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This paper is concerned with photometric methods using three images with dif-
ferent lighting direction to obtain shape information of an object. Such methods are
based on the photometric equation that relates the normal of the object surface to
the triplet of the image brightness. This paper discusses the issue of whether the
surface normal and the orientation of the 3-vector formed by the image brightness
triplet is one-to-one in the equation. Several types of photometric methods require
this relation to be one-to-one. We mainly consider the case where the reflectance map
is an increasing function of the angle between the surface normal and the illuminant
direction. We first point out that even in this simple case, it is possible that the relation
is not one-to-one. Then we derive several sufficient conditions on the reflectance as
well as the illumination configuration for the one-to-one relation.c© 2001 Academic Press

1. INTRODUCTION

Photometric stereo is a method of recovering the surface of an object from its multiple
images taken from a fixed viewpoint under different illuminant directions. Since it was
developed by Woodham [1], a large number of studies have been conducted on the method
and various kinds of extension have been made. Among them, remarkable is the development
of the methods that are able to derive some valuable information about the object shape
with only partial knowledge of illumination conditions and the surface reflectance [2–5].

One such development is the methods of computing the sign of the Gaussian curvature (we
will refer to it as SGC) on the object surface [6, 7]. These methods do not require knowledge
of illumination conditions or knowledge of the surface reflectance. In the literature the
authors claimed that the methods were applicable to object surfaces of non-Lambertian
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diffuse reflectance. However, there is no guarantee that these methods work well for all of
diffuse reflectance, and this needs to be explored furthermore.

All photometric methods that use three images taken under different illuminant directions
are based on the three-light-source photometric equation. The equation relates the normal
of the surface to the triplet of the image brightness. This relation can be expressed in
several ways. Among them, this paper considers the relation between the surface normal
and theorientationof the 3-vector formed by the triplet. As described in [6, 7], in order
to compute SGC, this relation must be one-to-one. This is also a condition for photometric
stereo without a priori knowledge of light source strength to have a unique solution.

The aim of this paper is to derive conditions on the surface reflectance as well as the
illumination for the above relation to be one-to-one. In the Lambertian case, it is simply
expressed: the illuminant directions should be linearly independent. In the non-Lambertian
case, however, we encounter some difficulties, since we must consider a wide variety of
surface reflectance. We need a versatile model that represents most of them well, but such
a model would be too complicated. As a result, it would not provide useful information.

Tagare and deFigueiredo tackled this problem and discussed uniqueness of the solution
of photometric stereo [8]. On uniqueness of the photometric stereo without knowledge of
light source strength, they derived a simple condition on the reflectance map. They claimed
that the derived condition could be used for checking the surface reflectance of the target
object and the illumination conditions used for the image acquisition. However, their result
is not sufficient when one wants to know how to set the illuminant directions so that the
solution becomes unique. Also, it is not sufficient when one wants to study the nature of the
surface reflectance such that the solution becomes unique. This paper aims to obtain useful
results such that these requirements are fulfilled.

2. THE PROBLEM

This section defines the problem considered in this paper.

2.1. Relation between Surface Normal and Triplet of the Image Brightness

We take three imagesI1(x, y), I2(x, y), andI3(x, y) from a fixed viewpoint by changing
illuminant direction. LetI ≡ [ I1, I2, I3]> denote a triplet of the image brightness at an image
point (x, y). We assume orthographic projection and letz(x, y) denote the object surface.
We denote the gradient of the surface by (p,q) = (∂z/∂x, ∂z/∂y). Then the normal of the
surface is written bŷn = [ p,q, 1]>/

√
1+ p2+ q2.

