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This paper is concerned with photometric methods using three images with dif-
ferent lighting direction to obtain shape information of an object. Such methods are
based on the photometric equation that relates the normal of the object surface to
the triplet of the image brightness. This paper discusses the issue of whether the
surface normal and the orientation of the 3-vector formed by the image brightness
triplet is one-to-one in the equation. Several types of photometric methods require
this relation to be one-to-one. We mainly consider the case where the reflectance map
is an increasing function of the angle between the surface normal and the illuminant
direction. We first point out that even in this simple case, itis possible that the relation
is not one-to-one. Then we derive several sufficient conditions on the reflectance as
well as the illumination configuration for the one-to-one relatiog.2001 Academic Press

1. INTRODUCTION

Photometric stereo is a method of recovering the surface of an object from its multi
images taken from a fixed viewpoint under different illuminant directions. Since it w:
developed by Woodham [1], a large number of studies have been conducted on the me
and various kinds of extension have been made. Among them, remarkable is the develop
of the methods that are able to derive some valuable information about the object st
with only partial knowledge of illumination conditions and the surface reflectance [2-5]

One such developmentis the methods of computing the sign of the Gaussian curvature
will refer to it as SGC) on the object surface [6, 7]. These methods do not require knowle
of illumination conditions or knowledge of the surface reflectance. In the literature t
authors claimed that the methods were applicable to object surfaces of non-Lambel
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diffuse reflectance. However, there is no guarantee that these methods work well for a
diffuse reflectance, and this needs to be explored furthermore.

All photometric methods that use three images taken under different illuminant directic
are based on the three-light-source photometric equation. The equation relates the nc
of the surface to the triplet of the image brightness. This relation can be expressec
several ways. Among them, this paper considers the relation between the surface no
and theorientationof the 3-vector formed by the triplet. As described in [6, 7], in order
to compute SGC, this relation must be one-to-one. This is also a condition for photome
stereo without a priori knowledge of light source strength to have a unique solution.

The aim of this paper is to derive conditions on the surface reflectance as well as
illumination for the above relation to be one-to-one. In the Lambertian case, it is simy
expressed: the illuminant directions should be linearly independent. In the non-Lamber
case, however, we encounter some difficulties, since we must consider a wide variet
surface reflectance. We need a versatile model that represents most of them well, but
a model would be too complicated. As a result, it would not provide useful information.

Tagare and deFigueiredo tackled this problem and discussed uniqueness of the soll
of photometric stereo [8]. On uniqueness of the photometric stereo without knowledge
light source strength, they derived a simple condition on the reflectance map. They clair
that the derived condition could be used for checking the surface reflectance of the ta
object and the illumination conditions used for the image acquisition. However, their res
is not sufficient when one wants to know how to set the illuminant directions so that t
solution becomes unique. Also, it is not sufficient when one wants to study the nature of
surface reflectance such that the solution becomes unique. This paper aims to obtain u
results such that these requirements are fulfilled.

2. THE PROBLEM

This section defines the problem considered in this paper.

2.1. Relation between Surface Normal and Triplet of the Image Brightness

We take three imagds(x, ), l2(X, y), andls(X, y) from a fixed viewpoint by changing
illuminant direction. Let = [I4, I, I3]" denote atriplet of the image brightness at an imag
point (x, y). We assume orthographic projection andzgt, y) denote the object surface.
We denote the gradient of the surface lpyq) = (dz/9x, 9z/dy). Then the normal of the
surface is written byt = [p, g, 1]" /+/1 + p2 + q2.

By neglecting interreflection and shadow on the surface, we may represent the im
brightness using the reflectance map [9]. Then a change inthe illumination is fully expres
by a change of the reflectance map. WeRglp, q) or R¢(f) denote théth reflectance map
for thekth image k=1, 2, 3). Then th&th image is written as

Ik(X, y) = p(X, y)R«() (1a)
= p(X, Y)R«(p, 9). (1b)

Here, p(X, y) is a component of the reflectance inherent to the object surface, called
albedo in the Lambertian reflectance. We allo{x, y) to vary across the object surface.
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Using the reflectance map, it can be seen that the triplet of the image brightreesthe
following relation to the surface normal

|1 Rl(ﬁ)
l=1]l2| =p| R() | . (2)
I3 Rs(N)

This relation is viewed as a mapping franto |. We denote this mapping by. We derive
another representation of mapping from this relation, which is a mapping firtarthe
orientation of 1, a mapping from a 2D space onto a 2D space. For example, it can
expressed as

(6n, ¢n) = (01, 1),

whered, and¢, are the zenith and azimuth anglesfipfandd, and¢, are those of. We
denote this mapping b$.

