeletons at each intermediate frame, we
must interpolate the curve from the reference and the target curves

Figure 13: The original hand model (left) and two deformed hands.

Figure 14: By using different reference curves, the user can produce
subtly different results.

then deform the object according to the interpolated curve. The in-
terpolated curve is computed automatically by linearly interpolating
lengths and rotational angles. Its total length is linearly interpolated
from the lengths of the reference and target curves. As defined in
Section 5.1, there is a rotational angle θ(v) at each vertex of the
reference curve that deforms it into the target curve. The rotational
angles for the interpolated curve are simply αθ(v) for α ∈ [0,1].
This approach is similar to as-rigid-as-possible interpolation [Alexa
et al. 2000], in the sense that we separate the rotation and the scale
components.

Once the interpolated curve is computed, the vertex positions
are computed in the same way as in the sketch-based deformation
described in Section 5.1. The only difference is that we substitute
the interpolated curve as the target curve.

7 Conclusion and Future Work

We have proposed a new and intuitive approach to interactive de-
formation of unstructured polygon meshes. Users of our system
can make significant edits to 3-D objects by simply drawing a pair
of curves on the image plane. The reference curves drawn by the
user simultaneously partition the mesh, serve as a control handle
for the deformation, and provide a scalar field that parameterizes
the region of interest. This parameterization can be used to easily



Figure 15: Interpolating our deformation parameters generates
much more natural in-between frames than linear interpolation of
vertex positions.

control additional deformation parameters such as twist and scal-
ing. As our method does not use any fixed skeletal structure, users
have great freedom in choosing the way in which the surface will
be deformed. Since our system is based on simple 2-D sketching
operations, it is both intuitive and easy to use, and allows users to
quickly create deformed objects. It is also relatively appealing to
non-expert users. Furthermore, our deformation method can pro-
vide for natural morphing between two key frames by using the
sketch curves as implicit skeletons.

Our current system is a very effective tool, but there are also nu-
merous ways in which it could be improved and extended. Our cur-
rent approach is targeted more towards reposing bodies and limbs.
Editing fine-grained surface features, such as the shape of the eyes
on a face, is more difficult. Extending our sketch-based method-
ology to support editing of such surface features would be very
desirable. Although our method is quite fast and suitable for in-
teractive editing of fairly large models, the performance could be
improved by incorporating multiresolution techniques such as [Lee
et al. 2000]. Extending skeleton-based morphing into a complete
system for easily creating simple key-framed animations is another
very appealing direction.
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Abstract

In this paper we present a method for the intuitive editing of sur-
face meshes by means of view-dependent sketching. In most ex-
isting shape deformation work, editing is carried out by selecting
and moving a handle, usually a set of vertices. Our system lets the
user easily determine the handle, either by silhouette selection and
cropping, or by sketching directly onto the surface. Subsequently,
an edit is carried out by sketching a new, view-dependent handle
position or by indirectly influencing differential properties along
the sketch. Combined, these editing and handle metaphors greatly
simplify otherwise complex shape modeling tasks.

Keywords: Sketch Based Model Editing, Laplacian Surface Edit-
ing, Differential Geometry, Sketching, Deformations

1 Introduction

A few strokes suffice to sketch the main features of a shape. This
is why designers still prefer using pen and paper to invent and
communicate, and explains the great success of sketch-based shape
modeling approaches, such as SKETCH [Zeleznik et al. 1996] and
Teddy [Igarashi et al. 1999]. In this work, we add to the existing
toolbox of sketch based shape modeling techniques. Our contribu-
tion is a tool for sketching significant shape details on already exist-
ing coarse or detailed shapes. We believe the important first step of
creating the basic shape from scratch is essentially solved: either
based on sketching (apart from the pioneering works mentioned
above, see also [Karpenko et al. 2002; Igarashi and Hughes 2003;
Bourguignon et al. 2004]) or using other modeling techniques. Ide-
ally, a sketch-based modeling system for 3D shapes should use the
very same sketches that designers would draw on a piece of paper
to convey the shape. What are these lines? As pointed out by Hoff-
man and Singh [1997], the human visual system uses silhouettes as
the first index into its memory of shapes, making everyday objects
recognizable without color, shading or texture, but solely by their
contours. In the area of non-photorealistic rendering (NPR), sil-
houettes have been used extensively [Gooch and Gooch 2001] and
recently they have been extended to suggestive contours: curves on
the shape that might be silhouettes in nearby views [DeCarlo et al.
2003]. The apparent presence of a feature line in a picture of a
shape results from an abrupt change in illumination. Apart from
view dependent features for which this happens or might happen in
a nearby view, change of illumination generally correlates with cur-
vature. Lines of curvature extrema (i.e. ridges and ravines) have,
therefore, also been used in NPR for conveying shape.

Figure 1: With a few strokes we have greatly increased the expres-
siveness of the CAMEL model (bottom left). See Fig. 2 for details.

We come to the conclusion that sketching a shape is inverse
NPR. Consequently, we design a sketch-based modeling interface
using silhouettes and sketches as input, and producing contours,
or suggestive contours, and ridges/ravines. The user can sketch a
curve, and the system adapts the shape so that the sketch becomes a
feature line on the model, while preserving global and local geom-
etry as much as possible. As the requested properties of the sketch
cannot or should not always be accommodated exactly, users only
suggest feature lines.

It might seem obvious to let users alter contours, or ask for a line
in space to be a feature line. Interestingly, our concurrent goals of
preserving the global and local geometry during the edit while using
feature lines for defining the edit are difficult to implement using
traditional approaches: typical sketching tools [Igarashi et al. 1999;
Karpenko et al. 2002; Fleisch et al. 2004] do use silhouettes, how-
ever, they create only smooth shapes. Some operations of sketching
techniques might preserve geometric detail, however, they are not
based on inserting feature lines into the shape [Draper and Egbert
2003; Kho and Garland 2005]. In general modeling environments,
such as space deformation techniques (e.g., [Sederberg and Parry
1986; Singh and Fiume 1998]) and multi-resolution or subdivision
mesh modeling approaches [Zorin et al. 1997; Kobbelt et al. 1998;
Biermann et al. 2000], it can be difficult to incorporate the displace-
ment of a feature curve: these approaches provide a basis that spans
a space of shapes; the requested displacement has to be translated
into coefficients of this basis. In general, this might be impossible,
and an approximate solution typically leads to a difficult inverse
problem (see also Botsch and Kobbelt [2004]). Our idea becomes
realizable through the recent trend to cast mesh modeling problems
as discrete Laplace or Poisson models [Alexa 2003; Botsch and
Kobbelt 2004; Sorkine et al. 2004; Yu et al. 2004; Sumner and
Popović 2004]. Within this framework, it is easy to displace a set
of edges (e.g., sketch a new position of an identified contour) while
preserving the geometric details of the surface as much as possible.
However, most of the feature lines we want to use have specific
differential properties, either absolute or relative to the viewing di-
rection, and they might not coincide with edges on the mesh. We
therefore extend the framework of Laplace/Poisson mesh model-
ing in the following ways: (a) we accommodate constraints on the
normals and the curvature; (b) we allow constraints to be placed

1
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Figure 2: Our mesh editing tool in action. Top row [(1)-(6)]: First, we open the mouth of the CAMEL model (1) by detecting an object
silhouette, and sketching an approximation of the lip shape we want (2) (See Section 3). Note that in (2) the yellow curve is the original
object silhouette, the green curve is the user sketch, and the dark blue region is the result of a previously placed sketch. By sketching directly
onto the model (3) we produce a handle (yellow) by which we can lift the eyebrow with the green sketch. For the creation of sharp features
we sketch the feature line (4) and then scale the affected Laplacians to produce either a ravine (5) or a ridge (6) (See Section 4.2). Bottom
row [(7)-(12)]: If we are not yet satisfied with the ridge in (6), we can edit the newly created object contour using our silhouette tool (7).
Sketching a ravine under the eye by geometry adjustment (See Section 4.1) is shown in (8) and (9). Finally, we sketch a subtle suggestive
contour near the corner of the mouth in (10) and (11) (See Section 4.3), resulting in the SCREAMING CAMEL model (12), shown in Fig. 1.

on virtual vertices, i.e. vertices placed on edges that only serve to
implement the constraints but are never added to the mesh; (c) we
incorporate a tangential mesh regularization, which moves edges
onto sharp features while ensuring well-shaped triangles.

This mesh modeling framework together with a user-interface
mostly based on sketching suggested feature lines onto or around a
shape, indeed, yields an intuitive shape modeling technique.

2 Mesh modeling framework

The basic idea of the modeling framework is to satisfy linear mod-
eling constraints (exactly, or in the least squares sense), while pre-
serving differential properties of the original geometry. This tech-
nique has recently been presented in various fashions and we only
briefly explain the main concepts. For more detailed explanations
see the references given below. One way of deriving these lin-
ear constraints is to ask that the Laplacian of the original geom-
etry be preserved in the least squares sense [Alexa 2003; Lipman
et al. 2004]. Let the mesh be represented as a graph G = (V,E),
consisting of vertices V and edges E. Let V = (v1,v2, . . . ,vn),
vi = (vix ,viy ,viz) ∈ R

3 be the original geometry and ∆ the Laplace
operator, then the deformed geometry V′ is defined by the con-
strained minimization

V′ = argmin
W

‖∆V−∆W‖2, (1)

where the vertices might be weighted differently to trade-off be-
tween modeling constraints and the reproduction of original surface
geometry. Note that this is equivalent to solving a linear system of
the form AV′ = b in the least squares sense. If the original surface
was a membrane, the necessary constraints for the minimizer lead to
∆2V′ = 0, which has been advocated by Botsch and Kobbelt [2004]
in the context of modeling smooth surfaces. If, in contrast, the orig-
inal surface contained some detail, the right-hand side is non-zero
and we arrive at a variant of the discrete Poisson modeling approach
of Yu et al. [2004].

The modeling operation is typically localized on a part of the
mesh. This part of the mesh is selected by the user as the region of
interest (ROI) during the interactive modeling session (with a lasso
tool). The operations are restricted to this ROI, padded by several
layers of anchor vertices. The anchor vertices yield positional con-
straints v′i = vi in the system matrix A, which ensure a gentle transi-
tion between the altered ROI and the fixed part of the mesh. Based

on the constraints formulated so far, local surface detail is preserved
if parts of the surface are translated, but changes with rotations and
scales. One way of dealing with this is to define local rotations per
vertex a priori. Lipman et al. [2004] compute these rotations from
a smoothed solution of Eq. 1, Yu et al. [2004] let the user specify
a few constraint transformations and then interpolate them over the
surface. However, we would like to incorporate the treatment of di-
rections into the modeling phase so that some of the details have a
fixed (normal) orientation, while others may rotate. Thus, we adopt
the approach of Sorkine et al. [2004], who define the local rotations
and scales by comparing one-rings between V and V′. However,
we discretize the Laplace operator using cotangent weights as rec-
ommended by Meyer et al. [2003]. The conditions to be satisfied
lead to an overdetermined system of linear equations of the form
AV′ = b, which we solve in the least squares sense according to the
normal equations AT AV′ = AT b. For information on how to derive
the rows resulting from Eq. 1 see [Sorkine et al. 2004].

We extend this framework towards constraints on arbitrary points
on the mesh. Note that each point on the surface is the linear combi-
nation of two or three vertices. A point on an edge between vertices
i and j is defined by one parameter as (1−λ )vi +λv j, 0 ≤ λ ≤ 1.
Similarly, a point on a triangle is defined by two parameters. We
can put positional constraints v̂i j on such a point by adding rows to
the system matrix A of the form

(1−λ )v′ix +λv′jx = v̂i jx , . . . . (2)

Furthermore, we extend the framework by using other forms of dif-
ferentials to achieve some additional effects. Let δi be the Laplacian
of vi, the result of applying the discrete Laplace operator to vi, i.e.

δi = vi − ∑
{i, j}∈E

wi jv j, (3)

where ∑{i, j}∈E wi j = 1, and the weights wi j are determined using
the cotangent weights [Meyer et al. 2003]. An important benefit
of this weighting is that δi points in the normal direction, and the
length ‖δi‖ is proportional to the mean curvature around vertex i.
This allows us to prescribe a certain normal direction and/or curva-
ture for a vertex, simply by adding a row to A of the form

v′i − ∑
{i, j}∈E

wi jv′j = δ ′
i . (4)

Setting the normal direction is necessary for contours and sugges-
tive contours, setting the curvature – for ridges or ravines.

2



To appear in the ACM SIGGRAPH conference proceedings

To access the tangential location of vertices, we use the umbrella
operator [Kobbelt et al. 1998] as a discrete Laplacian and relate it
to the cotangent weighted Laplace operator. We exploit this for
regularizing the mesh in tangential direction, by asking that

v′i −d−1
i ∑

{i, j}∈E

v′j = vi − ∑
{i, j}∈E

wi jv j, (5)

where di is the degree of vertex i. The rationale behind this opera-
tion is this: the uniformly weighted operator generates a tangential
component, while the cotangent weighting does not. Asking that
they are equivalent is essentially solving the Laplace equation but
only for the tangential components. The result is a mesh with well
shaped triangles, preserving the original mean curvatures as long as
the tangential offset is not too large. Note that we typically restrict
this operation to small regions, so that large tangential drift cannot
occur.

In the following sections, we explain how to use these basic
building blocks for satisfying user-defined feature lines on a mesh.

3 Silhouette sketching

Our goal is to identify areas of the model which are easily recog-
nized, and for which our memories hold vast databases of possible
variations, and then apply these variations by sketching them. The
idea is simple yet effective: after defining a region of interest on
the surface and a camera viewpoint, we select (and trim) one of the
resulting silhouettes, and then sketch a new shape for this silhouette
(see Fig. 3).

For the computation of silhouettes on polygonal meshes,
various methods are available, see [Hertzmann 1999]. We
have chosen to use object space silhouettes, and include the
ability to switch between edge silhouettes (mesh edges, for
which one adjacent face is front-facing and one is back-facing)
and smooth surface silhouettes [Hertzmann and Zorin 2000].
Hertzmann and Zorin [2000] determine the silhouette on mesh
edges e = (vi,v j) by linearly interpolating corresponding vertex
normals ni,n j: a silhouette point p = (1−λ )vi +λv j on e has to
satisfy ((1−λ )ni +λn j) · (p− c) = 0, where c is the viewpoint.
Silhouette points on edges are connected by segments over faces.

During editing, the user first picks one of the connected compo-
nents, and then interactively adjusts the start and end point by drag-
ging them with the mouse. Note that degenerate silhouette edge

Figure 3: Sketching a very recognizable ear silhouette: we detect,
select, crop and parameterize an object silhouette (yellow, the green
and red balls represent begin and end vertices respectively), and
then sketch a new desired silhouette (green).

paths might lead to multiply connected curves, resulting in non-
intuitive user interaction. Smooth silhouettes [Hertzmann 1999]
remedy this problem on smoothly varying surfaces, and only for
models with distinct sharp features (such as CAD models), mesh
edges are used as silhouettes. In any case, the selected silhouette
segment is represented as a set of points qi on the mesh.

After selecting a silhouette segment, the user sketches a curve
on the screen, representing the suggested new silhouette segment.
The sketch is represented as a polyline in screen space. The vertex
locations si on this polyline result in constraints on mesh vertices
as follows: First, silhouette vertices qi are transformed to screen
space, i.e. the first two components contain screen space coordi-
nates, while the third contains the z-value. Then, both curves are
parameterized over [0,1] based on edge lengths of the screen space
polylines. This induces a mapping from qi to {s j}, defining a new
screen space position q′

i (note that q′
i retains the z-value of qi).

Figure 4: Sketching an approximate CAMEL lip by reducing the
weights on the positional constraints for silhouette vertices.

The new position q′
i in screen space is transformed back to model

space and serves as a positional constraint. Note that when using
smooth surface silhouettes, on-edge constraints have to be used (see
Eq. 2). Additionally, varying the weighting of positional constraints
along the silhouette against Laplacian constraints leads to a trade
off between the accurate positioning of silhouette vertices under
the sketch curve, and the preservation of surface details in the ROI.
To achieve this, we simply multiply the affected rows in A and b
with the selected weighting factor. For example, the result in Fig. 3
follows the sketch closely, whereas the sketch in Fig. 4 only hints
at the desired lip position.

This method works well even for moderately noisy and bumpy
surfaces and preserves details nicely (see Fig. 5). Note that for
very noisy surfaces, object space silhouette paths and loops may
become arbitrarily segmented, in which case our silhouette sketch-
ing method is no longer applicable. In such cases, sketch editing
can be performed relative to any user-defined curve sketched man-
ually onto the surface, as was done for lifting the eyebrows of the
CAMEL, see Fig. 2(3).

The matrix AT A is computed and factored once for each ROI and
silhouette curve selection, and we simply solve for each sketch by
back substitution [Toledo 2003]. Some editing results in Fig. 1 were
obtained by using the silhouette editing capabilities of our system:
sketching larger ears, opening the mouth and modifying the nose
contour.

Figure 5: Editing the bumpy ARMADILLO leg: although the silhou-
ette (yellow) in the ROI (blue) has substantial depth variation and
the desired silhouette (green) is smooth, properly weighting the po-
sitional constraints retains the surface characteristics after the edit.
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4 Feature and contour sketching

4.1 Geometry adjustment

Suppose we intend to create a potentially sharp feature where we
have drawn our sketch onto the mesh. To create a meaningful fea-
ture (i.e. a ridge, ravine or crease) on a mesh, we must first adjust
the mesh geometry to accommodate such a feature directly under
the sketch, since in our setting the sketch need not run along an edge
path of the mesh. To illustrate this, see Fig. 6(a), where the sketch
path {si} (green) follows the edges on the left, but runs perpendicu-
lar to them on the right. By applying repeated subdivision we could
have locally adjusted the mesh resolution, but for situations similar
to the one in Fig. 6(a), many levels of subdivision would be neces-
sary to properly approximate the sketch with an edge path. Another
option would be to cut the mesh along the sketch; however, we have
found a simpler method that avoids increasing the mesh complexity,
yields nice feature lines and well-shaped triangles while retaining
the original mesh topology. In detail:

The triangles in the ROI are transformed to screen space; trian-
gles intersecting {si} are gathered (Fig. 6(a), dark triangles) and the
begin and end mesh vertices are identified.

An edge path Vp = (vp1 ,vp2 , . . . ,vpn) that is close to {si} is com-
puted by solving a weighted shortest path problem in the edge graph
of the ROI. The weight for each edge is the sum of its vertices’
screen space distance to {si}. The resulting edge path vertices are
generally not on, but close to {si} (shown in red in Fig. 6(a)).