By neglecting interreflection and shadow on the surface, we may represent the image
brightness using the reflectance map [9]. Then a change in the illumination is fully expressed
by a change of the reflectance map. We letRk(p,q) or Rk(n̂) denote thekth reflectance map
for thekth image (k = 1, 2, 3). Then thekth image is written as

Ik(x, y) = ρ(x, y)Rk(n̂) (1a)

= ρ(x, y)Rk(p,q). (1b)

Here,ρ(x, y) is a component of the reflectance inherent to the object surface, called an
albedo in the Lambertian reflectance. We allowρ(x, y) to vary across the object surface.
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Using the reflectance map, it can be seen that the triplet of the image brightnessI has the
following relation to the surface normaln̂:

I =

 I1

I2

I3

 = ρ
 R1(n̂)

R2(n̂)

R3(n̂)

 . (2)

This relation is viewed as a mapping from̂n to I . We denote this mapping by9. We derive
another representation of mapping from this relation, which is a mapping fromn̂ to the
orientation of I , a mapping from a 2D space onto a 2D space. For example, it can be
expressed as

(θn, φn) 7→ (θI , φI ),

whereθn andφn are the zenith and azimuth angles ofn̂, andθI andφI are those ofI . We
denote this mapping by8.

2.2. One-to-One Relation of the Mapping

The aim of this paper is to derive the conditions for8 to be one-to-one. More specifically,
we consider the surface reflectance and the illumination condition that make8 become one-
to-one.

In [8], Tagare and deFigueiredo discussed the invertibility of9 as well as8. (The
invertibility and the one-to-one relation are equivalent in this case.) They showed that8 is
invertible if and only if

det

R1 R1p R1q

R2 R2p R2q

R3 R3p R3q

 6= 0. (3)

Here,R1p represents∂R1/∂p. (In [8], they used the zenith and azimuth anglesθ andφ to
represent the surface normal, and usedR(θ, φ) to denote the reflectance map. Hence, in
their original representation of (3),R1θ andR1φ , etc. are used instead ofR1p andR1q, etc.,
but their results are basically equivalent to (3).) Then they claimed that the invertibility of
8 can be checked by (3).

The condition (3) is, however, not convenient when one wants to know how to arrange
the illuminant directions so that8 becomes one-to-one, or wants to study the nature of the
surface reflectance such that8 is one-to-one. This is because (3) is in a general form, and
is not expressed in terms of the illuminant directions or some practical parameters of the
reflectance. In this point, we explore the problem in more detail.

First, we exclude the specular reflection and consider only the diffuse reflection. If the
surface reflectance has a specular component, then8 is usually not one-to-one except in
some trivial cases. Hence, we restrict our attention to the diffuse reflectance. There are still
all sorts of diffuse reflectance, however. It is not easy to represent all of them by a specific
model, and if possible, the model would be too complicated. As a result, it will not provide
any practical information.

For these reasons, we mainly study the case where the reflectance map is written by
R(n̂) = ρ f (l̂>n̂). (Here,l̂ is the illuminant direction.) This is sometimes called the gener-
alized Lambertian model whenf is increasing. Probably, this model is too simple and not
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FIG. 1. An example of the mapping8 that is not one-to-one whenf is increasing. (upper left)f. (upper
right) Three illuminant directions. (lower left) One of the three reflectance maps. (lower right) Distribution of the
sign of the determinant of (3) over the gradient space; a point of positive sign is in white and a point of negative
sign is in black. If8 is one-to-one, it should be either positive everywhere or negative everywhere.

many real reflectances can be well represented by this model. It should be noted, however,
that even whenf is increasing, it is possible that8 is not one-to-one. An example is shown
in Fig. 1. In this example,f is assumed to be an increasing function shown in the upper
left of Fig. 1. An instance of its associated reflectance map for some illuminant direction
is shown in the lower left of Fig. 1. The lower right of Fig. 1 shows sign distribution of
the determinant on the left-hand side of Eq. (3), when the three illuminant directions are
arranged as shown in the upper right of Fig. 1. The region of negative sign is in black and
that of positive sign is in white. It can be seen that the determinant of Eq. (3) takes both a
positive value and a negative value. On the boundaries of the two regions, the determinant
becomes zero and the condition (3) breaks down. This means that several photometric meth-
ods, for example, a method of photometric stereo and the method of computing SGC, would
yield erroneous results in this case. Hence, even this simple case of generalized Lambertian
reflectance needs to be examined.

3. APPLICATIONS

Before discussing the stated problem, we briefly summarize several applications of the
results that we will obtain in the next section.