2.2. One-to-One Relation of the Mapping

The aim of this paper is to derive the conditionsdoto be one-to-one. More specifically,
we consider the surface reflectance and the illumination condition thaténb&eome one-
to-one.

In [8], Tagare and deFigueiredo discussed the invertibilitydohs well as®. (The
invertibility and the one-to-one relation are equivalent in this case.) They showed that
invertible if and only if

Ry Rip Rug
det R, Rgp qu #0. (3)
Rs Rsp Rsqg

Here, Ryp representd R;/dp. (In [8], they used the zenith and azimuth angleand¢ to
represent the surface normal, and us¥d, ¢) to denote the reflectance map. Hence, ir
their original representation of (3R andRy,, etc. are used instead Bi, and Ry, etc.,
but their results are basically equivalent to (3).) Then they claimed that the invertibility
® can be checked by (3).

The condition (3) is, however, not convenient when one wants to know how to arrar
the illuminant directions so tha@ becomes one-to-one, or wants to study the nature of tt
surface reflectance such thhtis one-to-one. This is because (3) is in a general form, ar
is not expressed in terms of the illuminant directions or some practical parameters of
reflectance. In this point, we explore the problem in more detail.

First, we exclude the specular reflection and consider only the diffuse reflection. If 1
surface reflectance has a specular component,¢hisnusually not one-to-one except in
some trivial cases. Hence, we restrict our attention to the diffuse reflectance. There are
all sorts of diffuse reflectance, however. It is not easy to represent all of them by a spe
model, and if possible, the model would be too complicated. As a result, it will not provic
any practical information.

For these reasons, we mainly study the case where the reflectance map is writte
R(A) = pf (ITA). (Here,l is the illuminant direction.) This is sometimes called the gener
alized Lambertian model whdfis increasing. Probably, this model is too simple and no
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FIG. 1. An example of the mapping that is not one-to-one whehis increasing. (upper left) (upper
right) Three illuminant directions. (lower left) One of the three reflectance maps. (lower right) Distribution of tt
sign of the determinant of (3) over the gradient space; a point of positive sign is in white and a point of nega
sign is in black. If® is one-to-one, it should be either positive everywhere or negative everywhere.

many real reflectances can be well represented by this model. It should be noted, how
that even whelffiis increasing, it is possible thdt is not one-to-one. An example is shown

in Fig. 1. In this examplef is assumed to be an increasing function shown in the upps
left of Fig. 1. An instance of its associated reflectance map for some illuminant directi
is shown in the lower left of Fig. 1. The lower right of Fig. 1 shows sign distribution o
the determinant on the left-hand side of Eq. (3), when the three illuminant directions
arranged as shown in the upper right of Fig. 1. The region of negative sign is in black
that of positive sign is in white. It can be seen that the determinant of Eq. (3) takes bot
positive value and a negative value. On the boundaries of the two regions, the determil
becomes zero and the condition (3) breaks down. This means that several photometric n
ods, for example, a method of photometric stereo and the method of computing SGC, wc
yield erroneous results in this case. Hence, even this simple case of generalized Lambe
reflectance needs to be examined.

3. APPLICATIONS

Before discussing the stated problem, we briefly summarize several applications of
results that we will obtain in the next section.

3.1. Unnormalized Phhotometric Stereo

There are two classes of photometric stereo methods whose basic principle is der
from Eq. (2). One is called theormalizedphotometric stereo, which determingérom |
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whenRg(-) and alsqo are given. This is an inverse problem about the mapping welcall
The other is called thennormalizedohotometric stereo, which determin@érom | when
only R(-) is given. In this methodp is not given, and thus one must determinand p
simultaneously, or determirfefrom the orientation of. This is an inverse problem about
the mappingd.

In each problem, the global uniqueness of the solution is dependent on the invertibi
of ¥ and ®. In this paper we discuss the condition fdrto be one-to-one, and that is
equivalent to the condition fob to be invertible. Hence, the result that will be obtained is
applicable to the unnormalized photometric stereo.