Figure 6: Creating a ravine-like crease: in (a) the green sketch given
by the user is approximated by the red edge path on the original
geometry. We adjust the geometry to lie directly under the sketch
by orthogonal projection along the tangent plane (b), and then relax
the area around the sketch (c). Now we can create the crease by
scaling the Laplacians along the edge path (d), resulting in a sharp
feature, even for this coarsely sampled surface.
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Figure 7: Adjusting edge path vertices to lie under the sketch curve
(left): an object-space edge path vertex vo is projected to vs in
screen space, from there orthogonally projected onto vsc on the
sketch curve, and then projected back onto the tangent plane de-
fined by the normal at vo, yielding the new vertex position voc.
Relaxing the sketch region (right): to ensure a good triangulation
after adjusting the geometry, we perform a relaxation of the edge-
path vertices (allow them to move along the sketch path) and nearby
vertices by constraining δi,umbrella to δi,cotangent in the least squares
sense. Qualitatively, this moves v1 and v2 to v′1 and v′2, while keep-
ing voc under the sketch.

The path vertices Vp are mapped onto closest edges of the sketch
path {si} in screen space; corresponding z-values are computed
from restricting each vertex to move on its tangent plane, as de-
fined by the original vertex normal (Fig. 7, left). The resulting edge
path closely follows the sketch curve (Fig. 6(b)), yet may introduce
badly shaped triangles.

We improve triangle shapes by relaxing vertices close to the
sketch so that their umbrella Laplacian equals the cotangent Lapla-
cian in the least squares sense (See Fig. 7, right, and Section 2).
For the vertex relaxation we must solve a linear system, much like
the actual editing solver, but with constraints given by Eq. 5. Ob-
viously, the edge path vertices must remain under the sketch path
during this procedure. To ensure this, while also giving the edge
path vertices a valid degree of freedom, we add them as positional
constraints (Section 2), and additionally add averaging constraints
of the form

v′pi
− 1

2
v′pi−1

− 1
2

v′pi+1
= 0, (6)

for all vertices in Vp excluding the begin and end vertices. The av-
eraging constraint loosens the positional constraint, allowing edge
path vertices to move between their adjacent vertices in the path.
Adjusting the ratio of weights between positional and averaging
constraints leads to a trade-off between accurately approximating
the sketch, and some possibly desired path smoothing.

We have experienced no detrimental effects when applying this
procedure on meshes which approximate the underlying smooth
surface well, even in areas of high curvature. Also, small changes
might be tolerable, as this region will be subsequently edited.

After the geometry adjustment step, the surface is prepared for
editing operations in the vicinity of the sketch.

4.2 Sharp features

To create a sharp feature along the edge path, we adjust the Lapla-
cians of path vertices when constructing the A matrix by prescrib-
ing the Laplacian transform for sketch vertices without flexibility to
rotate or scale (i.e., as in Eq. 4). Since we discretize the Laplacian
using the cotangent weights, we can simply scale the Laplacians
of edge path vertices, resulting in a ridge or ravine, depending on
the sign. If the Laplacian evaluates to zero, as is the case for flat
surfaces, we instead scale the surface normal and prescribe it as
the new Laplacian. As described in Section 3, we factor the matrix
AT A once we have selected a sketch, and can then quickly evaluate
the results of varying scales by dragging the mouse up and down.
The creation of a sharp ridge is shown in Fig. 6(d). Alternatively,
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we can add some amount to the Laplacians, making the change ab-
solute rather than relative. This works well in regions with high
curvature variation along the sketch.

We have found it to be very convenient to create a ridge using
our modeling framework, and thereafter treat it as a silhouette from
a different camera position and edit it as outlined in Section 3. This
technique was applied in the creation of the wavy ridge along the
nose of the CAMEL model in Figures 1 and 2(7).

4.3 Smooth features and suggestive contours

Applying the editing metaphor described in the previous section can
only create sharp features. To enable smooth features or suggestive
contours, we need to influence the Laplacians of more vertices than
only those lying on the edge path. Additionally, for suggestive con-
tours, we intend to manipulate curvature in the viewing direction.
Thus, we need to rotate the Laplacians w.r.t. an axis which is or-
thogonal to both viewing and normal vectors. After performing the
geometry adjustment of Section 4.1, given the viewing position c,
we gather and segment vertices within a user-defined sketch region
around the edge path as follows (Fig. 8, top):

• For each path vertex vpi with normal npi (the yellow vectors in
Fig. 8) we compute the radial plane ri, which passes through
vpi with plane normal nri = (vpi − c)×npi (the blue vectors
in Fig. 8). Now we can segment the vertices in the sketch re-
gion Vs = (vs1 ,vs2 , . . . ,vsn) such that each sketch region ver-
tex is associated with one such plane (ergo, each vertex in Vs
belongs to one edge path vertex).

• Each vertex in Vs is assigned to the radial plane it is clos-
est to, where the distance of vs j to plane ri is measured as
d j = orthodist(ri,vs j )+dist(vpi ,vs j ). Here, orthodist mea-
sures orthogonal distance to the plane, and dist is the Eu-
clidean distance between vpi and vs j . We take Euclidean dis-
tance into account to avoid problems which occur when two
different path vertices have similar radial planes, and further-
more to limit the support of the sketch region.

In Fig. 8 (top image), we show one such segmentation, where
the edge path vertices are highlighted with red circles and the seg-
mentation is color coded (i.e. all vertices of the same color are
associated with the path vertex of that color).

Figure 8: Top: view dependent vertex segmentation and rotation
axis assignment. Bottom left: scaling all Laplacians in the sketch
region by the same factor produces smooth ridges and ravines. Bot-
tom right: rotating all Laplacians by an angle of −π/2 w.r.t. the
blue rotation axes results in a suggestive contour.

Figure 9: Adding a strong cheekbone to the MANNEQUIN model
by sketching a suggestive contour.

Once we have this segmentation, one possible operation is to uni-
formly scale (or add to) the Laplacians of all sketch region vertices.
Complementing the sharp features of Section 4.2, this operation
gives us smooth bumps and valleys (Fig. 8, bottom left). By setting
the Laplacians to zero we can flatten specific regions of the mesh.

An alternative editing behavior results from rotating all Lapla-
cians w.r.t. their respective rotation axes (given by above segmen-
tation) by a user-defined angle, determined by dragging the mouse
left or right. Note that rotation by π is identical to scaling by minus
one. For angles in the ranges [0,π) and (π,2π] we create varying
radial curvature inflection points (Fig. 8, bottom right), resulting
in suggestive contours [DeCarlo et al. 2003] such as the cheekbone
shown in Fig. 9. Note that these inflection points are not necessarily
directly under the sketch, since they result from the Laplacian sur-
face reconstruction and the boundary constraints around the ROI.

5 Discussion

Generating plausible and visually pleasing shapes and deformations
is far from trivial: while our capability to derive a mental model
from everyday shapes around us is well developed, we fail to prop-
erly communicate this to a machine. This is why we have to model
in a loop, constantly correcting the improper interpretation of our
intentions.

The quality of shape editing, therefore, depends on two factors:
the time required by the system to update the shape after user com-
mands and how well the shape change reflects our mental model of
that process. The update time is a potential bottleneck in our ap-
proach, as the necessary matrix factorization and back substitution
depend on the number of vertices and not the complexity of the edit
operation. For example, ROI sizes of 5.5K/12K/33K vertices re-
quire 0.7/2.5/7.0 seconds for factorization and 0.035/0.07/0.25 sec-
onds for back substitution on an Intel P4/2.0 GHz. On the other
hand, we believe we have improved the match between the mental
model and shape updates, though this is obviously hard to quantify.

From a user’s point of view, our system is similar to other sketch-
based editing interfaces [Igarashi et al. 1999; Karpenko et al. 2002;
Draper and Egbert 2003; Kho and Garland 2005], while it differs
algorithmically: the above methods are based on space warps and
variational implicits, whereas our representation is aimed at surface
detail preservation. Our method inherits the simplicity of the user
interface, and enables the creation of interesting and useful surface
edits, both for inexperienced users and modeling professionals.
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Abstract
Various systems have explored the idea of inferring 3D models from sketched 2D outlines. In all of these sys-
tems the underlying modeling methodology limits the complexity of models that can be created interactively. The
ShapeShop sketch-based modeling system utilizes Hierarchical Implicit Volume Models (BlobTrees) as an underly-
ing shape representation. The BlobTree framework supports interactive creation of complex, detailed solid models
with arbitrary topology. A new technique is described for inflating 2D contours into rounded three-dimensional
implicit volumes. Sketch-based modeling operations are defined that combine these basic shapes using standard
blending and CSG operators. Since the underlying volume hierarchy is by definition a construction history, in-
dividual sketched components can be non-linearly edited and removed. For example, holes can be interactively
dragged through a shape. ShapeShop also provides 2D drawing assistance using a new curve-sketching system
based on variational contours. A wide range of models can be sketched with ShapeShop, from cartoon-like charac-
ters to detailed mechanical parts. Examples are shown which demonstrate significantly higher model complexity
than existing systems.

1. Introduction

A variety of underlying shape representations have been
used in sketch-based free-form modeling systems, including
triangle meshes [IMT99], subdivision surfaces [IH03], vari-
ational implicit surfaces [KHR02][AJ03], convolution sur-
faces [TZF04], spherical implicit functions [AGB04], and
discrete volume data sets [ONNI03]. A common attribute
of these systems is that the underlying shape representation
heavily influences the sketch-based modeling operations that
are implemented. For example, supporting automatic blend-
ing with triangle meshes is relatively complex, compared to
implicit representations. These issues tend to limit prototype
sketch-based modeling systems to operations that are practi-
cal to implement, which in turn restricts the types of models
that can be sketched by the intended users.

None of the existing systems have been shown to support
creation of complex models while retaining interactive per-
formance. Again, the underlying shape representation can
fundamentally restrict scalability. For example, variational
implicit surfaces [KHR02][AJ03] are generated by solving
a large matrix, which is not feasible in real-time except for
relatively simple models.

In an attempt to mitigate these issues, we propose Hier-

archical Implicit Volume Models (BlobTrees) [WGG99] as
an underlying shape representation for sketch-based free-
form modeling. A BlobTree procedurally defines an im-
plicit volume using a tree of basic volumes (primitives) and
composition operators, such as CSG and blending. Inside
this framework, shape-modeling operations such as hole-
cutting are easy to implement. The underlying model tree
is also a construction history which supports non-linear
editing of the model. Using a hierarchical spatial caching
scheme [SWG05], complex models can be constructed and
manipulated interactively.

We describe ShapeShop, a sketch-based 3D BlobTree
modeling system in the style of Teddy [IMT99]. ShapeShop
includes several sketch-based operations for hole cutting,
oversketched blending, and adding surface detail (Section 3).
We also introduce a technique for assisting the user with
sketching smooth 2D curves, and describe some other ges-
tural interface tools (Section 4).

Traditionally, BlobTree systems have used skeletal prim-
itives, essentially offset surfaces from geometric entities. It
is non-trivial to define a skeletal primitive such that the off-
set surface fits a sketched 2D contour [AGB04]. To support
sketch-based modeling, we introduce a free-form BlobTree

c© The Eurographics Association 2005.
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primitive that closely approximates a closed 2D contour us-
ing variational interpolation (Section 5). The surface of the
primitive can be defined such that it mimics the “inflation”
algorithms of existing sketch-based systems [IMT99].

Finally, we provide several examples of models sketched
with ShapeShop that display significantly higher surface
complexity than previous systems (Section 7).

2. Related Work

Sketch-based 3D modeling systems can be categorized
based on how the system creates 3D shapes in response
to user input (sketches). Suggestive sketch-based mod-
eling systems attempt to map rough sketches to linear
geometry such as lines, planes, and polyhedra. These sys-
tems frequently use expectation lists which allow the user
to resolve ambiguous situations. Examples of these sys-
tems include SKETCH [ZHH96], Chateau [IH01], and
GiDES++ [JSC03].

In contrast, Literal sketch-based modeling systems cre-
ate 3D surfaces directly from user strokes. Examples include
Teddy [IMT99], BlobMaker [AJ03], and ConvMo [TZF04].
A fundamental operation in these systems is inflation, where
user-sketched closed 2D contours become the 3D silhouettes
of rounded shapes. Various systems support different sketch-
based editing operations on inflated surfaces, including ex-
trusion, cutting, and blending. These systems are frequently
classified as free-form modeling tools. Our system falls into
the Literal sketch-based modeling category.

The Teddy system [IMT99] pioneered the free-form
sketch-based modeling concept. Closed triangle meshes
were created by inflating user-sketched 2D contours using
the chordal axis of the 2D polygon. Sketch-based extru-
sion, cutting, and smoothing operations were supported. Fur-
ther work produced smoother results by re-meshing the sur-
face based on local quadratic implicit surface approxima-
tion [IH03] [MCCH99]. The system was limited to models
with spherical topology (genus 0) and low surface complex-
ity.

A recent work by Cherlin et al. [CSSJ05] implements
sketch-based modeling using interpolating parametric sur-
faces. A wide variety of shapes are created using a novel
generalized surface-of-revolution scheme. No composition
or grouping operations are supported, each surface is inde-
pendent. The system can scale to a large number of indi-
vidual surfaces, however each must be manually positioned
to give the impression of a solid 3D model. While complex
models can be created, the authors note that the requisite
manual positioning is very time consuming.

Several attempts have been made to improve on Teddy
using implicit surfaces. Variational implicit surfaces were
used by Karpenko et al. [KHR02] and the BlobMaker sys-
tem [AJ03]. Shape-editing was limited to blending and over-
sketching. In both cases blending was not procedural, the

existing surfaces were replaced with a single combined sur-
face. Karpenko’s system did maintain a hierarchy of individ-
ual components, but this hierarchy was only used for main-
taining spatial relationships. An O(N3) matrix inversion is
necessary to solve for the variational function, limiting the
number of constraint points (and hence the surface complex-
ity).

Other implicit-based sketching systems have used con-
volution surfaces [TZF04] and spherical implicit func-
tions [AGB04]. Neither system supports sharp edges, and
in both cases only low-complexity models are shown.

A binary volume data set is used by Owada et
al. [ONNI03] in a sketching system based on Teddy. The
topological restrictions of Teddy are mitigated by the use
of a volumetric representation. Novel methods for sketching
internal cavities are presented which allow for more detailed
models. This system is fundamentally limited by the resolu-
tion of the underlying volume data set.

We note that none of the literal sketch-based modeling
systems published to date have been shown to scale to
even moderately complex models. The stated goal of these
tools is generally to support 3D modeling in the conceptual-
design phase, and not replace existing shape modeling
tools [IMT99][AJ03][TZF04]. However, it is unclear that
low-complexity models can adequately represent the often
highly-detailed sketches produced in conceptual design.

Tai et al. [TZF04] classify free-form sketch-based
modeling systems as either boundary-based or volume-
based. Of the above systems, only two are boundary-
based [IMT99][CSSJ05]. However, only Owada et al.’s sys-
tem [ONNI03] takes advantage of the benefits provided
by a volumetric representation. The implicit-based systems
largely ignore the extensive framework provided by hierar-
chical implicit volume modeling [WGG99], and instead fo-
cus on surface-smoothness properties. We address the bene-
fits provided by integration of these concepts into a sketch-
based modeling system in the following sections.

3. Sketch-Based Modeling Operations

We support construction of three types of surfaces based
on sketches - “blobby” inflation in the style of Teddy, lin-
ear sweeps, and surfaces of revolution. Based on these three
shapes, sketch-based cutting and blending operations are im-
plemented using BlobTree composition operators.

A key benefit of BlobTrees is that the current volume
is procedurally defined by the underlying model tree (Sec-
tion 5.1). This tree represents both a scene graph and a full
construction history. Single primitives, as well as entire por-
tions of the tree, can be modified or removed at any time.
This flexibility is exposed in ShapeShop mainly via gestural
commands and 3D widgets (Section 4.4). However, we also
implement a sketch-based resize operation that takes advan-
tage of the BlobTree hierarchy.
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3.1. Blobby inflation

A closed 2D contour can be inflated into a “blobby” shape
using the technique described in Section 5.2. The 2D sketch
(Figure 1a) is projected onto a plane through the origin paral-
lel to the current view plane, and then inflated in both direc-
tions (Figure 1b). After creation, the width of the primitive
can be manipulated interactively with a slider (Figure 1c).
The inflation width is functionally defined and could be ma-
nipulated to provide a larger difference between thick and
thin sections. One advantage of an implicit representation is
that holes and disjoint pieces can be handled transparently.

Figure 1: Blobby inflation converts the 2D sketch shown in
(a) into the 3D surface (b) such that the 2D sketch lies on
the 3D silhouette. The width of the inflated surface can be
manipulated interactively, shown in (c).

3.2. Sweep surfaces

Our blobby inflation scheme is based on an underlying
sweep surface representation which also supports linear
sweeps (Figure 2a) and surfaces of revolution (Figure 2b).
Linear sweeps are created in the same way as blobby shapes,
with the sweep axis perpendicular to the view-parallel plane.
The initial length of the sweep is proportional to the screen
area covered by the bounding box of the 2D curve, but can be
interactively manipulated with a slider. Surfaces of revolu-
tion are created by revolving the sketch around an axis lying
in the view-parallel plane. Revolutions with both spherical
and toroidal topology can be created.

Existing sketch-based systems have generally not
included these types of shapes, with the exception
of [CSSJ05]. However, we have found them invaluable. Sur-
faces of revolution are a class of shape that cannot be repro-
duced with blobby inflation.

Figure 2: Sketched 2D curves can also be used to create (a)
linear sweeps and (b) surfaces of revolution.

3.3. Cutting

Since our underlying shape representation is a true volume
model, cutting operations can be easily implemented using
CSG operators. Users can either cut a hole through the object
or remove volume by cutting across the object silhouette.
Once a hole is created the user may transform the hole inter-
actively. We provide a slider control to modify the depth of
cutting operations. Cut regions are represented internally as
linear sweeps, no additional implementation is necessary to
support cutting in the BlobTree. As example is shown in Fig-
ure 3. This CSG-based cutting operation is both more precise
and less restrictive than in existing systems.

Figure 3: Cutting can be performed (b) across the object sil-
houtte or (c) through the object interior. Holes can be inter-
actively translated and rotated. Intersection with other holes
is automatically handled, as shown in (d).

3.4. Blending

We allow the user to blend new blobby primitives to the cur-
rent volume via oversketching. To position the new blobby
primitive, we intersect rays through the sketch vertices with
the current implicit volume. The new primitive is centered at
the average z-depth of the intersection points. The width of
the new blobby primitive can be manipulated with a slider,
as can the amount of blending. Blended volumes can be
transformed interactively, an example is shown in Figure 4.
Karpenko et al [KHR02] supported sketching of the blend
profile but also noted that this technique was not robust and
is very slow to compute. The level of interactive control
over the blend surface in our system has not been previously
available.