3.1. Unnormalized Phhotometric Stereo

There are two classes of photometric stereo methods whose basic principle is derived
from Eq. (2). One is called thenormalizedphotometric stereo, which determinesn̂ from I
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whenRk(·) and alsoρ are given. This is an inverse problem about the mapping we call9.
The other is called theunnormalizedphotometric stereo, which determinesn̂ from I when
only Rk(·) is given. In this method,ρ is not given, and thus one must determinen̂ andρ
simultaneously, or determinên from the orientation ofI . This is an inverse problem about
the mapping8.

In each problem, the global uniqueness of the solution is dependent on the invertibility
of 9 and8. In this paper we discuss the condition for8 to be one-to-one, and that is
equivalent to the condition for8 to be invertible. Hence, the result that will be obtained is
applicable to the unnormalized photometric stereo.

3.2. Computation of Curvature Sign without Knowledge of Illumination

It is possible to compute the SGC on the object surface from three images taken under
different illuminant directions [6, 7]. These methods require8 to be one-to-one. In what
follows, we explain this by summarizing why the SGC is computed even when the illuminant
directions are unknown. (Note that the derivation below is novel and different from those
described in [6, 7].)

We first define a 3× 3 matrixD composed of the triplet of the image brightness and its
directional derivatives inx andy:

D =

I1 I1x I1y

I2 I2x I2y

I3 I3x I3y

 . (4)

Taking the determinant of this matrix and substituting Eq. (1b) into it, we have

detD = ρ3det

R1 R1p R1q

R2 R2p R2q

R3 R3p R3q

det

[
px py

qx qy

]
. (5)

The last determinantpxqy − pyqx on the right-hand side has the same sign as SGC, since
the Gaussian curvature of the surface,K, is given by

K = pxqy − pyqx

(1+ p2+ q2)2
. (6)

Hence, if the condition (3) holds, then the first determinant concerningR(p,q) on the right-
hand side of Eq. (5) does not change its sign over the image. Its sign is usually determined
by the rotation orientation of the three illuminant directions. If it is known, the SGC is
determined by computing the determinant ofD.

As described, the condition (3) is equivalent to the condition for8 to be one-to-one. The
issue of whether8 is one-to-one is essential for the methods of computing SGC.

3.3. Diffuse Non-Lambertian Reflectance

In this paper the generalized Lambertian model is mainly treated. This section discusses
how well the generalized Lambertian model approximates the reflectance of real surfaces
and shows how the several results that will be obtained in the next section is connected to
the reflectance of real surfaces.
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The generalization of the Lambertian model, i.e., usingf (cosθ ) instead of cosθ , is a
way of extending the applicability of the model to a more broad range of diffuse reflection
without losing its simplicity. By tuning the functionf, it approximates various kinds of
diffuse reflections with fair accuracy. Of course, it still has the same limitation as the orig-
inal Lambertian model that the reflected radiance is independent of the viewing direction.
Accounting for the fact that the various types of diffuse reflection cannot be covered by any
specific model, however, we argue that the approximation by the generalized Lambertian
model has a practical meaning.

Although we are concerned with only diffuse reflection here, there are still various types
of diffuse reflection. In order to compare the generalized Lambertian model with some real
diffuse reflectances, we take two models of diffuse reflection, the Wolff model [10] and the
Oren–Nayar model [11]. Each of them successfully describes the reflectance property of
some kinds of real surfaces [12].

Figure 2 shows typical reflectance maps of the Wolff model and the Oren–Nayar model.
In the figure, thezaxis is parallel to the viewing direction, and the illuminant direction is 10◦

slanted fromz axis. There is a parameter called the index of reflaction in the Wolff model
(denoted byρ andn respectively in [10]), and it is set to 1.7 to computing the reflectance
map. Also, there is a parameter called the surface roughness (denoted byσ in [11]) in the
Oren–Nayar model, and it is set to 40. These two reflectance maps are compared to that
of the Lambertian reflectance shown in Fig. 3. It can be seen that for the Wolff model, the
peak of the reflectance map is sharper than that of the Lambertian model and that for the

FIG. 2. A reflectance map of the Wolff model (upper row) and a reflectance map of the Oren–Nayar model
(lower row).
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FIG. 3. A reflectance map of the Lambertian model.

Oren–Nayar model, the overall brightness is larger and the decrease rate of the brightness
toward the shadow region is smaller.