3.2. Computation of Curvature Sign without Knowledge of Illumination

It is possible to compute the SGC on the object surface from three images taken ut
different illuminant directions [6, 7]. These methods requir¢o be one-to-one. In what
follows, we explain this by summarizing why the SGC is computed even when the illuming
directions are unknown. (Note that the derivation below is novel and different from thc
described in [6, 7].)

We first define a 3« 3 matrixD composed of the triplet of the image brightness and it:
directional derivatives i andy:

1 1 gy
D=|ly lIx lyl. 4)
I3 lax lay

Taking the determinant of this matrix and substituting Eq. (1b) into it, we have

Ri Rip Rug
detD = pdet| R, Ryp Rug det{sx ;’y]. 5)
x Oy
Rs Rep Req

The last determinanp,dy — py0dx on the right-hand side has the same sign as SGC, sin
the Gaussian curvature of the surfalkéeis given by

PxGy — Pydx

S A+ PP ted)r ©
Hence, if the condition (3) holds, then the first determinant concefR{ipg q) on the right-
hand side of Eq. (5) does not change its sign over the image. Its sign is usually determ
by the rotation orientation of the three illuminant directions. If it is known, the SGC |
determined by computing the determinantof

As described, the condition (3) is equivalent to the conditionifdo be one-to-one. The
issue of whethes is one-to-one is essential for the methods of computing SGC.

3.3. Diffuse Non-Lambertian Reflectance

In this paper the generalized Lambertian model is mainly treated. This section discu:
how well the generalized Lambertian model approximates the reflectance of real surf
and shows how the several results that will be obtained in the next section is connecte
the reflectance of real surfaces.
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The generalization of the Lambertian model, i.e., usfriigoss) instead of cos, is a
way of extending the applicability of the model to a more broad range of diffuse reflecti
without losing its simplicity. By tuning the functiofy it approximates various kinds of
diffuse reflections with fair accuracy. Of course, it still has the same limitation as the ori
inal Lambertian model that the reflected radiance is independent of the viewing directi
Accounting for the fact that the various types of diffuse reflection cannot be covered by ¢
specific model, however, we argue that the approximation by the generalized Lamber
model has a practical meaning.

Although we are concerned with only diffuse reflection here, there are still various typ
of diffuse reflection. In order to compare the generalized Lambertian model with some r
diffuse reflectances, we take two models of diffuse reflection, the Wolff model [10] and t
Oren—Nayar model [11]. Each of them successfully describes the reflectance propert
some kinds of real surfaces [12].

Figure 2 shows typical reflectance maps of the Wolff model and the Oren—Nayar moc
Inthe figure, the axis is parallel to the viewing direction, and the illuminant direction 15 10
slanted fronz axis. There is a parameter called the index of reflaction in the Wolff mod
(denoted byp andn respectively in [10]), and it is set to 1.7 to computing the reflectanc
map. Also, there is a parameter called the surface roughness (denatdd Hy1]) in the
Oren—Nayar model, and it is set to 40. These two reflectance maps are compared to
of the Lambertian reflectance shown in Fig. 3. It can be seen that for the Wolff model, 1
peak of the reflectance map is sharper than that of the Lambertian model and that for

FIG. 2. Areflectance map of the Wolff model (upper row) and a reflectance map of the Oren—Nayar mo
(lower row).
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A
4

FIG. 3. Areflectance map of the Lambertian model.

Oren—Nayar model, the overall brightness is larger and the decrease rate of the bright
toward the shadow region is smaller.

These two reflectance properties of quite different type can be simulated to a cer
extent by the generalized Lambertian reflectaR¢p, q) = f(TTﬁ) by tuning the function
f. We computd so that the resulting reflectance map is closest to the reflectance map:
Fig. 2 in the area of-5 < p < 5and—-5 < q < 5. The actual computation is done in the
discrete domain op andq. Figure 4 shows the functions that are computed. Figure 5 shov
the resulting reflectance maps. As a matter of course, the contour shapes of the obte
map cannot be different from those of the original Lambertian map. It can be seen, howe
that the reflectance map approximating the map of the Wolff model has a sharp peak
the true map and that the map for the Oren—Nayar model has a desired property of
brightness decreasing slowly toward the shadow region. As a result of the approximat
the functions have a complicated shape, as shown in Fig 4. For reflectances other
those described by the Wolff model and the Oren—Nayar model, the function shape r
vary depending on the nature of the reflectance. What the shapstoduld be so thab
becomes one-to-one will be the main theme of the next section, along with conditions
the illumination configuration.