Figure 4: The sketch-based blending operation (a) creates a
new blobby inflation primitive (b) and blends it to the current
volume. The blending strength is parameterized and can be
interactively manipulated, the extreme settings are shown in
(c) and (d). The blend region is recomputed automatically
when the blended primitives move, as shown in (e).
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3.5. Surface drawing

Any BlobTree primitive can be used to add surface detail
based on sketches. As an initial experiment, ShapeShop sup-
ports “surface-drawing”. Rays through the 2D sketch are in-
tersected with the current implicit volume. Point primitives,
which produce spherical volumes, are placed at intersection
points and blended together. Slider controls are provided to
manipulate the radius of the point primitives. Results are
shown in Figure 5. We are developing a more robust tech-
nique involving 3D sweep primitives passing through the in-
tersection points.

Figure 5: Surface-drawing is specified by a 2D sketch, as
shown in (a). Blended skeletal implicit point primitives are
placed along the line at intersection points with the model,
shown in (b). In (c) the radius of the points is increased and
then tapered along the length of the 2D curve.

Surface drawing with implicit volumes is a very flexible
technique. Any pair of implicit primitive and composition
operator can be used as a type of “brush” to add detail to
the current surface. For example, creases could be created by
subtracting swept cone primitives using CSG operations. Im-
plementing these alternative tools is trivial. In addition, since
each surface-drawing stroke is represented independently in
the model hierarchy, individual surface details can be mod-
ifed or removed using our existing modeling interface.

3.6. Sketch-Based Sweep Manipulation

We provide a sketch-based mechanism for resizing and repo-
sitioning linear sweeps and blobby shapes, similar to the
method used in the SKETCH system [ZHH96]. The user se-
lects a sweep primitive and rotates the view such that the
sweep axis is perpendicular to the view direction. The user
then draws a straight line which determines the new extents
of the shape. Holes can be manipulated with this technique
as well, since they are created using linear sweeps (Figure 6).
This operation largely eliminates the need for slider widgets
to control sweep length and blobby inflation width, except
when very fine-grained manipulation is desired.

4. Modeling Interface

Our sketch-based modeling interface has been designed pri-
marily to support use on large interactive displays, such
as the touch-sensitive SmartBoard (Figure 7). These input
systems lack any sort of modal switch (buttons). In some

Figure 6: The linear sweep volume subtracted from (a) is
hilighted in (b). By drawing a straight-line stroke parallel to
the sweep axis (c), the sweep can be repositioned and resized
(d). The new surface is shown in (e).

sense this is desirable, as pencils also lack buttons. How-
ever, tasks commonly initiated with mode-switching (such
as keypresses or right mouse buttons) must be converted to
alternate schemes, such as gestures or 2D widgets.

Since many 2D widgets can be difficult to use with large-
display input devices (which frequently exhibit low accuracy
and high latency), we borrow the stroke-based widget inter-
action techniques of CrossY [AG04]. For example, a button
is “pressed” by drawing a stroke that crosses the buttton.

Figure 7: Our sketch-modeling interface is designed to sup-
port non-modal input devices, like this touch-sensitive hori-
zontal tabletop display.

4.1. 2D Sketch Editing

Two-dimensional sketches form the basis for 3D shape cre-
ation in ShapeShop. We have implemented a 2D sketching
system that assists with the creation of smooth 2D contours.
This system is related to the interactive beautification tech-
niques used in the Pegasus system [IMKT97]. Due to space
constraints, we will only provide a high-level overview of
these techniques.

A fundamental limitation of most standard input devices
is that they provide only point samples to the operating
system. This discrete data can be converted to a poly-line
by connecting temporally-adjacent point samples. However,
in the case of curves the poly-line is only an approxima-
tion to the smooth curve the user desires. In our system
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Figure 8: The gap-filling and smoothing properties of variational curves simplify 2D curve sketching. In (a), multiple disjoint
strokes are automatically connected by fitting a variational curve to the input samples. In (b), smoothing parameters are used to
handle intersections between multiple strokes. Rough sketches with many self-intersections can also be automatically smoothed,
as shown in (c).

we do not create an approximate poly-line, but instead fit
a smooth 2D variational implicit curve [TO02] to the dis-
crete samples. Curve normals derived from the discrete poly-
line are used to generate the necessary off-curve constraint
points [CBC∗01]. Variational curves provide many benefits,
such as automatic smoothing and gap-closing with minimal
curvature (Figure 8).

ShapeShop supports sketch-based editing of the set of
point samples, but not the final variational curve. To simulta-
neously visualize these two different components, we render
the current variational curve in black and the point sample
poly-line in transparent blue (Figure 9).

We have implemented three gestural commands to assist
users when drawing 2D sketches. The first, eraser, is initi-
ated with a “scribble”, as shown in Figure 9a. An oriented
bounding-box is fit to the scribble vertices and used to re-
move point samples from the current 2D sketch. The varia-
tional curve is re-computed using the remaining samples.

Figure 9: Examples of the eraser gesture (a) and smooth
gesture (b). These gestures manipulate the parameters used
to compute the final variational curve (dashed line).

The second gestural command is smooth, initiated by cir-
cling the desired smoothing region a minimum of 2 times.
Each point sample has a smoothing parameter associated
with it which is incremented if the point is contained in
the circled region. The variational curve is then re-computed
with the new smoothing parameters (Figure 9b). This ges-
ture can be applied multiple times to the same point samples
to further smooth the 2D sketch.

Finally, the pop gesture is used to manipulate entire 2D

sketches. Using the erase command to repair large sketch-
ing errors is tedious. Hence, we store individual sketches in
a stack. The pop gesture, which is input as a quick stroke
straight to the left, pops the topmost sketch and discards it.

We have found this system to be very effective for creating
smooth 2D sketches. This in turn improves the efficiency of
3D modeling, since fewer corrections need to be made to the
3D shape. One current limitation is that sharp creases in the
input sketch are lost, since the underlying variational curve is
always C2 continuous. We are developing additional gesture
operations to allow specification of creases.

4.2. Expectation Lists

In ShapeShop the user specifies only 2D silhouettes of the
desired 3D shapes. Under this constraint there is an un-
avoidable ambiguity regarding what shape-modeling oper-
ation the user intends. For instance, a given 2D contour can
always be interpreted as a blobby shape and a linear sweep.
One option is to require additional sketches or gestures to
resolve this ambiguity. It is unclear that this extra complex-
ity is more efficient than a visual representation. Hence, we
have borrowed the expectation lists used in various sketch-
based modeling systems [IH01][AJ03][FFJ04].

Figure 10: An example of an expectation list in ShapeShop.
The icons denote (from left to right) blend, cut, surface-
drawing, blobby inflation, linear sweep, and surface of rev-
olution. The icons are color-coded - green icons create new
volumes while magenta icons modify the current volume.

Existing systems have generally rendered small images of
what the updated surface would look like for each expecta-
tion list icon. For complex models the user may be required
to carefully inspect each image to find the desired action. In-
stead, We use color-coded iconic representations (Figure 10)
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which can be easily distinguished. Mistakes can be quickly
corrected by erasing nodes from the BlobTree.

The set of icons displayed in the expectation list is
context-dependent. For example, if the user draws a stroke
which produces a variational curve that is not closed, no
shape-creation icons are displayed. However, in many con-
texts a single stroke can be interpreted as any sketch action.
As the set of operations increases, additional strokes may be
necessary to prevent the expectation list from becoming too
large.

4.3. Dynamic 3D Clipping

Most of the sketch-based shape editing operations described
in Section 3 are based on view-parallel planes and ray-
surface intersections. It is frequently the case that the desired
editing region is obscured by some other part of the current
volume. To deal with this situation we use a dynamic cut-
ting plane. Owada [ONNI03] used a dynamic cutting plane
to support sketching of internal volumes. While this is pos-
sible in ShapeShop, we have found that the primary use for
our dynamic cutting plane is in resolving viewing issues and
depth-determination ambiguities.

The cutting plane is initiated by the L-shaped clip gesture.
The user draws a straight line across the surface followed by
a small perpendicular “tick” (Figure 11). The initial straight
line determines the cutting plane orientation, the tick direc-
tion determines which side of the plane to clip. Owada’s sys-
tem kept the “right” side of the line, which we found unintu-
itive when drawing horizontal lines.

Figure 11: A temporary cutting plane can assist with sketch-
based editing. In (a), the user draws an L-shaped gesture to
mark the cutting plane and orientation. Two different views
are shown after cutting in (b) and (c).

4.4. 3D Selection and Transformation

Procedurally-defined BlobTree volumes inherently support
non-linear editing of internal tree nodes. However, before a
primitive can be manipulated it must be selected. One option
is to cast a ray into the set of primitives and select the first-hit
primitive. This technique is problematic when dealing with
blending surfaces, since the user may click on the visible
surface but no primitive is hit.

Instead we implement picking by intersecting a ray with

the current volume, then select the primitive which con-
tributes most to the total field value at the intersection point.
This algorithm selects the largest contributor in blending sit-
uations, and selects the ’hole’ primitive when the user clicks
on the inside of a hole surface. Since the shape of the se-
lected primitive may not be obvious (if it is part of a blend),
we have experimented with several rendering modes (Fig-
ure 12) that display the selected internal volume.

Figure 12: Internal volumes can be displayed using (a)
transparency, (b) silhouette lines, or (c) transparency and
silhouttes.

This selection system only allows for selection of prim-
itives. To select composition nodes we implement a parent
gesture, which selects the parent of the current node. The
parent gesture is entered as a straight line towards the top
of the screen. Other tree editing operations, such as cut-and-
paste, currently require the use of a standard tree widget. An
integrated tree visualization tool with gesture-based editing
is a feature that we plan on exploring.

A selected primitive or composition node can be removed
using the eraser gesture described in Section 4.1. Removing
a compostion node is equivalent to cutting a branch from the
model tree - all children are also removed.

To support 3D manipulation we have implemented stan-
dard 3D translation and rotation widgets. These widgets pro-
vide both free-translation/rotation in the view-parallel plane
as well as constrained manipulation with respect to the unit
axes. Compared to the fluid gestural commands used else-
where in ShapeShop, these 3D widgets are rather crude.

5. Implementation Details

5.1. Hierarchical Implicit Volume Modeling

Given a continuous scalar function f : R
3 → R, we can de-

fine a volume V:

V =
{

p ∈ R
3 : f (p) ≥ viso

}
(1)

where viso is called the iso-value. We call V an implicit vol-
ume. The surface S of this volume is defined by replacing
the inequality in (1) with an equality. We call this surface
the implicit surface [Blo97]. This definition also holds in 2D,
where S is a contour.

Two implicit volumes, defined by scalar functions f1 and
f2, can be combined functionally using a composition oper-
ator G( f1, f2) ∈ R+. Since G is also scalar function, com-
position operators can be applied recursively. A variety of
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operators are available for performing Computational Solid
Geometry (CSG), blending, and space deformation [Blo97].

Recursive application of composition operators results in
a tree-like data structure with implicit volumes (primitives)
at the leaves and composition operators at tree nodes. The
final scalar field is evaluated at the root composition opera-
tor, which recursively evaluates its children, and so on. This
type of procedurally-defined implicit volume model is often
called a BlobTree [WGG99].

We restrict the set of primitives we use to those with
bounded † scalar fields. A scalar field f is bounded if f = 0
outside some sphere with finite radius. Bounded fields guar-
antee local influence, preventing changes made to a small
part of a complex model from affecting distant portions of
the surface. Local influence preserves a “principle of least
surprise” that is critical for interactive modeling.

One type of implicit volume primitive with a bounded
scalar field is the skeletal primitive, defined by a geometric
skeleton E (such as a point or line) and a one-dimensional
function g : R+ → R+. The scalar function f is then:

fE,g(p) = g◦dE(p) (2)

where dE is a function that computes the minimum Euclid-
ean distance from p to E. The shape of a skeletal primitive
is primarily determined by E. We use the following function
for g [Wyv05]:

gwyvill(x) = (1− x2)3 (3)

where x is clamped to the range [0,1]. This polynomial
smoothly decreases from 1 to 0 over the valid range, with
zero tangents at each end. We choose 0.5 as the iso-value.

The basic tree data structure can be augmented by attach-
ing an affine transformation to each node, producing a scene
graph suitable for animation. To avoid useless field value
queries, a bounding volume containing the non-zero portion
of the scalar field can be attached to each node.

To improve interactivity, we use Hierarchical Spatial
Caching [SWG05]. Cache nodes containing lazily-evaluated
discrete volume datasets are inserted into the BlobTree to
approximate portions of the model tree. This technique pro-
vides interactive performance for complex models.

5.2. A Sketch-Based BlobTree Primitive

Our algorithm for inflating a 2D curve C consists of two
steps. First, we create a bounded 2D scalar field fM , such
that the iso-contour fM = viso closely approximates C. Then,
we sweep this 2D field along an infinite 3D axis and bound it

† We use the term bounded, rather than compact support, in an at-
tempt to draw an analogy to the concept of bounding boxes that is
ubiquitous in computer graphics.

using gwyvill (Equation 3). The following description is nec-
essarily brief, see our technical report [SW05] for a detailed
discussion of our blobby inflation technique, linear sweeps,
and surfaces of revolution.

Computing the 2D scalar field fM also consists of two
steps, first creating an unbounded field and then bounding
it with gwyvill . We create an unbounded scalar field fM̂ such

that the iso-contour fM̂ = g−1
wyvill(0.5) approximates C by fit-

ting a variational curve to a set of sample points lying on C.
To adequately constrain the result, we must also consider
off-curve points when fitting the variational solution. We
automatically generate inside and outside off-curve points
along vectors normal to C, similar to the normal constraints
used in 3D variational surface fitting [CBC∗01] [TO02]. Ad-
ditional constraint points are created at a constant radius rc

from c, the center of the bounding box of C. The purpose of
these additional constraint points is to attempt to force fM̂ to
more closely approximate the distance field of C. Distance
fields are not used because they contains C1 discontinuities
which create the appearance of creases in the inflated sur-
face.

Once we have computed the 2D variational scalar field
fM̂ , we define fM at 2D points u:

fM(u) = gwyvill
(

fM̂(u)
)

(4)

which is bounded inside a circle of radius 2 if C is scaled to
fit inside a unit box before computing fM̂ and a value of 2 is
used for rc. The resulting scalar field is C2 smooth and the
iso-contour fM = viso closely approximates C (Figure 13).

Figure 13: 2D scalar field created using Equation 4. Iso-
contours hilighted using sin function before mapping to
grayscale. Iso-surface is marked in red.

Creating a 3D bounded scalar field based on fM is rela-
tively straightforward. Given an origin o, normal n, and two
mutually perpendicular vectors k1 and k2 in the plane de-
fined by n, we can define an infinite linear sweep of the field
fM . To evaluate fM at some 3D point p, we require a function
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F that maps p to a 2D point u:

F(p) = Rot
[
k1 k2 n

]
·Tr

[
−(o+ sn)

]
·p (5)

where s = (p−o) ·n, Rot [e1 e2 e3] is a homogeneous trans-
formation matrix with upper left 3x3 submatrix [e1 e2 e3]�

and Tr[et ] is a homogeneous translation matrix with trans-
lation component et . The z coordinate of F(p) is dropped,
resulting in a 2D point u.

The linear sweep scalar field flinear is then defined as

flinear(p) = fM ( F(p) )

This function flinear defines an scalar field of infinite extent
along n. To bound the field, we multiply flinear by gwyvill :

fin f late(p) = gwyvill

(
|s|

dendcap

)
· flinear(p) (6)

where dendcap determines the width of the falloff region. The
width of the implicit surface varies (Figure 1) because fM
has increasing values inside the 2D contour, as can be seen
in Figure 13. Larger values of flinear extend further along n,
producing a variable-width surface that mimics the inflation
techniques of Teddy [IMT99] and other systems.

Equation 6 is computationally expensive because evaluat-
ing fM̂ is is O(N) in the number of constraint points. The
non-zero region of fM can be discretely approximated using
a field image. An example is shown in the inset of Figure 13.
The field image is sampled in constant time using a C1 con-
tinuous biquadratic reconstruction filter [BMDS02]

The chordal axis techniques used in previous sketch mod-
eling systems [IMT99] can be adapted to create implicit sur-
faces based on the skeletal primitive approach (Equation 2).
However, the resulting scalar field contains C1 discontinu-
ities which produce unintuitive blending behavior. In addi-
tion, this skeletal approach is much slower than the field
image-based technique we have described.

Figure 14: A Mock-up of a mechanical part sketched with
ShapeShop. This model was sketched in under 10 minutes.

5.3. Sketch Modeling Implementation

Sketch-modeling operations are implemented by replacing
the root node of the current BlobTree with a new com-
position operator. The existing root node is added as the
first child, and the new primitive as the second. To imple-
ment cutting (Section 3.3), we create a new CSG differ-
ence node which subtracts a linear sweep from the current
volume. We use a C1 CSG difference function [BWdG04]
which prevents unsightly gradient discontinuities. Blending
(Section 3.4) is implemented with the parameterized Hyper-
blend [Ric73] [WGG99], which affords some control over
the blend surface.

To visualize the implicit surface we use an optimized
version of Bloomenthal’s polygonizer [Blo94]. We pro-
vide control over the polygonizer resolution, allowing the
user to determine the trade-off between accuracy and in-
teractivity. The images in this paper were all rendered us-
ing high-resolution polygonizations which take approxi-
mately 5-10 seconds to compute. The Extended Marching
Cubes [KBSS01] polygonization algorithm is used to re-
cover sharp features (Figure 14).

Figure 15: Heart model sketched in approximately 30
minutes. Complex branching structures can be created
quickly by blending simple parts. Our surface-drawing tech-
nique is useful for creating anatomical details such as veins.

6. Results

The benefit of an underlying analytic representation is par-
ticularly apparent in CAD-style models (Figure 14). Sharp
edges created with CSG are mathematically precise. Since
the BlobTree is also a scene graph, the separate parts in this
model can be animated. This could, for example, allow an
engineer to easily create an interactive assembly manual.
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The flexible blending capabilities of implicit modeling
are useful when constructing biological models (Figure 15).
Since smooth surface transitions are automatic, complex
topologies can be assembled quickly from simple parts. The
volumetric BlobTree representation supports sketching of
internal volumes (Figure 16), which can be applied to bio-
logical models to aid in visualization and communication.

Many of the free-form sketch-based systems described
in Section 2 have explored character modeling. However,
the hierarchical nature of the BlobTree allows our character
models to be fully articulated, even when the internal com-
ponents are blended to form smooth surfaces (Figure 17).
These articulated models can be animated directly.