4. ONE-TO-ONE RELATION

This section discusses under what conditions the mappiigyone-to-one. Mainly the
generalized Lambertian reflectance is treated here and for the general reflectance,
results are presented.

£(x) £(x)
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.2 0.4 0.6 0.8 i* 0.2 0.4 0.6 0.8 i*

FIG. 4. The functions of the generalized Lambertian reflectance tuned so that the resulting reflectance
approximates the Wolff model (left) and the Oren—Nayar model (right).
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FIG. 5. A reflectance map of the generalized Lambertian model tuned so that it is the closest to the W
model (upper row) and the Oren—Nayar model (lower row). Compare with Fig. 2.

4.1. Case of the Generalized Lambertian Reflectance

In the case of generalized Lambertian reflectance, eutlryeflectance map is given as
Re(P. ) = px f (I A). Here J is the direction of théth light source, and (x) is a function
defined in [0, 1] such thaf (0) = 0 and f (1) = 1; px is a product ofp in Eq. (2) and the
illumination strength of thé&th light source. We will use the following assumptions:

(H1) fis strictly increasing.
(H2) 14, 1, andl3 are linearly independent.

The triplet of the image brightness is given by

1,1 [ fAIR)
2| = [p2f (M) . (7)
s} Lpat(i3h)

Recall thaid denotes the mapping frofto theorientationof |. Recall also tha®# denotes
the mapping from to | itself. The domain of both mappings is a sebafuch thah 'n = 1.

If (H2) holds, the surface normdl can be uniquely represented in terms of its innel
products withiy, I2, andI3 Defining a 3-vectot = [c;, ¢, ¢3] T = [11A, 1A, T1A]T and a
3 x 3 matrixL = [Il, Iz, 3] , we have

c=Ln. (8)
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The assumption (H2) means thats nonsingular and —* exists. Thusfi = L ~1c. Since

Al =LY =1, ©
cis a point on the surface of an ellipsoidE?¥. We assume here that there is no shadow it
the image, and restrick(=I A) to ¢x > 0. Thenc is constrained on a part of the ellipsoid.
Let & denote this part of the ellipsoid:

S={c=[c,cncs) | IL7"c| =1, ¢ > 0} (10)

Usingc = [cy, Gy, C3] T, we may rewrite Eq. (7) as

1 p1f(cy)
| = [p2f(c)
I3 p3f(cs)

Sincen is uniquely represented lyy we may think of the domain o as&.. Letting §
denote the image d&, we may writeS as

S ={l=[ly 1213 [[l1. I2, 15]" = [p1f(cr), p2F(c2), p3f(ca)] T, ce &} (11)

Our objective is to derive a condition fdr to be one-to-one. This is done by examining
the structure of5 . Based on the photometric equation, one surface nofnyélds one
triplet I, and therefore oné yields one orientation of. Thus® is one-to-one if any two
distinct normals1; andf, do not yieldl; andl, such that; = «l,. This condition can be
stated as followsxl ¢ S for anyl € § and for anyw # 1.

If fis strictly increasing, its inversé —! exists, which is also strictly increasing, and
f~1(0) = 0 and f ~1(1) = 1. Hence, for the mapping, its inverse¥ ! exists, which is
given by

f~1(11/p1)
n=L""f7Y(12/p2)
f~1(13/p3)

From Egs. (9), (10), and (11), it can be seen that a triptef{ 14, I, I3] " is an element
of § if and only if

f=1(11/p1)
L=t £2(12/p0) | | = 1. (12)
f~(13/p3)
We defineT («) as
f~Hal1/p1)
T()= L7 fYals/po)| |- (13)

f~H(als/ps)
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(Note thatT (1) = 1.) Then the condition fokb to be one-to-one can be expressed a:
T(a) # 1 foranya # 1.

As shown in Fig. 1, the condition théts increasing does not guarantédo be one-to-
one. Intuitively, howevefh seems to become one-to-oné ifias some sort of monotonicity.
Such a condition ofiactually exists. It is expressed in Theorem 4.1. This requires that tl
illuminant directions are set symmetrically.