7. Discussion

Hierarchical implicit volume modeling is a useful tool for
a wide range of modeling tasks. Employing BlobTrees as
an underlying shape representation has allowed us to design
an interactive system that supports sketch-based creation of
complex 3D models. The models displayed in Figures 14-
17 exhibit significantly higher surface complexity than the
models demonstrated in existing systems. Further, these
models do not indicate the complexity limit of ShapeShop,
but rather the point at which these models were considered
“finished” by the creator (the primary author).

Only informal observations of graduate students using
ShapeShop have been performed. The area that caused the
most confusion was selection of non-primitive nodes. Users
must understand the hierarchical BlobTree concept, however
currently we do not visualize the tree and inferring it’s struc-
ture by inspection is difficult. This must be improved in fu-
ture systems. The 3D transformation widgets were also prob-
lematic, we plan on exploring techniques based on those de-
scribed in the SKETCH system [ZHH96]. Many aspects of
the sketch-based interface should be analyzed with formal
usability studies.

Figure 16: The body of this car model was initially sketched,
and then the internal structure was carved out. Right image
shows cut-away view.

The 2D curve-sketching technique described in Sec-
tion 4.1 is limited to smooth contours. Integration of meth-
ods for adding sharp creases would be beneficial, par-
ticularly in the case of CAD models. Techniques such

as those described in suggestive sketch-based systems
[ZHH96] [JSC03] would also be useful to assist with sketch-
ing CAD-style models.

A key property of implicit volume modeling is that com-
position operators do not depend on the shape of underlying
volumes. We have demonstrated that with BlobTrees, CAD-
style solid modeling and free-form modeling can be inte-
grated into a single interface. While generality has practi-
cal advantages, a more fundamental benefit may come from
giving designers a modeling tool which does not prescribe a
particular modeling “style”.

Figure 17: Character models created with ShapeShop. The
skeleton model (left) is composed of 36 primitives in a hier-
archical arrangement that is suitable for direct animation.
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Abstract 
We propose a new approach for reconstructing a three-
dimensional object from a single two-dimensional freehand 
line drawing depicting it. A sketch is essentially a noisy 
projection of a 3D object onto an arbitrary 2D plane. 
Reconstruction is the inverse projection of the sketched 
geometry from two dimensions back into three dimensions. 
While humans can do this reverse-projection remarkably 
easily and almost without being aware of it, this process is 
mathematically indeterminate and is very difficult to 
emulate computationally. Here we propose that the ability of 
humans to perceive a previously unseen 3D object from a 
single sketch is based on simple 2D-3D geometrical 
correlations that are learned from visual experience. We 
demonstrate how a simple correlation system that is exposed 
to many object-sketch pairs eventually learns to perform the 
inverse projection successfully for unseen objects. 
Conversely, we show how the same correlation data can be 
used to gauge the understandability of synthetically 
generated projections of given 3D objects. Using these 
principles we demonstrate for the first time a completely 
automatic conversion of a single freehand sketch into a 
physical solid object. These results have implications for bi-
directional human-computer communication of 3D graphic 
concepts, and might also shed light on the human visual 
system. 

Introduction  
In a survey of adequacy of CAD tools for conceptual 
design (Puttre, 1993), an industrial designer relating to an 
existing CAD system is quoted saying “The interface is just 
not for us. I can do thirty sketches on paper by the time it 
takes me to do two on the computer”. Indeed, it is 
interesting to watch how a designer, when given a 3D 
design problem, instinctively reaches for a pencil and 
paper. Despite the abundance of computerized 3D graphic 
software and CAD systems, raw sketching has remained 
one of the most useful and intuitive tools at the conceptual 
design stage. When designing 3D artifacts, user interfaces 
that deal with spatial construction are typically 
cumbersome to use and hamper creative flow. Freehand 
sketching, on the other hand, still provides a fluent method 

for conveying 3D information among designers, even 
though it uses an inherently flat medium. Humans seem to 
be able to understand 3D spatial concepts even when they 
are depicted on 2D medium in the form of simple and 
inaccurate line drawings. It is exactly this ability – to 
understand and generate sketches – that we wish to 
emulate. 
 The importance of sketching in design has been a subject 
of intensive study (Herbert, 1987; Larkin and Simon, 1987; 
Fang, 1988; Walderon and Walderon 1988; Ullman et al, 
1990; Jenkins and Martin, 1995). These studies agree that 
sketching appears to be important for the following 
reasons: 

• It is fast, suitable for the capacity of short term memory, 
• It is implicit, i.e. describes form without a particular 

construction sequence, 
• It serves for analysis, completeness check and 

simulation, 
• It is inexact and abstract, avoiding the need to provide 

unnecessary details, 
• It requires minimal commitment, is easy to discard and 

start anew 
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Figure 1: A sketch provides two of the coordinates (the x,y) of 
object vertices. A reconstruction must recover the unknown depth 
coordinates (Z). In parallel projections, these degrees of freedom 
are perpendicular to the sketch plane; in a perspective projection, 
they run along lines that meet at the viewpoint (not shown). 



Background 
A sketch is inherently a collection of lines (edges) on a flat 
surface (paper), representing an arbitrary projection of an 
arbitrary object. In this work we assume all edges of an 
object are sketched (wireframe) and are straight lines. We 
also assume an online source, so that each stroke 
corresponds to a single edge and edges meet at stroke 
endpoints. The projection transformation removes the 
depth information from each vertex of the edge-vertex 
graph. Consequently, any arbitrary set of depths {Z} that 
are re-assigned to the vertices of the graph constitutes a 3D 
configuration whose projection will match the given sketch, 
and so is a candidate reconstruction (Figure 1). 
 To recover the lost depth information, a system needs to 
extract spatial information from the inherently flat sketch. 
Although this step is mathematically indeterminate, humans 
seem to be able to accomplish this with little difficulty. 
Moreover, despite the infinitely many possible candidate 
objects, most observers of a sketch will agree on a 
particular interpretation. This consensus indicates that a 
sketch may contain additional information that makes 
observers agree on the most plausible interpretation. 
 There are several reports of methods used to reconstruct 
a 3D object from multiple views by matching features 
between different views. However, these approaches are 
not suitable for analysis of a single sketch. The computer-
vision literature also deals extensively with techniques for 
extracting spatial information from images. These methods 
typically rely on various depth cues such as shading, 
lighting, occlusion, shadows, perspective, optical flow, 
stereo and motion cues. These cues are not available in our 
problem since we are dealing with a single non-imaging 
source. We are left with only the raw sketch strokes 
representing edges of the depicted object.  
 The literature contains several fundamentally different 
approaches to interpretation and reconstruction of objects 
and scenes from single-view line drawings. These are 
briefly described below. Many reported systems use a 
mixture of these approaches to enhance their performance.  
 

 Line labeling is a form of interpretation of a line 
drawing; it provides spatial information about the scene but 
does not yield an explicit 3D representation. Each line in 
the drawing is assigned one of three meanings: convex, 
concave, or occluding edge. Junction dictionaries and 
constraint graphs are used to find consistent assignments 
(Huffman, 1971; Clowes, 1971, and many works since). 
 The gradient space approach draws a relationship 
between the slope of lines in the drawing plane and the 
gradient of faces in the depicted 3D scene. Assuming a 
particular type of projection, an exact mathematical 
relationship can be computed, and possible interpretations 
of the drawing can be constrained (Mackworth, 1973; Wei 
1987). 
 The linear System approach uses a set of linear 
equalities and inequalities defined in terms of the vertex 
coordinates and plane equations of object faces, determined 
by whether vertices are on, in front of, or behind the 
polygon faces. The solvability of this linear program is a 
sufficient condition for the reconstructability of the object 
(Sugihara, 1986; Grimstead and Martin, 1995). Linear 
programming optimization may yield a solution. 
 Interactive methods gradually build up the 3D structure 
by attaching facets one after the other as sketched and 
specified by a user. The aim is to provide a practical 
method for constructing 3D models in an interactive 
CAD/CAM environment (Fukui, 1988; Lamb and 
Bandopadhay, 1990). 
 The primitive identification approach reconstructs the 
scene by recognizing instances or partial instances of 
known primitive shapes, such as blocks, cylinders etc. This 
approach contains a strict assumption that the depicted 3D 
object is composed entirely of known primitives, but has 
the benefit of yielding the final 3D structure in a convenient 
constructive solid geometry (CSG) form (e.g. Wang and 
Grinstein, 1989). 
 The minimum standard deviation approach focuses 
on a single and simple observation; that human 
interpretation of line drawings tends towards the most 
‘simple’ interpretation. Marill (1991) defined simplicity as 
an interpretation in which angles created between lines at 
junctions are as uniform as possible across the 
reconstructed object, inflating the flat sketch into a 
regularized 3D object (Leclerc and Fiscler, 1992). 
 Analytical Heuristics approaches use coded soft 
geometrical constraints such as parallelism, skewed 
symmetry and others to seek the most plausible 
reconstruction (Kanade, 1980; Lipson and Shpitalni, 1996). 

Geometric Correlations 
The prevailing common assumption we abandon in this 
work is generality: The misconception that humans’ 
remarkable ability to interpret sketches applies in general to 
arbitrary objects. In a simple experiment we tried a reversal 
of roles: We let the computer generate sketches of arbitrary 
3D scenes, and asked users to interpret those sketches. We 
observed that when the scene contained random objects 

 

 

 

(a) (b) 
Figure 2: Humans are better at understanding sketches of regular 
objects (a) A random scene composed of arbitrary polyhedra, (b) 
A man-made scene composed of right-angled wedges 



(such as tetrahedrons, Fig 2a), subjects were not able to 
reconstruct the scene correctly at all from a single sketch; 
however, when the scene depicted man-made objects (such 
as right-angled wedges, Fig 2b), the scenes were more 
readily reconstructable. Hence we concluded that the 
ability of humans to correctly perceive 3D scenes depicted 
in sketches is not general, but relies on visual experience. 
We thus offer the alternative reconstruction approach of 
acquired geometrical correlations: Humans learn 
correlations between 3D geometry and its corresponding 
2D projected pattern. For example, human might learn to 
correlate 3D tactile geometric information with 2D images 
projected on their retina. The following section suggests 
one way of synthetically capturing and using this 
information.  
 At the base of our approach is the need to gather 
correlations between 3D geometry and its corresponding 
2D projections. Whereas general geometrical relationships 
can be derived analytically (Ulupinar and Nevatia, 1991; 
Ponce and Shimshoni, 1992), these relationships become 
more elaborate when collected for non-general scenes. We 
chose to collect these relationships empirically by 
generating many 3D scenes (like Fig. 2b) and projecting 
them with noise (normal distribution σ=2% of object 
width). 

We now define a 3D-2D geometric correlation as 
probability of a certain 2D configuration to represent a 
certain 3D configuration. For example, consider Figure 3a. 
The 3D line-pair AB creates a 3D angle α3D=∠AB. When 
the line pair is projected onto the sketch plane, it produces 
line-pair ab. The projected angle is α2D=∠ab. Measuring 
this correlation over many arbitrary projections of objects 
in a certain repertoire, we can derive the probability density 
function pdf(α3D, α2D) for that repertoire of objects. We can 
then use this probability function to determine the 
likelihood of a candidate reconstruction. 

Instead of just measuring angles, we can measure also 
line lengths. Here we would measure the correlation 
between length ratio in 3D ρ3D=A/B to length ration in 2D 
ρ2D=a/b. Similarly, we might chose to correlate A/B with 
∠ab, or ∠AB with a/b, and so forth. Moreover, we can 
expand these correlations to third order, by correlating 
various length-angle relationships among three lines, such 
as the cone angle of three lines in 3D A×B⋅C versus the 
cone angle in 2D min(a⋅b, b⋅c, c⋅a), see Fig 3b.  

Higher order correlations may also be recorded in the 
form of trivariate probability density functions such as 
pdf(α3D, α2D, ρ2D), and even higher orders. In our 

experiments we used only bivariate probabilities. These 
were collected for 100,000 random scenes and stored in 
tables such as those shown in Fig. 4. Note that more 
efficient correlation memory representations could have 
been used, such as neural networks or Bayesian networks. 
 Once geometric correlation functions are known, it is 
possible to compute the probability of a particular 3D 
object being the source of a given 2D sketch. This amounts 
to measuring a 3D angle α3D of line pairs in the candidate 
reconstruction, and the corresponding 2D angle α2D in the 
sketch, and using p(α3D, α2D) to estimate the probability of 
α3D given α2D: 
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where δα’s are the tolerances of the measurements. This 
probability is accumulated (multiplied) for all line 
pairs/triplets in the candidate object and sketch in question 
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Figure 3: Measuring 2D-3D correlations. (a) second order, (b) 
third order. 
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Figure 4: Measuring 2D-3D second order correlations. Dark 
areas show high correlation. Strips on right and bottom of each 
table show marginal probabilities. Note dark top-left corner of 
bottom-left plot. 

  

  
Figure 5: Wedge: Single 2D sketch input and three views of 3D 
output reconstruction. 



over all correlation tables learned, to yield the overall 
candidate probability. 
 Once the probability of a candidate reconstruction can be 
evaluated, then the reconstruction process amounts to an 
optimization problem, where the objective is to find a set of 
depth coordinates {Z} that maximizes the probability.  
 However, the optimization process is far from easy. The 
relatively high degree of coupling among vertices make the 
optimization landscape rugged with local minima. 
Moreover, the high dimensionality of the search space 
(equal to the number of vertices in the sketch minus one) 
makes brute force search techniques impractical. We have 
been trying various techniques ranging from 
straightforward random search to hill-climbing, simulated 
annealing, and genetic algorithms. Note that for any given 
solution set Z, the inverse solution –Z is also equally valid 
(this is known as the Necker cube illusion). Similarly, the 
trivial solution Z=constant also has relatively high 
probability. This multi-modal nature creates many local 
optima, and good optimization techniques for this problem 
still require more research. 
 The reconstruction step outlined above generates only a 
3D wireframe object. In order to complete the transition 
into a true solid, it is still necessary to identify which of the 
edge circuits constitute faces of the object, and what is the 
material side of each face. We use a topological face 
identification algorithm (Shpitalni and Lipson, 1996) to 

mark faces, and then chose outward-pointing normals so 
that joined faces are consistent and the total object volume 
is positive. Once the 3D solid model exists, it can be 
tessellated for rendering and for production using 
commercial 3D Printing (rapid prototyping). The automatic 
production of a physical model constitutes the ultimate 
confirmation of the rigor of the interpretation and its 
topology. 

Results 
Since this article is written on a flat paper, resulting 3D 
reconstructions will be exhibited themselves as 2D 
drawing, thereby re-creating the very problem they are 
trying to solve. Nevertheless, we display each 3D solution 
rendered from multiple viewpoints to make the 
interpretation clear. Object faces were colored arbitrarily. 
 First, Fig 5 shows how a sketch of a right-angled wedge 
is reconstructed into a 3D wedge. This is merely a 
confirmation, since the geometric correlations were 
collected for wedge-based scenes. Figure 6 shows how a 

  

 
 

  
Figure 7: Object “Slide”: 2D Single freehand sketch input (top 
left) and several views of automatically generated 3D 
reconstruction. Bottom right is final physical solid object output. 
Reconstruction required approximately 500 hill-climbing cycles (5 
Minutes on P500) 

 

 

  
Figure 6: Object “Slot”: 2D Single freehand sketch input (top 
left) and several views of automatically generated 3D 
reconstruction. Bottom right is automatically generated final 
physical solid object output. Reconstruction required approx. 
5000 hill-climbing cycles (50 Minutes on P500) 



more complex structure, not seen by the system during its 
training period, is reconstructed correctly. Note that the 
reconstructed object is not accurate – it is a rough 3D 
object, resembling the roughness of its input. While 
reconstruction of an accurate 3D model from a rough 2D 
sketch requires more information (like dimensions and 
specific constraints), a rough 3D model is useful for many 
applications. Figure 7 shows an additional example. 

Assessing view quality 
The correlation tables provide the probability that a 3D 
model is the source of a 2D sketch. This information can 
also be used to assess the quality, or “understandability” of 
a given sketch for a particular 3D scene. This is because a 
low sketch correlation will make the identification of the 
correct reconstruction harder.  We can thus use the 
correlation factor as a figure of merit for selecting good 
sketch viewpoints (Figure 8). 

Applications 
Enabling a computer to correctly perceive hand-drawn 
sketches as 3D objects opens an opportunity for new forms 
of human-computer communication of 3D concepts, and 
for performing computer aided engineering (CAE) analysis 
at earlier preliminary design stages (Lipson and Shpitalni, 
2000). 

Here we investigate the possibility of combining the 
advantages of non-manipulable pencil-and-paper sketching 
on real paper, with convenience of 3D manipulation of 
objects on a computer. Traditionally, a paper sketch is a 
more fluent medium to describe a 3D object, but once the 
sketching has commenced, the viewpoint cannot be 
changed. On a CAD system, viewpoint is easily changed 

but the direct pencil-and-paper input is lost. However, once 
a computer is capable of perception of spatial relationships 
in the sketch, the viewpoint can be changed in midst of 
sketching. In an experimental system shown in Figure 9 we 
set up a glass drawing board on which we mounted 
translucent sheet of paper. The user operated an infrared 
pen whose motion could be detected by a camera with an 
IR filter. User’s pen strokes on the paper were converted 
into graphic strokes that were projected back onto the 
paper. This setup provided an emulation of real pencil-and-
paper drawing, while still permitting full interactive ability. 
After completing partial drawing, the scene could be 
reconstructed and rotated, so that sketching could be 
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Figure 8: Measuring understandability of sketches: Given 3D Cube 
(top left), and three projections with varying degrees of correlations, 
corresponding to degree of “understandability”. 
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Figure 9: Sketch hardware setup combines natural pencil-and-paper 
sketching environment but allows changing viewpoint in midst of 
sketching. 



resumed from a different viewpoint. Processing speed, 
however, still needs to be improved before this can be a 
truly useful system. 