THEOREM4.1. AssuméH1)and(H2). Assume alsh, I,, and i3 are mutually symmetric
that is the angles between any two of the three vectors are the same. If its first-or
derivative is monotonicthat is its second derivative f(x) > 0 or f”(x) < 0 for any
x € (0, 1),then® is one-to-one.

Proof. We first consider the case’(x) < 0. Letg(x) = f~%(x). ThenT («) is rewritten
as

T(@) = 19(el1/p) (2 x 13) + gl l2/p2)(1s x 1) + 9lels/pa)(i x T2)I/detl. (14)

We show that ifx # 1, thenT («) # 1 by showingT («) > 1 foro > 1 andT(«) < 1 for
a < 1. We first show the former. In order to simplify the notations, we define

a =9(li/p), bi=g(ali/p), i =123, (15)

and letT;(¢) = detL - T(«). Here, we assume det> 0. Then we showl;(¢) > T1(1).
Usingb; anda;, Ti(«) and Ty (1) is written by

Ti() = [ba(lz x 13) + ba(ls x T1) + ba(fy x 1)1,
Ti(1) = Jau(lz x 13) + ax(l3 x T1) + ag(ly x 1)].

The angles between any two illuminant directions are assumed to be the sarge. L
denote their inner products, and

¢ =171, =TTy = 7T, (16)
Sincelli| = 1, —1 < ¢ < 1. Several vector products can be expressed usa®y
(2 x 1) (s x 1) = (3 x 1)1 xT2) = (2 x 1) "(h x ) = cc—1). (A7)
and
T x Tol = T2 x Tal = T3 x 1] = V1 - 2. (18)
Using these, the square ®f(«) is written as
Ti(a)? = (1 — ) (bZ + b3 + b — 2¢/(1 + c)(b1by + bobs + bsby), (19)
and the square dffy (1) is written as

Ti(1)? = (1 - c?)(af + a3 + a5 — 2¢/(1 + c)(aud + ads + agay). (20)
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We denoteC = —2¢/(1 + ¢). Since—1 < ¢ < 1, —1 < C. Taking the difference between
Ti(o)? andTy1(1)?, we have

Ta(@)? = T2 = (1= A){b] + bj + b} — af — a3 — a3
+ C(biby + bobs + bsby — aa, — axag — agay) }. (21)

It can be seen from their definition that andb; satisfya, < by for « > 1, sinceg(-) is
increasing. Thus, it can be shown tAatx) > Ty1(1) if C > 0. Then we consider the case
C < 0. Sinceg < by, the parenthesized pdrth, + - - - — aza; in (21) is positive, and thus
it is sufficient if it can be shown thafT{(«)? — T1(1)%)/(1 — ¢?) > 0 for the lower limit

C = —1.ltisreduced as

(Ta(@)® — To(1Y)/(1 - c?)
= bZ + b3 4 b3 — by, — bybg — bghy — a2 — a2 — a2 + aya, + apag + &
= (bp — b1)? — (a2 — &1)® + (bs — by)(bs — b) — (a3 — a1)(as — &). (22)

Here, the monotonicity of (-) is used. Since ”(x) = —g”(f (X)) f'(X)/(g'(f (X)))?, it
holds thaty”(x) > 0 if f”(x) < 0. Henceg'(ax) > ¢g'(x) for @ > 1. Thus, we have

ag'(ax) > g'(x), (23)

fora > 1. Letx; andx, bein [0, 1] such thagi(x;) = a; andg(x;) = a,. By integrating the
above inequality over the intervatq, x,], we haveb, — b; > a, — a;. Similarly, we have
bs — by > a3 — a; andb, — b; > a, — a;. It can be seen from these that Eq. (22) must be
either zero or positive. Since this is in the c&se- —1, we have showi («) > T(1) =1
forC > —1.

Itis left to showT (@) < 1 fora < 1. Consideringy’(x) > 0 again, we have

ag'(@x) < g'(x). (24)

for @ < 1. By integrating this inequality in the same way as above, we baveb; <
a, — a; and so on. Thus, we have shown that the form (22) is either zero or negative,
thusT(a) < 1 fora < 1.

In the case ddt < 0, it must be shown thait(«) > 1fora < 1andT (¢) < 1fora > 1.
This can be done in the similar way.