Conclusions 
In this paper we have shown how a 2D line drawing can be 
reverse-projected into three dimensions based on 
optimizing learned 2D-3D geometric correlations. These 
correlations are acquired from analyzing many 3D scenes 
and their corresponding 2D views. Moreover, the same 
information can be used to judge quality of projections. We 
demonstrated this approach using four simple second order 
correlations (angle and length permutations) and one third-
order correlation (2D/3D cone angles). We used matrices 
to store the correlations, and used hill climbing to seek the 
optimal reconstruction. We demonstrated how this 
approach could ultimately be used to automatically convert 
a single rough sketch into a physical solid object without 
external assistance. 
 While we appreciate that more advanced correlation 
representation methods could be used to store higher order 
correlations more efficiently (e.g. neural networks or 
Bayesian networks), and more specialized optimization 
algorithms could enhance our results, we hypothesize that 
this statistical approach is simpler and perhaps more 
biologically plausible than traditional constraint-solution 
techniques proposed to date in the literature. Similarly, 
while reconstruction time and success rate is still far from 
being viable for interactive applications, we hope these 
results may have implications for bi-directional human-
computer communication of 3D graphic concepts, and 
might also shed light on the workings of the human visual 
system. 
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Abstract

We present mathematical sketching, a novel, pen-based, modeless
gestural interaction paradigm for mathematics problem solving.
Mathematical sketching derives from the familiar pencil-and-paper
process of drawing supporting diagrams to facilitate the formula-
tion of mathematical expressions; however, with a mathematical
sketch, users can also leverage their physical intuition by watch-
ing their hand-drawn diagrams animate in response to continuous
or discrete parameter changes in their written formulas. Diagram
animation is driven by implicit associations that are inferred, either
automatically or with gestural guidance, from mathematical expres-
sions, diagram labels, and drawing elements. The modeless nature
of mathematical sketching enables users to switch freely between
modifying diagrams or expressions and viewing animations. Math-
ematical sketching can also support computational tools for graph-
ing, manipulating and solving equations; initial feedback from a
small user group of our mathematical sketching prototype applica-
tion, MathPad2, suggests that it has the potential to be a powerful
tool for mathematical problem solving and visualization.

CR Categories: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Interaction Styles G.4 [Mathematics of Comput-
ing]: Mathematical Software—User Interfaces;

Keywords: pen-based interfaces, mathematical sketching, ges-
tures

1 Introduction

Diagrams and illustrations are often used to help explain math-
ematical concepts. They are commonplace in math and physics
textbooks and provide a form of physical intuition about abstract
principles [Hecht 2000; Varberg and Purcell 1992; Young 1992].
Similarly, students often draw pencil-and-paper diagrams for math
problems to help in visualizing relationships among variables, con-
stants, and functions. With the drawing as a guide, they can write
the appropriate math to solve the problem. However, such static
diagrams generally assist only in the initial formulation of mathe-
matical expressions, not in the “debugging” or analysis of those ex-
pressions. This can be a severe limitation, even for simple problems
with natural mappings to the temporal dimension, or for problems
with complex spatial relationships.

By animating sketched diagrams from changes in associated math-
ematical expressions, users can evaluate different formulations with
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Figure 1: A mathematical sketch used to explore damped harmonic
oscillation. It shows a spring and mass drawing and the necessary
equations for animating the sketch. The label inside the mass asso-
ciates the mathematics with the drawing.

their physical intuitions about motion. They can sense mismatches
between animated and expected behaviors and can often see that a
formulation is incorrect and also make better educated guesses as
to why. Alternatively, correct formulations can be explored intu-
itively, perhaps to home in on an aspect of the problem to study
with a more conventional numerical or graphing technique. It is
beyond the scope of this paper to evaluate the educational merits of
mathematical sketching; however, we are convinced that the rapid
creation of mathematical sketches can unlock a range of insight,
even for such simple formulations as the ballistic 2D motion of a
spinning football, where correlations among position, rotation and
their derivatives can be challenging to comprehend.

This paper presents MathPad2, a prototype application for creat-
ing mathematical sketches (see Figure 1). MathPad2 incorporates a
novel gestural interaction paradigm that lets users modelessly cre-
ate handwritten mathematical expressions using familiar math no-
tation and free-form diagrams, including associations between the
two, with only a stylus. We posit that because users must write
down both the math and the diagrams themselves, MathPad2 will
not only be general enough to apply to a full spectrum of problems,
but may also support deeper mathematical understanding than alter-
native approaches including professionally created interactive illus-
trations. Thus, MathPad2’s central design principle is to be broadly
applicable by enforcing the notion that as much behavior as possi-
ble be specified by user-written mathematical expressions, not by
rules or behaviors implicitly embedded in the system.

To present MathPad2 from a system’s perspective, we describe var-
ious user interface and recognition options and discuss why we
chose our current design. The next section considers related work
and is followed by sections on MathPad2’s gestural user interface
and on its visual parsing engine. We then present an example sce-
nario of how an introductory physics student might use the system.
Finally, we discuss informal feedback from a small user group and



how mathematical expression recognition and parsing accuracy af-
fects system usability.

2 Related Work

The idea of using computers to create dynamic illustrations of
mathematical concepts has a long history. One of the earliest dy-
namic illustration environments was Borning’s ThingLab, a simula-
tion laboratory environment for constructing dynamic models of ex-
periments in geometry and physics, that relied heavily on constraint
solvers and inheritance classes [Borning 1979]. Other systems
such as Interactive PhysicsTM and The Geometer’s SketchPadTM

also let the user create dynamic illustrations; these systems are all
WIMP-based (Windows, Icons, Menus, Pointers) resulting in a sig-
nificant amount of mode switching and loss of fluidity within the
interface. In addition, they do not allow the user to write handwrit-
ten mathematics to create these illustrations. Because MathPad2

uses handwritten mathematical expressions, users can leverage their
knowledge of mathematical notation in order to create mathemati-
cal sketches. Java applets that provide both interactive and dynamic
illustrations have also been developed for exploring various math-
ematical principles [Laleuf and Spalter 2001; Spalter and Simpson
2000]. However, these applets are not general, typically provide
limited control over the illustration, and rarely show the user the
mathematics behind the illustration.

One of the key contributions of the MathPad2 system is its gestural
user interface. This type of interface has been used in many dif-
ferent applications including cooperative objected-oriented design
[Damm et al. 2000], conceptual design in 2D [Gross and Do 1996]
and 3D [Igarashi et al. 1999; Zeleznik et al. 1996], musical score
creation [Forsberg et al. 1998], prototyping user interfaces [Lan-
day and Myers 1995], and whiteboard systems [Mynatt et al. 1999;
Moran et al. 1997]. While these gestural interfaces have worked
well for their particular applications, they are either modal or have
limited drawing domains. In contrast, MathPad2 strives for a mod-
eless gestural interface that allows fluid transitions among drawing
free-form shapes, writing mathematics, and performing gestural ac-
tions.

Alvarado [Alvarado 2000] and Kara [Kara et al. 2004] let the user
make sketched diagrams that are recognized as drawing primi-
tives with domain knowledge from specific disciplines and then
animated. Although these systems provide powerful illustrations
of physics and mathematical concepts, they are limited because
of their domain knowledge and because they hide the underlying
mathematical formulations from the user.

The primary focus of systems such as MathematicaTM, MapleTM,
MathCadTM, and MatlabTM has been entering mathematics for
computation, symbolic mathematics, and illustration. These tools
can create dynamic illustrations using mathematics as input. How-
ever, the mathematical notation used in these systems is one-
dimensional, requiring unconventional notation for concepts that
would be intuitive using 2D handwritten mathematics. In addition,
these systems do not let the user create diagrams in a natural pencil-
and-paper style.

Finally, a number of systems let users enter 2D handwritten mathe-
matics in the context of math recognition and parsing, such as those
found in [Zanibbi et al. 2002; Chan and Yeung 2000a; Matsakis
1999; Miller and Viola 1998]. Only a few of these systems go
beyond just exploring and developing recognition technology. For
example, Chan developed a simple pen-based calculator [Chan and
Yeung 2001] while xThink, Inc. developed MathJournalTM, a sys-
tem designed to solve equations, perform symbolic manipulation,

and make graphs. However, we are not aware of any system that
lets users make dynamic illustrations with handwritten 2D mathe-
matics.

3 MathPad2 and Mathematical Sketching

Mathematical sketching is the process of making simple illustra-
tions from a combination of handwritten 2D mathematical expres-
sions and sketched diagrams. Combining mathematical expressions
with diagram elements, called an association, is done either implic-
itly using diagram labels as input to an inferencing engine or man-
ually using a simple gestural user interface. The formulations in
the mathematical sketch of Figure 1 are written as digital ink and
converted, using our mathematical expression recognition and pars-
ing engine, for further processing into equivalent one-dimensional
string representations required by our computational back end. In-
dividual diagram elements can be associated with various mathe-
matical expressions and will behave accordingly. The user can view
the sketch results as an animation that is based on the underlying
mathematical specification.

The following three sections describe the user interface, the sketch
parser, and the animation engine of our MathPad2 system.

3.1 User Interface

An important goal of the MathPad2 prototype is to facilitate math-
ematical problem solving without imposing any interaction burden
beyond what would arise with traditional media. Since pencil-and-
paper users switch fluidly between writing equations and drawing
supporting diagrams, a modeless interface is highly desirable. Al-
though a simple free-hand drawing pen would suffice to mimic pen-
cil and paper, we want to support computational activities including
formula manipulation, diagram rectification (see section 3.2.4), and
animation. This functionality requires extending the notion of a
free-hand pen, either implicitly by parsing the user’s 2D input on
the fly or explicitly by letting the user perform gestural operations.
We chose an interface that combines both in an effort to reduce
the complexity and the ambiguities that arise in many hand-drawn
mathematical sketches – we use parsing to recognize mathematical
expressions and make associations, while we use gestures to seg-
ment expressions and perform editing operations.

The challenge for MathPad2’s gestural user interface is for its ges-
tures not to interfere with the entry of drawings or equations and
yet still be direct and natural enough to feel fluid. The following
sections describe the gestural interface summarized in Figure 2.

3.1.1 Writing Mathematical Expressions

Inking Writing mathematical expressions and diagrams in
MathPad2 is straightforward: users draw with a stylus on a Tablet
PC as they would using pencil and paper. The only complication in
writing expressions is how errant strokes are corrected. Although
the stylus can be flipped over to use its eraser, we found that a ges-
tural action not requiring flipping was both more accurate (because
of hardware characteristics of the stylus) and more convenient. We
therefore first designed a scribble erase gesture in which the user
scribbles with the pen back and forth over the ink strokes to be
deleted. The drawback of this first implementation was that it cre-
ated too many false positives, recognizing scribble erase gestures



Figure 2: Gestures for interacting with MathPad2. Gesture strokes in the first column are shown here in red for clarity. In the second column,
cyan-highlighted strokes provide association feedback (the highlighting color changes each time a new association is made), and magenta
strokes show nail and angle association/rectification feedback. Note that the first and last gesture are equivalent: the system examines the ink
strokes inside the lasso to determine whether to perform stroke grouping or recognition.



when in fact the user had intended to draw ink and not erase any-
thing. To alleviate this problem we decided on the use of a com-
pound gesture because of its relative simplicity and ease of execu-
tion. Thus our current definition of scribble erase is the same scrib-
ble stroke as before followed directly by a tap. In practice, users
found this compound gesture easy to learn, effective in eliminating
false positives, and not significantly more difficult or slower than
the simple scribble gesture.

Parsing Expressions Once mathematical expressions are drawn,
they must be parsed by the system and converted to strings for use
by a computational engine (Matlab in this case). Our initial at-
tempt, clicking on a recognize button that attempted to recognize
all math on the page, was problematic because it was hard to algo-
rithmically determine “lines of math” accurately, especially when
the expressions were closely spaced, at unusual scales or in unusual
2D arrangements. We therefore opted for a manual segmentation
alternative in which the user explicitly selects a set of strokes com-
prising a single mathematical expression by drawing a lasso. Since
in a modeless interface making a lasso cannot be distinguished from
drawing a closed curve, we needed to disambiguate the two actions.
An approach that worked well for some was to lasso lines of math
while pressing the barrel button on the stylus. However, many peo-
ple inadvertently triggered this button when trying to draw, while
others found pressing a barrel button awkward. Once again, the so-
lution was to use compound gestures – this time drawing a lasso
around a line of math followed by a tap. This modified gesture has
worked robustly within our dozen-user feedback group.

Figure 3: A written mathematical expression and a recognized one.
Even though the recognized expression is presented in the user’s
own handwriting, recognition errors are easily discernible.

Feedback Ideally, recognition would not require any feedback to the
user – the system would simply understand what the user had writ-
ten. However, due to the complexity and ambiguities of mathemati-
cal notation, it is essential that users know how MathPad2 interprets
their input expressions. We chose to show the system’s recognition
in two ways. First, a bounding box rectangle is drawn around the
user’s digital ink for each recognized expression. Second, each ink
symbol within a recognized expression is replaced with the corre-
sponding canonical version of that symbol (a training example of
the user’s own handwriting) that occupies the same bounding box
as the original stroke (see Figure 3). Our theoretical basis for this
feedback is twofold: users can generally disambiguate characters of
their own handwriting even if they are quite similar, and users often
want to preserve the look, feel, and spatial relationships of their no-
tation for reasons of esthetics, subtle information detail, and ease of
editing [Zanibbi et al. 2001]. Although we had earlier provided an
option for modifying the layout of the recognized ink to correspond
to the 2D parse relationships of the math, this was often distracting
since our implementation did not preserve all the layout subtleties
of the user’s original handwriting; nonetheless, we are currently in-
vestigating techniques for improved 2D layout constrained to the

style of the user’s input handwriting. Some users have expressed an
interest in a high-quality typeset feedback option to be used primar-
ily as an alternate view in a less technically interesting “clean-up”
phase.

Correcting Recognition Errors When users identify a recognition
error, they can correct it simply by scribble erasing the offending
symbols and rewriting them, or they can invoke a pull-down menu
of alternatives. Whenever the stylus hovers over a recognized ex-
pression, a small green button appears in the lower right corner of
its bounding box. Pressing on this button displays a menu of al-
ternate recognitions and the displayed ink is updated to reflect the
alternate expression selected.

3.1.2 Making Diagrams

Diagrams are sketched in the same way as mathematical expres-
sions except the diagrams need not be recognized. In balancing
the value of a primitives-based drawing system against the added
interaction overhead of specifying primitives, we decided that for
our initial prototype our only primitive would be unrecognized
ink strokes. We believe that a primitives-based approach not only
would require a more elaborate user interface, but would also make
it more difficult to find the source of an error since the diagram
would be in part user-specified and in part specified by the primi-
tive’s hidden rules or behaviors.

Nailing Diagram Components In reviewing a broad range of math-
ematical illustrations, we noticed that the single low-level behavior
of stretching a diagram element could be a very powerful technique.
Thus, we support the concept of “nails” to pin a diagram element
to the background or to pin a point on a diagram element to another
diagram element. If either diagram element is moved, the other
element either moves rigidly to stay attached at the nail if it has
only one nail, or stretches so that all its nails maintain their points
of attachment. Nails, although used primarily to create non-rigid
objects, can also create binary grouping relationships. We do not
currently detect or support cyclic nail relationships.

The user creates a nail by drawing a circle around the appropriate
location in the drawing and making a tap gesture inside it (the tap
disambiguates the nail gesture from a circle that is part of a draw-
ing). A nail is distinguished from a math recognition gesture (see
above) because the nail circle must intersect one or two drawing
elements but fully contain neither, whereas the math recognition
lasso must fully contain at least one stroke. The system finds and
links together all drawing elements that intersect the circle of the
nail gesture. The link is then symbolized by centering a small red
circle on the nail location.

Grouping Diagram Components Since many drawings involve cre-
ating one logical object from a set of strokes (drawing elements),
we overload the math recognition gesture to perform a grouping
operation if the lasso is drawn around diagram strokes. We use
the Microsoft Tablet PC SDK Divider API to classify the strokes
within a lasso as being either drawings or text. If the strokes are
drawings, they are grouped, otherwise they are considered to be an
expression and mathematical recognition is performed. However,
due to the complexity of this classification and the immaturity of
Microsoft’s implementation, this approach is not yet reliable and
will require further research. In the meantime, we also provide an
explicit gesture for grouping objects that can be distinguished from
a recognition gesture based on the location of the tap. If the tap falls
on the lasso, then we perform a grouping operation, otherwise we
recognize the expression.



3.1.3 Associations

The essence of a mathematical sketch comes from making associ-
ations between mathematical expressions and diagrams. Associa-
tions are made between scalar mathematical expressions and angle
arcs or one of the three special values of a diagram element, its x,
y, or rotation coordinate. After an association is made, changes in
mathematical expressions can be reflected as changes in the dia-
gram and vice versa.

Associations between mathematical expressions and drawing ele-
ments can be made both explicitly and implicitly. Implicit associ-
ations are based on the familiar variable names and constant labels
found in math and physics text illustrations. To create an implicit
association, users draw a variable name or constant value near the
intended drawing element and then use the math recognition ges-
ture to recognize the label. If the recognition gesture’s tap falls
within the gesture’s lasso, then the label is linked to the nearest
drawing primitive; otherwise, the tap location is used to specify
both the drawing element to be linked to the label and the drawing
element’s center of rotation (this point is only used for rotational
labels). When labeling an angle arc, the location of the tap on the
arc determines the active line – the line attached to the arc that will
move when the angle changes. The apex of the angle is then marked
with a green dot, and the active line is indicated with an arrowhead
on the angle arc. Note, we do not detect or support cyclical as-
sociation relationships, such as the specification of each angle in
a triangle. MathPad2 uses the recognized label and linked draw-
ing element to infer associations with other expressions on the page
(see Section 3.2.2).

For slightly more control over associations and to reduce the den-
sity of information in a diagram, associations can also be created
explicitly without using variable name labels. The user can make
an explicit association by drawing a line through a set of related
math expressions and then tapping on a drawing element. After
this line is drawn, drawing elements change color as the stylus hov-
ers over them to indicate the potential for an association. However,
this technique provides greater flexibility than the implicit associ-
ation technique in specifying the precise point of rotation because,
instead of just tapping on the drawing element (which sets the point
of rotation to be the center of the drawing element), the user can
press down on the element to select it, move the stylus, and then lift
it to the desired center of rotation, even if it is not on the drawing
element.

With both implicit and explicit associations, MathPad2 provides an
option for visualizing which drawing elements, labels and expres-
sions are associated by filling the bounding boxes of all associated
components with the same semi-transparent pastel color.

3.1.4 Using MathPad2’s ToolSet

In addition to diagram associations, MathPad2 supports a range of
computational functions on recognized mathematical expressions,
including graphing, solving, simplifying, and factoring. This set of
functions is rudimentary but gives some representative early results
on adding advanced features to the system.

Users can graph recognized functions with a simple line gesture that
begins on the function and ends at the graph’s intended location.
This line gesture is distinguished from other drawn lines by starting
within the function expression’s bounding box, being too long to be
a mathematical symbol, and having no cusps or self-intersections.
This gesture produces a movable, resizable graph widget displaying
a plot of the function (see Figure 4). Additional graph gestures
that end on this widget will overlay or replace the function being

Figure 4: Two plots created using graph gestures. Expression
bounding boxes are colored to correspond with plot lines.

graphed depending on the state of the ‘hold plot” check box found
in the upper left corner of the widget.

The graph widget uses default values for the domain of plotted
functions based on a very simple heuristic: the domain is 0...5 for
functions of t and −5...5 for functions of any other variable. We are
currently developing ways to choose better defaults based on func-
tion characteristics. In any case, users can change the domain or
range by selecting a region of the graph to zoom in on or by writing
a new value below the start and/or end of the graph and then click-
ing the update button. Optional visual feedback is provided to show
correspondences between a plot line and a mathematical expression
by coloring the line the same as the expression bounding boxes.

In addition to graphing, MathPad2 enables the user to solve equa-
tions. Users invoke the solver by making a squiggle gesture that
starts inside the bounding box of a recognized mathematical ex-
pression. The system presents the solution to the user at the end of
the squiggle gesture either as typeset symbols or ink in the user’s
handwriting style. Closely related gestures for simplifying and fac-
toring expressions are presented in Figure 2.

3.2 Sketch Parser

We have focused so far on the user interface for specifying the input
description of a mathematical sketch. We now discuss the compo-
nents that prepare a sketch for execution by recognizing expres-
sions, inferring associations, and rectifying drawings.

3.2.1 Mathematical Expression Recognition

There have been many different approaches to the recognition and
parsing of mathematical expressions [Chan and Yeung 2000b]. Af-
ter evaluating these recognition and parsing techniques and because
of the lack of publicly available systems, we decided to implement
our own custom recognizer and parsing engine. We chose a writer-
dependent system because these systems tend to be more accurate
than independent systems since the recognizer can be tailored to



a particular user’s handwriting [Connell and Jain 2002]. In addi-
tion, we could use the user’s writing samples to present recognition
results to the user in her own handwriting, so as to keep a pencil-
and-paper look and feel.

Our multistage recognizer uses three different recognition tech-
niques to form a hybrid solution [Li and Yeung 1997; Connell and
Jain 2000; Smithies et al. 1999]. The first stage is the preprocess-
ing step where ink strokes are normalized and filtered to reduce
noise and made size- and translation-invariant. In addition, domi-
nant points [Li and Yeung 1997] and their directions as well as other
statistical features are calculated for use in the classification steps.
The second stage in the recognition algorithm, coarse classification,
is used to decrease the number of possible mathematical symbol
candidates by rejecting unlikely ones and is intended to be fast and
not fully exhaustive. The coarse classification scheme uses two sep-
arate algorithms. The first uses the direction information as input
to a dynamic programming algorithm that calculates the optimal
degree of difference or similarity between two characters [Li and
Yeung 1997]. The second algorithm performs a statistical feature-
set classification based on [Smithies et al. 1999]. The results of both
classifiers are then merged using an averaging scheme normalized
by their respective standard deviations. The third stage of the rec-
ognizer is fine classification, which takes the list of mathematical
symbol candidates from the coarse classifier and uses dynamic pro-
gramming once again to determine the best possible match with the
training data [Connell and Jain 2000]. The fine classification’s dy-
namic program is similar to that used by the coarse classifier but
also uses dominant points as input, which helps detect small differ-
ences between similar mathematical symbols.

After the mathematical symbols are recognized they must be two-
dimensionally parsed in terms of exponents, subscripts, fractions,
and others constructs [Blostein and Grbavec 2001]. Therefore, us-
ing a simple grammar, our parser takes into account not only the
symbols but their bounding boxes as well. Because MatlabTM is
our computational back end, the parsing system converts the 2D
mathematical expressions into 1D Matlab specific expressions.

3.2.2 Association Inferencing System

As mentioned in section 3.1.3, implicit associations require a tech-
nique for determining the written mathematical expressions that
should be associated with a particular drawing element based on
the variable label linked to the element. An expression should be
associated with a drawing element if that expression takes part in
the computation of any variable that falls in the label family of the
drawing element’s variable label.

A label family is defined by its name, a root string. Members of the
label family are variables that include that root string and a compo-
nent subscript (e.g., x for its x-axis component) or a function spec-
ification. For example, if the user labels a drawing element φo, the
inferencing system determines the label family to be φ and finds
all mathematical expressions having members of the φ label family
on the left-hand side of the equal sign: φ , φo, φ(t), φx(t), and so
on. The inferencing system then finds all the variable names ap-
pearing on the right-hand side, determines their label families, and
then continues the search. This process terminates when there are
no more variable names to search for. Once all the related mathe-
matical expressions have been found, they are sorted to represent a
logical flow of operations that can be executed by a computational
engine (e.g., Matlab), and the implicit association is made. For ex-
ample, in Figure 1 the system would first store all of the terminal
expressions, then the expressions that are not functions of t, and
finally the time dependent functions. Note that our prototype does

not currently handle interrelated equations such as x(t) = t2y(t) and
y(t) = x(t)− t. However, in future versions of the system, we plan
to support these types of dependencies by detecting them, solving
them with our computational engine, and providing the user with
the ability to interactively select the appropriate solutions to use in
their sketches.

3.2.3 Defining Drawing Dimensions

Although an explicit Cartesian coordinate system can be created
within a mathematical sketch diagram, many diagrams contain
enough information that this can be done implicitly. MathPad2 can
infer coordinate systems in two ways: by using the initial locations
of diagram elements and by labeling linear dimensions within a di-
agram (see Figure 5).

When two different drawing elements are associated with expres-
sions so that each drawing element has a different value for one of
its coordinates (x or y), then an implicit coordinate system can be
defined. The distance along the coordinate shared between the two
drawing elements establishes a dimension for the coordinate sys-
tem, and the location of the drawing elements implies the location
of the coordinate system origin.

Figure 5: Two methods for inferring coordinate systems: the math-
ematical sketch on the left uses labeling of the ground line while
the one on the right uses initial conditions.

Alternatively, if only one drawing element is associated with math,
then the dimension of the coordinate system can still be inferred
if another drawing element is associated with a numerical la-
bel. Whenever a numerical label is applied to a drawing element,
MathPad2 analyzes the drawing element: if it is a horizontal or ver-
tical line, the corresponding x or y axis dimension is established;
otherwise, we apply the label to the best-fit line to the drawing ele-
ment and then establish the dimension of both coordinate axes.

If not enough information has been specified to define a coordinate
system implicitly, then a default coordinate system is used. Like
our graph defaults, we expect that we can improve these defaults
from inferences based on an analysis of the function characteristics
of the associated expressions.

3.2.4 Drawing Rectification

Mathematical sketches often have inherent ambiguities between
what the mathematics specifies and what the user draws: that is,
mathematical expressions often do not jibe precisely with their as-
sociated visual relationships in user drawings. Rectification is the
process of fixing the correspondence between drawings and math-
ematics so that something meaningful is displayed. For example,
a user might draw a diagram containing an angle, and then write
some math that specifies that angle numerically. The drawn angle



is unlikely to match the math description exactly and so either the
drawing must be adjusted to match the math or vice versa.

Figure 6: The effects of labeling an angle: the drawing is rectified
based on the initial value of a (in radians). The green dot shows the
rotation point and the magenta arrow indicates which part of the
drawing will rotate.

Rectification is a difficult problem tantamount to the general con-
straint satisfaction problem. However, rectification in MathPad2

is simplified since it is designed to handle only simple acyclic rela-
tionships between drawing elements and we do not check for cycles
during this process. Our current implementation demonstrates rec-
tification in the context of angle relationships. Mismatches between
numerical descriptions of angles and their diagram counterparts are
readily discernible. When an angle such as a in Figure 6 is associ-
ated with math, MathPad2 rectifies the drawing in one of two ways.
First, the angle between the two lines connected by the angle arc
is computed. Next, the system determines if a mathematical ex-
pression corresponding to the angle label already exists. If so, it
moves the active line, as determined by the angle arc, to the correct
place based on the mathematical specification. If not, it uses the
angle computed from the drawing as the numerical specification of
the angle’s value. Currently, this angle is represented internally and
used during simulation.

A similar rectification process occurs when the same coordinate of
more than two drawing elements is specified. If one or two coordi-
nates are specified, no rectification is typically necessary since the
coordinates of the elements can be used to establish dimensions of a
coordinate system (see Section 3.2.3). However, when a third draw-
ing element is added, it must be rectified to the coordinate system
defined by the previous two drawing elements. A full treatment
of the rectification issues of multi-element drawings is still under
development.

3.3 Mathematical Sketch Animation and Output

The final subsystem of MathPad2 is the animation engine. When
users create a diagram and associates it with math, they are effec-
tively drawing the initial conditions of an animation. MathPad2

defines initial conditions as the value of expressions when the vari-
able t is at its initial value, as defined by users when they write the
mathematical expression t = Tinitial ... Tf inal .1

In order to compute the animation, the animation subsystem first
checks all drawing elements with associations to see if they are an-
imatable. Animatable drawing elements are associated with func-
tions of time. Currently the system supports x and y translational
movement, rotation about a given point, and changing the value of
an arc. The system takes these animatable drawing elements and
sends their associated math to Matlab, which executes the math and
returns the results.

1In actuality, the user draws a combination of initial values (for x, y, and
rotation coordinate associations) and initial constants (for arc associations).
In typical diagrams, however, initial constants are equivalent to initial con-
ditions.

By default, MathPad2 maps all animations so that they last four sec-
onds in wall-clock time. Once again, our default is not appropriate
for many animations, and so it can be overridden by specifying the
duration as part of the time specification:

t = Tinitial ... Tf inal in Seconds.

4 An Example 2D Projectile Motion Sce-

nario

We now present a scenario for how a user, say a high school physics
student, might use MathPad2 and mathematical sketching as a tool
for better understanding mathematical concepts.

Figure 7: An ill-specified mathematical sketch for determining
whether a baseball will fly over a fence for a home run. After run-
ning the sketch, the user will clearly see the error, since the ball will
fly upward in a parabolic fashion. The remedy is shown in blue.

The student is interested in determining whether a baseball player
can hit the ball over a fence given an initial velocity and angle. She
first writes down a simple playing field as shown in Figure 7. Next
she writes down the known quantities: the initial angle ao, initial
velocity vo, and a gravitational term g. From her knowledge of
projectile motion, she then writes down the mathematics as shown
in Figure 7, labels the drawing making the required associations,
and runs the simulation.

The simulation shows the ball moving upward against gravity,
which does not look correct. The user then checks the equations
and realizes that the equation Py(t) = voyt + 1

2 gt2 has a sign error.
She scratches out the +, writes in a −, and re-recognizes the ex-
pression. She then runs the simulation again: the ball takes on the
correct motion and barely makes it over the fence.

Next she wants to see how much farther the ball will go if vo is
increased. She scratches out the current value, writes in a larger
one, and runs the simulation again. The ball does go farther but
it also stops short of the ground, which leads her to the question
“when will the ball hit the ground with these new parameters?” So,
she takes equation Py(t), sets it equal to zero, and solves it with the
squiggle gesture. Finally, she takes the second value for t, changes
the time field, runs the simulation, and finds this time value is cor-
rect for the ball to hit the ground under the new parameters.

In this scenario, the student’s understanding of the mathematical
concept is augmented not only because she could visualize the be-
havior of the mathematical system, but also because she had to write



down the mathematics in order to generate the animation. It is this
unique feature that makes MathPad2 and mathematical sketching a
powerful problem-solving tool.

5 Discussion

About a dozen users have seen and tried the MathPad2 prototype.
Their response was quite positive. Users found the gestural inter-
face easy to learn and use and commented on the fluidity of the
modeless interaction style. One user stated that he wished he had
had this software in high school. Many users asked whether they
could solve more complex problems, such as a double pendulum,
that often require open-form solutions. We believe that a much
broader class of problems, including multi-body collisions and sim-
ple ordinary and partial differential equations, could be supported
by extending mathematical sketching to handle basic programming
constructs, such as loops and conditionals. We also recognize the
desire for a macro facility that would let mathematical sketches be
saved as functions for reuse within other sketches.

The user feedback also highlighted the effect of misrecognition and
incorrect parsing on the overall usability of MathPad2. In general,
recognition and parsing errors increase in proportion to the com-
plexity of the mathematical expressions. Users could generally re-
solve errors by simply scratching out the offending symbols, re-
drawing them and then re-recognizing the expression, although in
some cases, they would need to perform this process multiple times,
since our recognition algorithms do not adjust on the basis of pre-
vious attempts.

By training the symbol recognizer for each user, symbol recogni-
tion was generally reasonably robust. However, some users did en-
counter persistent symbol-recognition errors that can be attributed
to ambiguous entry of specific pairs or groups of symbols, for in-
stance, when distinguishing between 5 and s, x and +, and c, 1, and
(. In some cases, we tried to exploit contextual knowledge to avoid
common conflicts [Lee and Wang 1995]. For example, we would
replace the 0 in l0g with an o to form log, while a 5 in 5in would be
replaced with an s to form sin. A few users chose to reduce the set
of trained symbols to improve accuracy at the cost of limiting the
scope of mathematical expressions. Other users changed the way
they drew certain symbols such as drawing a 5 with two strokes to
differentiate from a single stroke s.

We did not provide any means for the user to train the expression
parser. Instead, we used a constant set of parsing rules based on the
spatial relationships between symbol bounding boxes. As a result,
parsing performance exhibited greater per-user variance depending
on how closely the user’s natural handwriting corresponded to our
rules. Common parsing errors were to mischaracterize superscripts
when the base symbol was an ascender letter (e.g., d, b) or sub-
scripts when the base symbol was a descender letter (e.g., y, p).
Also, some users wrote rather large subscripts and superscripts,
which often resulted in parsing errors. We believe that most of
these errors can be avoided by training the parser as well as the
symbol recognizer. In other cases, parsing errors are more compli-
cated, as when a misrecognized symbol triggers a parsing error. For
example, in Figure 1, if the closing parenthesis of the exponential
is misrecognized as a 1, our parser would aggregate the cos(wt) as
a subscript of the 1. However, we believe these kinds of errors can
largely be avoided by exploiting context both within and between
expressions, for example by avoiding subscripts for integers. Last,
we need to present parsing results in a more natural way than our
1D representation, as by the technique described in [Zanibbi et al.
2001].

The current state of MathPad2’s recognition and parsing system can
be a limiting factor for some users, especially those who must ad-
just their handwriting significantly to be neat and to correspond to
our notion of the “correct” way to lay out expressions. Still, with
adequate training most users find the system usable for the domain
of mathematical sketches we currently support. To achieve broader
acceptance and to support more complex mathematical sketches,
we must continually incorporate the state of the art in mathematical
recognition and parsing techniques.

6 Conclusion

We have discussed the novel concept of mathematical sketches –
combinations of handwritten mathematics and free-hand diagrams
– that allow rapid animated visualization of mathematical formu-
lations. In addition, we described the system design issues en-
countered in creating a prototype mathematical sketching system,
MathPad2, including the design of a modeless gestural interface
and techniques for implicitly associating and rectifying diagrams
with mathematical expressions. Despite the restriction of the cur-
rent prototype to closed-form expressions, we conjecture that math-
ematical sketching can be a powerful assistant in formulating and
visualizing mathematical concepts.
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Abstract
MathPad2is a pen-based application prototype for creating mathematical sketches. Using a modeless gestural in-
terface, it lets users make dynamic illustrations by associating handwritten mathematics with free-form drawings
and provides a set of tools for graphing and evaluating mathematical expressions and solving equations. In this
paper, we present the results of an initial evaluation of the MathPad2prototype, examining the user interface’s
intuitiveness and the application’s perceived usefulness. Our evaluations are based on both performance and
questionnaire results including first attempt gesture performance, interface recall tests, and surveys of user inter-
face satisfaction and perceived usefulness. The results of our evaluation suggest that, although some test subjects
had difficulty with our mathematical expression recognizer, they found theinterface, in general, intuitive and easy
to remember. More importantly, these results suggest the prototype has the potential to assist beginning physics
and mathematics students in problem solving and understanding scientific concepts.

Categories and Subject Descriptors(according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User
Interfaces — Interaction Styles, Evaluation/Methodology

1. Introduction

MathPad2(see Figure1) is a pen-based, Tablet PC applica-
tion prototype for creating dynamic illustrations used for
exploring mathematics and physics concepts [LZ04]. The
fundamental technology behind MathPad2is mathematical
sketching, a pen-based gestural interaction paradigm for
mathematics problem solving that derives from the familiar
pencil-and-paper process of drawing supporting diagrams to
facilitate the formulation of mathematical expressions; how-
ever, with mathematical sketching, users can also leverage
their physical intuition by watching their hand-drawn dia-
grams animate in response to continuous or discrete param-
eter changes in their written formulas [LaV05]. Diagram ani-
mation is driven by associations that are inferred, either auto-
matically or with gestural guidance, from handwritten math-
ematical expressions, diagram labels, and drawing elements.

The essential goal in developing the MathPad2user inter-
face was that it be as similar and fluid as pencil and paper,
since mathematics and physics problems are often solved
using this medium. Thus, we did not want to use any ad-
ditional hardware (e.g., a modifier key or stylus button) or

software (e.g., buttons) modes. Instead, we wanted all inter-
action to be derived from using digital ink. We developed
a gestural user interface for invoking different operations in
MathPad2because we wanted users able to work as fluidly as
possible with the mathematics and drawings they create. We
wanted to explore whether our choice of gestures, which by
themselves are not part of pencil-and-paper interaction, are
thought of as intuitive or at least complimentary to pencil
and paper.

Given the foundations for MathPad2, we performed an ini-
tial usability evaluation to gauge users’ performances and re-
actions to the prototype to validate its design and potential
benefit and determine if further, more in-depth studies are
needed. More specifically, we are interested in how easy it
is for users to use MathPad2with only a visual demonstra-
tion of how to invoke gestural operations, and in how many
mistakes they make in performing various MathPad2tasks.
We are also interested in how well subjects remember var-
ious gestural commands, since this is a good indicator of
intuitiveness. Using interface satisfaction [CDN88] and per-
ceived usefulness [Dav89] questionnaires, we are addition-

c© The Eurographics Association 2006.
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Figure 1: A mathematical sketch, created in MathPad2, il-
lustrating how air drag affects a ball’s 2D motion. Associa-
tions between mathematics and drawings are color-coded.

ally interested in whether subjects would use mathematical
sketching in their work and why.