If f”(x) >0, we show thafl (¢) > 1 fore <1 andT(«) < 1 for ¢ > 1 in the case
detL > 0,and thafl (¢) > 1fore > 1andT(«¢) < 1fora < linthe case dét < 0. This
can be done also in the same wam

In the above proofIl, Tz, andl}, are assumed to make the same angle with each oth
This is not so critical, namely, even if their angles are slightly different; the above res
should hold. In (21), we showed by considering the dase —1. This is the lower limit
and is an impossible case (three directions coincide). Hence, it is conjectured that (21)
some margin and this relaxes the assumption.

In the above prooff’ is assumed to be monotonic. The restriction on the arrangeme
of the illuminant directions assumed in the above can be dissolved by a further assumg
onf. Whenf can be written as a power function, a simple result is derived.
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REMARK 4.1. AssuméH?2). If fis given by {x) = x" with a positive number,then®
iS one-to-one.

Proof. The inverse off is given by f ~1(x) = x¥/". For the matrix. = [I1, I, 3] T, its
inverseL ~ is given by

L™= [Tz X Ts, Ta x 11,11 x Tz]/detL. (25)
Thus, T (@) is reduced as

T() = | f Hali/p)(2 x 13) + T a2/ p2)(s x 11) + T~ Harls/p3)(I1 x 12)|/detL
= oM 1111/ p1)(02 x Ta) + £ 72(12/p2)(3 x 11) + T 1(13/p3)(11 x 12)|/detL
=o' T() =", (26)

Fromthis,T(a) #1lifa #1. =

Note that this result holds, regardless of the illuminant dirediiqas long as they are
linearly independent).

When there is no condition other than (H1) and (H2), we can n@lane-to-one by
setting the illuminant directions so that they make a large angle with each other. Thi
expressed in Theorem 4.2.

THEOREM4.2. AssuméH1) and (H2). Assume also that any two vectord ofi,, and
I3 make angles larger than 90Then® is one-to-one.

Proof. Since f is increasing,f ~ exists and is also increasing. From this we have
falok) > F1(/pk) for o > 1 and f Y(alkok) < f1(lk/pk) for o < 1. From the
assumption thdlg, I, andi; make an angle larger than901; < 0 fori # j. From this
we have

(i, x13)T(3x 1) >0 (27a)
(3 x1)T(L x1) >0 (27b)
(I x 1) T (1, x 13) > 0, (27¢)

since
(i x 1) x T = ([715) (1) — (T (1) >0, (1 #] #K).
(Note that [1j = 1.) Thus, ife > 1, we reduce («) as

T(@) = | Haly/p) (2 x T3) + T Halz/p2)(3 x 1) + T ~Harls/pa)(1 x 12)I/detL
> 173 1/p0)(2 x T3) + £72(12/p2) (3 x 1) + £72(13/p3)(11 x T2)|/detL
=T)=1 (28)

It can be also shown in the same way thét) < 1 fora < 1. Hence, we have shown that
T(@)#1lifa#1l =m
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4.2. Case of General Diffuse Reflectance

We next consider the general case where the reflectance map is not necessarily a fun
of the angle between the surface normal and the illuminant direction. Although this cas
difficult to deal with, a result similar to Theorem 4.2 is derived.

THEOREM4.3. Let D be an open region in the gradient spdpg spacg such that for
any(p, q) € D the following inequalities hotd

RopRaq — ReqRsp > 0 (292)
R3p qu — R3q R]_p >0 (29b)
Rlp qu — qu R2p > 0. (29C)

@ is one-to-one for a set of the normals

{AlA=[p,a1"/v1+p>+a2(p.q) € D}

Proof. As described earlier, the condition fdr to be one-to-one is equivalent to the
inequality (3) [8]. We may rewrite the determinant in (3) as the vector triple product

Ry ' Rlp qu
Rz R2 p| X qu . (30)
RS R3 p qu

For the vector cross product in this form, it can be seen from inequalities (29) that all
components of the resulting vector are positiveDn Since Ry, R,, and R; are always
positive, the above vector triple product is always positive and therefore the inequality
holds. Hence, we have shown thiais one-to-one irD. =

Note that the same result holds for the regidnwhere

RopRag — RogRsp < 0 (31a)
Rgp qu - qu Rlp <0 (31b)
R]_p qu — qu Rzp <0, (310)

since (30) always becomes negative.
The above result has a practical meaning in the case of diffuse reflectance. The follov
assumptions ofR(p, q) usually hold for diffuse reflectance:

(H3) R(p, q) is differentiable everywhere.