2. Related Work

The idea of using computers to create dynamic illustra-
tions of mathematical concepts has a long history. One of
the earliest dynamic illustration environments was Born-
ing’s ThingLab, a simulation laboratory environment for
constructing dynamic models of experiments in geometry
and physics, that relied heavily on constraint solvers and
inheritance classes [Bor79]. Other systems such as Interac-
tive PhysicsTM and The Geometer’s SketchPadTM also let
the user create dynamic illustrations; these systems are all
WIMP-based (Windows, Icons, Menus, Pointers) resulting
in a significant amount of mode switching and loss of fluidity
within the interface. In addition, they do not allow the user to
write handwritten mathematics to create these illustrations.
Because MathPad2 uses handwritten mathematical expres-
sions, users can leverage their knowledge of mathematical
notation in order to create mathematical sketches. Java ap-
plets that provide both interactive and dynamic illustrations
have also been developed for exploring various mathematics
and physics principles [CT98]. However, these applets are
not general, typically provide limited control over the illus-
tration, and rarely show the user the mathematics behind the
illustration.

Alvarado [Alv00] and Kara [KGS04] let the user make
sketched diagrams that are recognized as drawing primi-
tives with domain knowledge from specific disciplines and
then animated. Although these systems provide powerful il-
lustrations of physics and mathematical concepts, they are
limited because of their domain knowledge and because
they hide the underlying mathematical formulations from the
user. Pen-based systems have also been developed for other
types of dynamic illustration. For example, Pickering et al.

developed a system for sketching football plays, simulating
them, and then creating a dynamic illustration of the play
outcome [PBLP99] while Davis et al. developed a pen-based
system for creating traditional animations [DACP04].

MathJournal, developed by xThink, Inc., is the closest in
spirit to MathPad2because its animation controls let users
write down and recognize mathematics, make drawings, and
assign the mathematics to the drawings. However, a key lim-
itation of MathJournal’s animation control is that users must
keyframe their animations (typically providing a starting and
ending frame), making the user interface less fluid and con-
travening how users would make diagrams with pencil and
paper. In addition, MathJournal’s animation control lacks
the iteration and conditional constructs, diagram rectifica-
tion, and modeless gestural user interface that mathematical
sketching supports.

3. The MathPad2 User Interface

To make mathematical sketches in MathPad2, users write
down mathematics, make drawings, and make associations
between the two. Additionally, users can invoke mathemat-
ical tools such as graphing, function evaluation, and equa-
tion solving to help create and manipulate their sketches. In
this section, we describe how users perform these tasks with
MathPad2’s modeless gestural user interface. A summary of
the commands are found in Figure2.

When designing our modeless gestural interface, we
wanted the gestures not to interfere with the entry of draw-
ings or equations and still be direct and natural enough to
feel fluid. To accomplish this, we use context sensitivity to
determine what operations to perform with a single gesture.
We also use the notion of punctuated gestures, compound
gestures with one or more strokes and terminal punctuation,
to help disambiguate gestures from mathematics and draw-
ings. We also wanted to ensure that gestures which seem log-
ical for more than one command should be used for all of
those commands. For example, if a particular gesture makes
sense for two or three different operations, then we want
that gesture to invoke all those operations. More details on
the design of and methodology behind these gestures can be
found in [LZ04,LaV05].

To write mathematical expressions, users simply write
them down using the stylus as if they were using pencil-
and-paper. To have the system recognize a mathematical ex-
pression, users must lasso the expression and make a tap in-
side the lasso. Recognized symbols are presented to users in
their own handwriting since MathPad2has handwriting sam-
ples from individual users as a result of our writer-dependent
mathematical expression recognition engine. When users
move the stylus over the bounding box of the recognized
mathematical expression, a green button appears in the box’s
lower right corner, and when pressed, shows whether the ex-
pression was parsed correctly. If a mathematical expression
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Figure 2: MathPad2’s gestural commands. Gesture strokes
in the first column are shown here in red. In the second col-
umn, cyan-highlighted strokes provide association feedback
(the highlighting color changes each time a new association
is made), and magenta strokes show nail and angle associa-
tion/rectification feedback.

is recognized incorrectly, users can simply erase the offend-
ing symbols using a scribble erase gesture followed by a tap
and then re-recognize the expression. Users can also tap on a
recognized symbol to get a list of alternates. If there is a pars-
ing error with the mathematical expression, users can lasso
the offending symbols and interactively move them to a new
location where the complete expression will be reparsed.

Users make drawings in the same way they write mathe-
matical expressions except that the ink strokes need not be
recognized. We refer to these ink strokes as drawing ele-
ments and they can be grouped together to form compos-
ite drawing elements. Users lasso the drawing elements they
want to composite and make a tap on the lasso line. Tapping
on the lasso line distinguishes this operation from recogniz-
ing mathematical expressions. Users can also nail drawing
elements together by drawing a small circle over them and
making a tap inside the circle. Nailing drawing elements
together lets users make stretchable objects. Note that the
drawn circle must not completely contain any drawing ele-
ments in order to be recognized as a nail gesture. This con-
straint distinguishes it from the gesture for making compos-
ite drawing elements and recognizing mathematical expres-
sions.

One of the most important components of MathPad2is
the ability to associate mathematics to drawing elements so
they know how to behave during an animation. Users can
make associations either explicitly or implicitly. Users make
explicit associations by simply drawing a line through the
bounding boxes of all the necessary mathematical expres-
sions and tapping on a particular drawing element. As the
stylus hovers over drawing elements, they highlight to give
users feedback about which drawing element they will se-
lect. Implicit associations are made by labeling a drawing
element with a variable name or constant value and can be ei-
ther point or angle associations. Point associations are made
in the same way that mathematical expressions are recog-
nized except the tap is made on the drawing element instead
of inside a lasso. Angle associations are made by drawing an
angle arc and label. Then users lasso the label and make a
tap whose location on the arc determines theactive line—
the line attached to the arc that will move when the angle
changes. The apex of the angle is then marked with a green
dot, and the active line is indicated with an arrowhead on
the angle arc. In either case, MathPad2uses the label to find
all of the required mathematical expressions that should be
associated to the drawing element.

Finally, MathPad2provides users with a mathematical
toolset for graphing and evaluating functions as well as solv-
ing equations that can assist users in making mathematical
sketches. Users graph functions by simply drawing a suffi-
ciently long, smooth line with no self-intersections, starting
inside the bounding box of a recognized mathematical ex-
pression, intersecting any other functions along the way, and
ending outside all expression bounding boxes. This gesture
creates a graph control widget where users can view plots
of the functions the graph gesture has intersected and also
change the domain and range of the functions by writing
down the values and pressing the update button.

Users evaluate mathematical expressions such as inte-
grals, summations, and derivatives by writing an equal sign
to the right of the expression and making a tap inside the
equal sign’s bounding box. The results are then displayed
to the right of the drawn equal sign. Users solve single, si-
multaneous, or ordinary differential equations, by making a
squiggly gesture (see Figure2). This gesture is identical to
the graphing gesture except the line must contain two self-
intersections. The results are then displayed underneath the
last intersected equation.

4. MathPad2 Evaluation

4.1. Experimental Design and Tasks

The goal of our initial usability experiment is to get users’ re-
actions to the prototype to validate the user interface design
and its potential benefit as well as determine if further, more
in-depth studies are needed. More specifically, we wanted to
evaluate the intuitiveness of MathPad2’s user interface and
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gauge the perceived usefulness of the tool. Writing down
mathematical expressions and making drawings is a fairly
intuitive task, and although our gestural commands need to
be taught, we felt they were designed so that they should be
easy to understand given simple demonstrations of their use.

In the experiment, subjects must complete six tasks repre-
senting common interactions that a student or teacher would
perform with MathPad2. Before a subject performs each task,
the experimenter shows the subject how to perform the re-
quired gestures for that task via demonstration only. Tasks
1–3 were designed to test how well users were able to use
the graph, equation solving, and expression evaluation ges-
tures. First, subjects are shown how to write and recognize
mathematical expressions using the lasso and tap gesture,
how to erase ink using the scribble erase gesture, and how to
use the correction user interface. Then, they are shown how
to perform each task specific gesture or command. For task
1 (Graphing), after being shown the required gestural com-
mands, the subjects write, recognize, and then graphy = x,
y = x3, andy = cos(x)ex. Then subjects changey = x3 to
y= x2, graph the function, and change the function’s domain
from−5...5 to 0...8. For task 2 (Equation Solving) task, sub-
jects write down and recognizex2

−16x+13= 0 and solve
the equation. Next, subjects write and recognizex2y+2y= 4
and 3x+y = 2 and solve this set of simultaneous equations.
For task 3 (Expression Evaluation), subjects write down the
following expressions and evaluate them:

•

R 2
0 x2dx

• y =
R

x2cos(x)dx
•

dy
dx

•
d2y
dx2

• ∑5
l=0(l −1)2.

In all tasks, subjects are instructed to use the correction user
interface if the recognizer incorrectly recognizes symbols or
expressions.

Tasks 4–6 were designed to lets users make mathematical
sketches and evaluate whether they prefer to use implicit or
explicit associations. Task five also was designed to evaluate
how well subjects can make nails. Note that only task four
required subjects to write down the necessary mathematical
expressions. Tasks five and six used prewritten mathemati-
cal expressions because we felt having them write and rec-
ognize these expressions was not needed, given the many
expressions they had already written in the mathematical ex-
pression recognition study (see Section4.4). However, with
task four, we wanted to see how well subjects could make a
mathematical sketch from beginning to end.

The fourth task (Bouncing Ball), has subjects create a
complete mathematical sketch of an object bouncing along
the ground. Subjects write and recognize the four mathemat-
ical expressions shown in Figure3, make a drawing with
a horizontal line representing the ground and a composite
drawing element consisting of three circles drawn near the

Figure 3: The fourth task in the MathPad2usability test.

start of the horizontal line. Next, subjects write the num-
ber 20 and associate it to the horizontal line. Finally, sub-
jects associate the mathematics to the composite drawing el-
ement, either choosing an explicit association or using an
implicit association with the letter “p” as a label, and run
the sketch. Note that if MathPad2fails to recognize subjects’
mathematical expressions after several attempts, we provide
them with prewritten expressions. However, we do not make
them aware of this when the instructions for this task are
given.

The fifth task (Oscillator) has subjects create a mathemati-
cal sketch illustrating damped harmonic oscillation. The ex-
perimenter instructs subjects to first draw a line and make
seven nail gestures along that line. This subtask does not
have anything to do with the mathematical sketch itself, but
gives us additional accuracy data on how well subjects can
perform the nail gesture. Subjects make a drawing consisting
of a horizontal line, a spring underneath the line, and a box
underneath the spring (see Figure4). Subjects then use two
nail gestures to nail the horizontal line to the spring and the
spring to the box. Next, subjects associate the mathematics
to the box, using an explicit or implicit association with the
letter “y” as a label, and run the sketch.

In the last task (2D Motion), subjects create a mathemati-
cal sketch illustrating 2D projectile motion subject to air re-
sistance (see Figure1). Subjects draw a horizontal line and a
ball near the left side of the horizontal line. They then asso-
ciate the number 100 to the horizontal line. Finally, subjects
associate the mathematics to the ball, using an explicit or
implicit association with the letter “p” as a label, and run the
sketch. After all six tasks are completed, subjects answer a
post-questionnaire.

4.2. Participants

Seven subjects (four men and three women), participated in
the MathPad2usability evaluation. Subjects were recruited
from the Brown University undergraduate population and
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Figure 4: Subjects create a damped harmonic oscillator in
the fifth task.

were either physics or applied mathematics majors. We
chose this particular user population because MathPad2was
designed for mathematics and physics students. Subjects’
ages ranged from 19 to 23 and all were right-handed; only
one had used a pen-based computer before (a PDA). All
seven subjects were asked prior to the study if they had used
mathematical software before and which packages: six sub-
jects answering yes and had used a variety of different pack-
ages including Matlab, Mathematica, and Maple. All seven
subjects were paid $30 for their time and effort.

4.3. Evaluation Measures

We evaluate MathPad2’s usability using quantitative and
qualitative data from subjects’ task performances and from a
post-questionnaire. As subjects perform the six experimental
tasks, the experimenter records important information about
subjects’ performances in completing each task, the deci-
sions they made, and counts their mistakes. Performance is
characterized by whether subjects can complete each task
and how well they do on each subtask. Therefore, the exper-
imenter records whether or not subjects make the appropri-
ate gestures correctly and, if so, whether on the first attempt.
Knowing how well subjects perform gestural operations on
their first attempt is an important measure because it tells
us how easy the gestures are to make and remember. The
experimenter also records subjects’ choices of implicit and
explicit associations in tasks 4–6 so as to get a quantitative
metric for their preferences.

After subjects have completed all six tasks they are given
a post-questionnaire designed to get their reactions to the
MathPad2user interface and its perceived usefulness as well
as assess how well they remember certain gestures. The
post-questionnaire consists of four parts. The first and sec-
ond parts are adapted from Chin’s Questionnaire for User
Interface Satisfaction [CDN88] and asks subjects to rate
MathPad2’s user interface as a whole and its individual com-

ponents. The third part of the post-questionnaire, the re-
call test, asks subjects to show what gestures they would
use for six different operations. The fourth part of the post-
questionnaire was adapted from the Perceived Usefulness
portion of Davis’s questionnaire for user acceptance [Dav89]
and asks whether subjects would use MathPad2in their work.
After subjects answer the post-questionnaire, the experi-
menter reviews it with them to make sure their answers
are clear and to elaborate further on any specific parts of
MathPad2.

4.4. Mathematical Expression Recognition

An important part of MathPad2’s user interface is that users
can write down mathematical expressions as if they were us-
ing pencil and paper. Thus, mathematical expression recog-
nition accuracy is an important part of the overall user expe-
rience. MathPad2uses a writer-dependent mathematical ex-
pression recognizer [LaV05] that includes a mathematical
symbol recognizer and a mathematical expression parsing
system. Each test subject had to provide handwriting sam-
ples to train the recognizer and this task took 50 minutes
per subject. Note that subjects were given rest periods to en-
sure they did not get tired during training. Before completing
the MathPad2tasks, we also had subjects write down sym-
bols and a set of mathematical expressions to test the rec-
ognizer’s accuracy Overall, the recognizer recognized sym-
bols correctly 95.1% of the time with a standard deviation
of 2.65%. The parsing component of our mathematical ex-
pression recognizer made correct parsing decisions 90.8% of
the time with standard deviation of 4.47%. More detailed re-
sults on the mathematical expression recognition evaluation
can be found in [LaV05].

4.5. Results and Discussion

4.5.1. Task Performance Results

For the first three tasks, subjects were able to write and rec-
ognize all of the mathematical expressions fairly easily. In
some cases, they had to use the correction user interface to
fix recognition errors, generally getting MathPad2to recog-
nize their expressions on the second or third attempt. 27 out
of 28 graphing operations (four per subject) were made on
the first attempt. Subjects also had to change the domain
of a graph; they all completed this operation on the first
attempt. 12 out of 14 equation-solving operations (two per
subject) were made on the first attempt. The other two equa-
tion solves were correctly performed on the second attempt.
34 out of 35 expression evaluations (five per subject) were
made on the first attempt. One subject, however, did have

difficulty in getting MathPad2to recognized2y
dx2 and even af-

ter multiple attempts was not able to evaluate the expression.

All seven subjects were able to complete tasks 4–6 mak-
ing the dynamic illustrations. Subjects also had no difficulty
in making the drawings for each task and only once did a
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subject have trouble making a composite drawing element.
In the Bouncing Ball task, 12 out of 14 associations were
made on the first attempt and 8 of them were done implic-
itly. Three subjects did have difficulty in getting MathPad2to
recognize the required mathematical specification for the
Bouncing Ball task and, after multiple attempts (about 10
minutes), were given prewritten expressions. The difficulty
was not in symbol recognition, but in expression parsing.
Two of these subjects had parsing decision accuracies below
90% in the mathematical expression test while the other sub-
ject’s accuracy was 92%. This result provides evidence indi-
cating that higher parsing decision accuracy is needed. In the
Spring task, 56 out of 63 nails (seven per subject) were made
on the first attempt. Most of the remaining nails were made
on the second attempt. However, one subject required sev-
eral attempts to make the necessary nails and had to recreate
the drawing after inadvertently erasing part of it when eras-
ing an incorrectly recognized nail. Subjects had to make one
association in this task, and all seven were made on the first
attempt explicitly. For the 2D motion task, subjects made
12 out of 14 associations on the first attempt with all of them
made implicitly. One subject did had some difficulty with the
implicit associations and needed several attempts to make
them correctly.

Overall, subjects did well on all six tasks, considering they
had no hands-on training beforehand. Their first attempt per-
formances are summarized in Table1. Subjects hand no dif-
ficulty in making a lasso and tap to recognize mathematical
expressions or in using the scribble erase gesture. In only
one case did a subject not complete part of a task and this
was due to MathPad2’s inability to recognize an expression
correctly. Subjects made 160 out of the 175 gestural oper-
ations correctly (91.4%) on their first attempt. This number
is high considering that subjects had not practiced any of
the gestural commands. One subject did have some difficulty
with implicit associations due to problems with making taps.
The greatest problem subjects had with the six tasks was
obtaining correctly recognized expressions in certain situ-
ations. That three out of the seven subjects required prewrit-
ten mathematics for the Bouncing Ball task shows that the
mathematical expression recognizer needs improvement.

4.5.2. Post-Questionnaire Results

Overall Reaction. Table2 summarizes subject’s overall re-
action to MathPad2and shows that they had a positive re-
action to the prototype. When subjects were asked why
they chose their rankings, most asserted that MathPad2works
well, is easy to use, and would be very useful for students in
a classroom setting and/or doing homework problems. One
subject was “amazed at the application’s power”. Two sub-
jects claimed MathPad2was easy to use but could be frus-
trating when it had trouble recognizing their handwriting;
this frustration explains why the second and third rankings
in Table2 are slightly below the first and fourth rankings.

Ease of Use. Subjects rated different parts of the

First Attempt Gesture Performance Summary
Completed Total Percentage

Graphing: 27 28 96%
Equation Solving: 12 14 86%
Exp. Evaluation: 34 35 97%
Nails: 56 63 88%
Associations: 31 35 89%

Total: 160 175 91.4%

Table 1: A breakdown of test subjects’ first attempt gesture
performance.

Overall Reaction to MathPad2

Mean Std. Deviation
Terrible=1, Wonderful = 7 6.42 0.54
Difficult=1, Easy=7 5.57 0.98
Frustrating=1, Satisfying=7 5.57 1.13
Dull=1, Stimulating=7 6.14 0.38

Table 2: Subjects’ average ratings of their overall reaction
to MathPad2on a scale from 1 to 7.

MathPad2user interface from 1 (easy) to 7 (hard). Table3
summarizes these results and shows that subjects found the
tasks they had to perform easy to do. Subjects gave recogniz-
ing expressions the highest average ranking, indicating the
fact that some users had trouble getting MathPad2to recog-
nize their handwriting. When asked about their ranking, they
stated that the gesture for recognizing mathematical expres-
sions (i.e., lasso and tap) was easy to do, but the results of the
recognition operation led them to choose a higher ranking on
the easy (1) to hard (7) scale.

MathPad2User Interface Ease of Use
Mean Std. Deviation

Writing Mathematics 1.43 0.97
Recognizing Mathematics 2.57 1.81
Graphing Functions 1.0 0.0
Solving Equations 1.0 0.0
Evaluating Expressions 1.0 0.0
Grouping Drawing Elements 1.57 0.79
Making Associations 1.71 0.76
Making Nails 1.57 0.59

Table 3: Subjects’ average ratings of ease of use for different
components of the MathPad2user interface (scale: 1=easy,
7=hard).

Association Preference. All seven subjects preferred ex-
plicit associations, claiming they were easier to remember
and simpler and faster to perform. However, they did say
that when associations need to be made with a drawing el-
ement and a large set of mathematical expressions, the im-
plicit method is more appropriate. We can thus conclude that
both association methods have their place in mathematical
sketching.
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Correction User Interface. Five out of the seven subjects
tested found the correction user interface helped them. The
two subjects who said no claimed that the alternate lists gave
them no help in correcting recognition errors. One subject
wanted more choices to appear in the alternate lists, espe-
cially in the equation alternate list.

Positive and Negative UI Aspects. Most subjects identi-
fied the most positive aspect as its ability to quickly make
drawings move as described by mathematical equations.
Two subjects claimed that solving equations was one of the
user interface’s most positive aspect. One subject thought
that the best part of MathPad2’s user interface was the scrib-
ble erase command; another subject said the user inter-
face’s simplicity was its most positive aspect. Three sub-
jects stated that getting MathPad2to recognize certain sym-
bols and equations correctly was the most negative aspect
of the user interface. Two subjects stated that the lack of in-
teractive feedback for implicit associations was a significant
drawback, and one subject stated that a negative aspect was
the time necessary to get used to the gestural commands. Fi-
nally, two subjects said that MathPad2’s user interface had
no negative aspects.

Overall Ease of Use. On average, subjects gave
MathPad2a 1.86 (1 equals easy and 7 equals hard) with a
standard deviation of 0.69. When they were asked to ex-
plain their ratings, two dominant themes emerged. First, sub-
jects found the interface easy to use and remember, but were
in some cases frustrated by problems in mathematical ex-
pression recognition. However, the subjects who had trouble
with recognition all felt it would improve with more prac-
tice. Those subjects were also asked if they would still use
MathPad2in spite of their recognition problems; they all said
they could deal with these problems because of the function-
ality MathPad2would give them. Second, subjects felt the
interface was easy to use once it was explained, a result that
helps to validate our demonstration-based teaching protocol.

Gesture Recall Test. Subject were asked how to invoke
gestural commands for graphing, solving equations, evalu-
ating expressions, recognizing a mathematical expression,
making nails, and making implicit associations. This part
of the questionnaire took place about 5 to 10 minutes af-
ter they used MathPad2. Subjects answered 38 out of the 42
recall questions correctly (six per subject) for a recall rate
of 90%. Of the four questions subjects answered incorrectly,
three subjects missed the equation solving gesture (squiggle)
and one missed the expression evaluation gesture (equal and
tap). The 90% recall rate indicates that subjects had little dif-
ficulty remembering MathPad2gestures except for the equa-
tion solving gesture. Even though three out of the seven sub-
jects forgot the equation solving gesture, they still claimed it
was easy to use based on their mean ranking in Table3.

Likely Usage. Table 4 summarizes subjects’ ratings on
the different “perceived usefulness” statements, on a scale
of 1 (unlikely) to 7 (likely). Most subjects would use

MathPad2Perceived Usefulness
Mean Std. Deviation

Accomplish Tasks Faster 5.14 1.95
Improve Performance 4.71 2.36
Increase Productivity 5.0 1.91
Enhance Effectiveness 5.14 2.04
Easier To Do Work 5.57 1.90
Useful In Work 5.42 2.37

Table 4: Subjects’ average ratings of the perceived useful-
ness of MathPad2in their work (scale: 1=unlikely, 7=likely).

MathPad2in their work. When asked to explain their ratings,
four subjects stated that the application would help them
to do their classwork and obtain a better understanding of
problems and concepts. However, there was no consensus on
whether MathPad2would speed their understanding of these
problems and concepts. One subject said that the ability to
quickly solve equations and make graphs would be very ben-
eficial. Two subjects said they did not think they would use
MathPad2in its current form in their work (explaining the
high standard deviations in Table4). Both of these subjects
work in theoretical physics, one in optics and the other in
modern physics. However, one of these subject stated she
would have used MathPad2during beginning physics classes
while the other stated he would use MathPad2if it had sup-
port for light ray and optics diagrams. Finally, all seven sub-
jects felt the application would be a good tool for teachers of
introductory mathematics and physics classes.

4.5.3. Discussion

The results of our initial MathPad2usability study suggest
that, based on our evaluation criteria, the MathPad2user in-
terface is, in general, intuitive with subjects picking up the
interface with relative ease. With only minimal training,
most gestures are easy to remember and use. However, if
we examine the first attempt task performance results (Ta-
ble 1) in conjunction with the recall test from our post-
questionnaire, we see that the equation solving gesture has
the lowest first attempt accuracy and was the most difficult
to remember. This indicates that this gesture is not as intu-
itive as the others. Additionally, if we look deeper into users’
preferences for making associations, we see that they pre-
ferred explicit associations and of the four associations that
were not made on their first attempt, all four were implicit.
Again, this result suggests that explicit associations are more
intuitive than implicit ones. First attempt performance for
making nails was also a bit lower than expected, but we feel
this might have been an implementation issue. In terms of
perceived utility, subjects think the application is a powerful
tool that beginning physics and mathematics students could
use to help solve problems and better understand scientific
concepts.

Most subjects performed the tasks with little trouble,
while a few had some difficulty, stemming primarily from

c© The Eurographics Association 2006.



Joseph J. LaViola Jr. / An Initial Evaluation of a Pen-Based Tool for Creating Dynamic Mathematical Illustrations

problems with mathematical expression recognition. How-
ever, these subjects also said they were willing to accept
these recognition problems, given what MathPad2can of-
fer them. This result is somewhat contrary to our expec-
tations about the negative impact of our mathematical ex-
pression recognizer on MathPad2usability. Nevertheless, we
need better mathematical expression recognition that will
perform robustly across a larger user population. Although
these results do not tell us how much more accurate the rec-
ognizer needs to be, its clear that a mean accuracy of 90.8%
for making correct parsing decisions is too low. A better cor-
rection user interface could also go a long way to helping
with users’ frustrations when incorrect recognitions occur.
In addition, more interactive feedback is needed for implicit
associations, and the equation solving gesture should be re-
designed.

Although the results of our initial evaluation are positive,
we recognize it can be argued that there are two limitations
with our study. First, we only used seven test subjects. We
could have had more subjects, but we felt that seven was
appropriate for an initial evaluation of MathPad2and its ges-
tural interface, given one of our main goals was to deter-
mine whether larger studies were needed. Second, we did
not compare MathPad2’s user interface with any other inter-
face metaphors. Although this could be considered a limita-
tion, our goal in this evaluation was to determine how well
users could use the MathPad2interface, not whether it was
better than any other interface. For this work, we feel our
experimental design was suited to answering our intended
questions. However, as we perform future usability tests to
gain a deeper understanding of the benefits of mathemati-
cal sketching, we will need more comparative experimental
designs with larger subject numbers.

Given the results of our evaluation, we plan to make
improvements to MathPad2by adding more functionality
and improving the weaker points of the interface as well
as improving the parsing component of our mathemati-
cal expression recognizer. Given the generally positive re-
sults of our evaluation, we are confident in pursuing fur-
ther MathPad2experimentation. Thus, we plan to explore the
pedagogical benefits of MathPad2in a summative evaluation
where students will use MathPad2as part of a mathematics
or introductory physics course.

5. Conclusion

We have presented an initial evaluation of MathPad2, a
prototype application for making dynamic illustrations us-
ing the mathematical sketching paradigm, to test its intu-
itiveness and perceived utility. Our evaluation suggests that
MathPad2’s user interface is generally intuitive, although
some parts of the interface need to be reevaluated. Ad-
ditionally, the MathPad2application is perceived to be a
powerful tool for exploring mathematics and physics con-
cepts. Although some of our test subjects had some dif-

ficulty with getting the system to recognize their mathe-
matical expressions, they still gave MathPad2positive feed-
back and would use MathPad2regardless of these issues be-
cause of its functionality. These results also support future
MathPad2development and longer term evaluations.
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[49] Guerfali, Wacef and Réjean Plamondon. Normalizing and Restoring On-Line Hand-
writing. Pattern Recognition, 26(3):419-431, March 1993.

[50] Guimbretière, François and Terry Winograd. FlowMenu: Combining Command, Text,
and Data Entry. In Proceedings of the ACM Symposium on User Interface Software
and Technology (UIST 2000), ACM Press, 213-216, 2000.

[51] Ha, J., R. Haralick, and I. Philips. Recursive X-Y Cut Using Bounding Boxes of Con-
nected Components. In Proceedings of the Third International Conference on Docu-
ment Analysis and Recognition, 952-955, 1995.

[52] Hammond, Tracy and Randall Davis. Tahuti: A geometrical sketch recognition system
for uml class diagrams. AAAI Spring Symposium on Sketch Understanding, pages 59–
68, March 25-27 2002.

[53] Hammond, Tracy and Randall Davis. LADDER: A language to describe drawing,
display, and editing in sketch recognition. Proceedings of the 2003 Internaltional
Joint Conference on Artificial Intelligence (IJCAI), pages 461–467, 2003.

[54] Hammond, Tracy and Randall Davis. LADDER, a sketching language for user inter-
face developers. Elsevier, Computers and Graphics 28, pp.518-532, 2005.

5



[55] Hammond, Tracy and Randall Davis. Interactive Learning of Structural Shape De-
scriptions from Automatically Generated Near-miss Examples. In Intelligent User
Interfaces (IUI), pp.37-40. 2006.

[56] Hammond, Tracy and Randall Davis. Automatically Transforming Symbolic Shape
Descriptions for Use in Sketch Recognition. In Proceedings of the Nineteenth National
Conference on Artificial Intelligence (AAAI-04), pp.450-456, 2004.

[57] Hanaki, Shin-Ichi and Takemi Yamazaki. On-Line Recognition of Handprinted Kanji
Characters. Pattern Recognition, Vol. 12, 421-429, 1980.

[58] Hansen, Charles and Christopher Johnson (eds.). The Visualization HandBook, Else-
vier Academic Press, 2005.

[59] Herot, C. Graphical Input Through Machine Recognition of Sketches, In Proceedings
of SIGGRAPH76, 97-102, 1976.

[60] Hinckley, Ken, Patrick Baudish, Gonzalo Ramos, and François Guimbretière. Design
and Analysis of Delimiters for Selection-Action Pen Gesture Phrases in Scriboli. In
Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI
2005), ACM Press, 2005.

[61] Hoffman, Donald D., Visual Intelligence: How We Create What We See, W. W.
Norton & Company, Inc. 1998.

[62] Hong, J. and J. Landay, SATIN: A Toolkit for Informal Ink-based Applications, ACM
Symposium on User Interface Software and Technology, CHI Letters, 2(2):63-72, 2000.

[63] Hse, Heloise and A. Richard Newton, Recognition and Beautification of Multi-Stroke
Symbols in Digital Ink. Computers & Graphics. 2005.

[64] Hull, Jesse F. Recognition of Mathematics Using a Trainable Context-Free Grammar.
Master’s Thesis, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, June 1996.

[65] Igarashi, Takeo, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: A Sketching In-
terface for 3D Freeform Design. In Proceedings of the 26th Annual Conference on
Computer Graphics and Interactive Techniques, ACM Press/Addison-Wesley, 409-
416, 1999.

[66] Igarashi, Takeo, and John F. Hughes. A Suggestive Interface for 3D Drawing. In Pro-
ceedings of the ACM Symposium On User Interface Software and Technology (UIST
2001), ACM Press, 173-181, 2001.

6



[67] Igarashi, T., T. Moscovich, and J. F. Hughes. Spatial Keyframing for
Performance-Driven Animation. In SCA ’05: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, pages 107–115, New York,
NY, USA, 2005. ACM Press.

[68] Igarashi, Takeo and John F. Hughes. A Suggestive Interface for 3D Drawing. In ACM
Symposium on User Interface Software and Technology, 2001.

[69] Igarashi, Takeo and John F. Hughes. Clothing Manipulation. ACM Trans. Graph.,
22(3):697–697, 2003.

[70] Igarashi, Takeo and John F. Hughes. Smooth Meshes for Sketch-Based Freeform
Modeling. In SI3D ’03: Proceedings of the 2003 symposium on Interactive 3D graphics,
pages 139–142, New York, NY, USA, 2003. ACM Press.

[71] Igarashi, Takeo, Rieko Kadobayashi, Kenji Mase, and Hidehiko Tanaka. Path Drawing
for 3D Walkthrough. In UIST ’98: Proceedings of the 11th annual ACM symposium
on User interface software and technology, pages 173–174, New York, NY, USA, 1998.
ACM Press.

[72] Igarashi, Takeo, Sachiko Kawachiya, Hidehiko Tanaka, and Satoshi Matsuoka. Pega-
sus: A Drawing System for Rapid Geometric Design. In CHI ’98: CHI 98 conference
summary on Human factors in computing systems, pages 24–25, New York, NY, USA,
1998. ACM Press.

[73] Igarashi, Takeo, Satoshi Matsuoka, Sachiko Kawachiya, and Hidehiko Tanaka. In-
teractive Beautification: a Technique for Rapid Geometric Design. In UIST ’97:
Proceedings of the 10th annual ACM symposium on User interface software and tech-
nology, pages 105–114, New York, NY, USA, 1997. ACM Press.

[74] Ijiri, Takashi, Shigeru Owada, Makoto Okabe, and Takeo Igarashi. Floral Diagrams
and Inflorescences: Interactive Flower Modeling Using Botanical Structural Con-
straints. ACM Trans. Graph., 24(3):720–726, 2005.

[75] Impedovo, S., B. Marangelli, and A. M. Fanelli. A Fourier Descriptor Set for Recog-
nizing Nonstylized Numerals. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-8(8):640-645, August 1978.

[76] Karpenko, O. and J. Hughes. Inferring 3d Free-Form Shapes From Contour Drawings.
In Siggraph 2005 Sketches Program, 2005.

[77] Karpenko, O., J. Hughes, and R. Raskar. Free-Form Sketching with Variational
Implicit Surfaces. In Eurographics Computer Graphics Forum, volume 21/3, pages
585–594, 2002.

7



[78] Karpenko, Olga, and John F. Hughes. SmoothSketch: 3D free-form shapes from com-
plex sketches, Proceedings of SIGGRAPH 2006, 589-598, 2006.

[79] Kara, Levent Burak, Leslie Gennari, and Thomas F. Stahovich. A Sketch-Based In-
terface for the Design and Analysis of Simple Vibratory Mechanical Systems. In Pro-
ceedings of ASME International Design Engineering Technical Conferences, 2004.

[80] Kara, L. B. and T. F. Stahovich. Sim-U-Sketch: A Sketch-Based Interface for
Simulink, In Proceedings of Advanced Visual Interfaces, 354-357, 2004.

[81] Kara, L. B. and T. F. Stahovich. Hierarchical Parsing and Recognition of Hand-
Sketched Diagrams. 17th ACM User Interface Software Technology (UIST) 2004.

[82] Kara, L. B. and T. F. Stahovich (2005) An Image-Based, Trainable Symbol Recognizer
for Hand-drawn Sketches. Computers & Graphics 29(4): 501-517 2005.

[83] Kerrick, David D. and Alan C. Bovik. Microprocessor-Based Recognition of Hand-
printed Characters From a Tablet Input. Pattern Recognition, 21(5):525-537, May
1988.

[84] Kho, Youngihn and Michael Garland. Sketching Mesh Deformations. In Symposium
on Interactive 3D Graphics and Games 2005, 2005.

[85] Kincaid, David and Ward Cheney. Numerical Analysis Second Edition. Brooks/Cole
Publishing Company, 1996.

[86] Koschinski M., H.-J. Winkler, and M. Lang. Segmentation and Recognition of Symbols
Within Handwritten Mathematical Expressions. In 1995 International Conference on
Acoustics, Speech, Signal Processing, 2439-2442, 1995.

[87] Kosmala, Andreas and Gerhard Rigoll. On-Line Handwritten Formula Recognition
Using Statistical Methods. In Proceedings of the International Conference on Pattern
Recognition, 1306-1308, 1998.

[88] Kurtenbach, Gordon and William Buxton. User Learning and Performance with Mark-
ing Menus. In Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI’94), ACM Press, 258-264, 1994.

[89] LaFollette, Paul, James Korsh, and Raghvinder Sangwan. A Visual Interface for Ef-
fortless Animation of C/C++ Programs. Journal of Visual Languages and Computing,
11(1):27-48, 2000.

[90] Laleuf, Jean R., and Anne Morgan Spalter. A Component Repository for Learning
Objects: A Progress Report. In Proceedings of the First ACM/IEEE-CS Joint Con-
ference on Digital Libraries, ACM Press, 33-40, 2001.

8



[91] Landay, James A., and Brad A. Myers. Interactive Sketching for the Early Stages
of User Interface Design. In Proceedings of the 1995 SIGCHI Conference on Human
Factors in Computing Systems, ACM Press, 43-50, 1995.

[92] LaViola, J. An Initial Evaluation of MathPad2: A Tool for Creating Dynamic Mathe-
matical Illustrations, To appear Computers and Graphics, 2007.

[93] LaViola, J., and Zeleznik, R. A Practical Approach to Writer-Dependent Symbol
Recognition Using a Writer-Independent Recognizer, To appear IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2007.

[94] LaViola, J. Advances in Mathematical Sketching: Moving Toward the Paradigms Full
Potential, IEEE Computer Graphics and Applications, 27(1):38-48, January/February
2007.

[95] LaViola, J. An Initial Evaluation of a Pen-Based Tool for Creating Dynamic Math-
ematical Illustrations, Proceedings of the Eurographics Workshop on Sketch-Based
Interfaces and Modeling 2006, 157-164, September 2006.

[96] LaViola, J. Mathematical Sketching: A New Approach to Creating and Exploring Dy-
namic Illustrations, Ph.D. Dissertation, Brown University, Department of Computer
Science, May 2005.

[97] LaViola, Joseph and Robert Zeleznik. MathPad2: A System for the Creation and
Exploration of Mathematical Sketches. ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2004), 23(3):432-440, August 2004.
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