(H4) The maximal point oR(p, q) is the only one critical point oR(p, q) (i.e., (p, Q)
whereR, = Ry = 0).

(H5) Any level curve ofR(p, q) (i.e.,{(p, q) | R(p, q) = t}) in the gradient space is
a simple closed curve that is convex.

For different reflectance mag®i(p, q) and Rx(p, q) satisfying the above assumptions,
we consider a set of pointgp(q) at which Ry, Roq — RigRop = 0. Geometrically, such
points are the points at whichRy’s contour and a,’s contour come in contact with each
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FIG. 6. Anexample of the regioB in Theorem 4.3. (upper left and righ® (p, q) andRx(p, q). (lower left)

The line of Ry, Ryq — RigRop = 0. (lower right) The regio (the triangular region enclosed by the three curves).
The added two lines are drawn by the combinationfRaf ;) and that of R, Rs).

other (see Fig. 6). Thus, from the assumption that level curvéq pfq) are convex, the
described set will be a single curve passing through both of the maximum poiRt{saof

R, as shown in Fig. 6. From the same assumption, the curve will not branch at least wit
the interval between the two maximal points. This curve divides the gradient space i
two regions; on one side of the curv@,p, Ryqg — RiqRop is positive, and on the other side,
RipRoq — RigRyp is negative.

For Ry and R; and also forR, and Rz, we have similar boundary curves in the gradient
space. Such three boundary curves enclose a region as shown in Fig. 6, which is nothin
D in Theorem 4.3. The above result states thas one-to-one at least in such a regibn

If the above assumptions (H3)—(H5) hold and thus the set of the poinRs, &% —
RqRjp (i, j = 1,2, 3) forms a single curve, there must be either the redgioor D’ in
the gradient space. Which one appears is dependent on the arrangement of the pee
R(p,q) (i = 1,2, 3)inthe gradient space, that is, whether the peal®; pR,, andRz; go
in a clockwise or counterclockwise sense. Therefore, there always exists a fegiob()
where® is one-to-one.

Generally, when we set the illuminant directions so that they make large angles w
each other, the maximal points of the reflectance maps move apart from each other,
thus the resulting regio® may become large. Although this is desirable, we must set th
illuminant directions obliquely with respect to the viewing direction in order to make th
angles become large. This usually yields large shadowed regions on the object surf
which may be undesirable in these photometric methods. This is true of Theorem -
Therefore, it is important to balance these two mutually conflicting demands.

5. SUMMARY

We discussed the nature of the three-light-source photometric equation for diffuse n
Lambertian reflectance. The equation relates the orientation of the 3-vector compose
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the image brightness to the surface normal. For several photometric methods, whethel
relation is one-to-one is an important issue. We derived several sufficient conditions on
surface reflectance and the illuminant directions for that relation to be one-to-one. In the «
where the reflectance map is writtenR@) = of (ﬁTT), we obtained the following results:

e Just becausé is strictly increasing and the illuminant directions are linearly inde
pendent, it does not follow that the relation is one-to-one.

e If f is a power function with a positive exponent, the above relation is alwa)
guaranteed to be one-to-one, so that one may set the illuminant directions arbitrarily as
as they are linearly independent.

o If f'sfirst-order derivative is monotonic, the relation is one-to-one if the illuminar
directions are set so that the angles between any two directions are the same.

e If f is increasing, we can make the relation one-to-one by setting the illuming
directions so that they make angles larger thah 90

Using these results, the illumination should be configured according to the surface
flectance of the target object.
For general diffuse reflectance, we derived the following results:

e There exists a set of the surface normals for which the relation is guaranteed tc
one-to-one.

e Generally, we can make the set larger by setting the illuminant directions so tl
they make larger angles.

The first result just says that at least for the surface normal in a set, the relation is guarar
to be one-to-one. It does not say anything about the surface normal outside the set.

The above results would give some insight into the problem of planning illumination wh
using several three-light-source photometric methods such as unnormalized photom
stereo and the methods of computing the curvature sign of the surface. The approxime
of real reflectances by the generalized Lambertian model may be sometimes insufficie
terms of the approximation accuracy, and thus further study is required to treat a more v
range of surface reflectances including specular reflection.
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