These two reflectance properties of quite different type can be simulated to a certain
extent by the generalized Lambertian reflectanceR(p,q) = f (l̂>n̂) by tuning the function
f. We computef so that the resulting reflectance map is closest to the reflectance maps of
Fig. 2 in the area of−5< p < 5 and−5< q < 5. The actual computation is done in the
discrete domain ofp andq. Figure 4 shows the functions that are computed. Figure 5 shows
the resulting reflectance maps. As a matter of course, the contour shapes of the obtained
map cannot be different from those of the original Lambertian map. It can be seen, however,
that the reflectance map approximating the map of the Wolff model has a sharp peak like
the true map and that the map for the Oren–Nayar model has a desired property of the
brightness decreasing slowly toward the shadow region. As a result of the approximation,
the functions have a complicated shape, as shown in Fig 4. For reflectances other than
those described by the Wolff model and the Oren–Nayar model, the function shape may
vary depending on the nature of the reflectance. What the shape off should be so that8
becomes one-to-one will be the main theme of the next section, along with conditions for
the illumination configuration.

4. ONE-TO-ONE RELATION

This section discusses under what conditions the mapping8 is one-to-one. Mainly the
generalized Lambertian reflectance is treated here and for the general reflectance, some
results are presented.

FIG. 4. The functions of the generalized Lambertian reflectance tuned so that the resulting reflectance map
approximates the Wolff model (left) and the Oren–Nayar model (right).
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FIG. 5. A reflectance map of the generalized Lambertian model tuned so that it is the closest to the Wolff
model (upper row) and the Oren–Nayar model (lower row). Compare with Fig. 2.

4.1. Case of the Generalized Lambertian Reflectance

In the case of generalized Lambertian reflectance, everykth reflectance map is given as
Rk(p,q) = ρk f (l̂>k n̂). Here,̂lk is the direction of thekth light source, andf (x) is a function
defined in [0, 1] such thatf (0)= 0 and f (1)= 1; ρk is a product ofρ in Eq. (2) and the
illumination strength of thekth light source. We will use the following assumptions:

(H1) f is strictly increasing.
(H2) l̂1, l̂2, andl̂3 are linearly independent.

The triplet of the image brightness is given byI1

I2

I3

 =

ρ1 f (l̂>1 n̂)

ρ2 f (l̂>2 n̂)

ρ3 f (l̂>3 n̂)

 . (7)

Recall that8 denotes the mapping from̂n to theorientationof I . Recall also that9 denotes
the mapping from̂n to I itself. The domain of both mappings is a set ofn such thatn>n = 1.

If (H2) holds, the surface normal̂n can be uniquely represented in terms of its inner
products witĥl1, l̂2, andl̂3. Defining a 3-vectorc= [c1, c2, c3]> = [ l̂T1 n̂, l̂T2 n̂, l̂T3 n̂]> and a
3× 3 matrixL ≡ [ l̂1, l̂2, l̂3]>, we have

c= Ln̂. (8)
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The assumption (H2) means thatL is nonsingular andL−1 exists. Thus,̂n = L−1c. Since

|n̂| = |L−1c| = 1, (9)

c is a point on the surface of an ellipsoid inE3. We assume here that there is no shadow in
the image, and restrictck(=l̂>k n̂) to ck ≥ 0. Thenc is constrained on a part of the ellipsoid.
Let Sc denote this part of the ellipsoid:

Sc ≡ {c= [c1, c2, c3]> | |L−1c| = 1, ck ≥ 0}. (10)

Usingc= [c1, c2, c3]>, we may rewrite Eq. (7) asI1

I2

I3

 =
ρ1 f (c1)

ρ2 f (c2)

ρ3 f (c3)

 .
Sincen̂ is uniquely represented byc, we may think of the domain of9 asSc. Letting SI

denote the image ofSc, we may writeSI as

SI ≡ {I = [ I1, I2, I3]> | [ I1, I2, I3]> = [ρ1 f (c1), ρ2 f (c2), ρ3 f (c3)]>, c ∈ Sc}. (11)

Our objective is to derive a condition for8 to be one-to-one. This is done by examining
the structure ofSI . Based on the photometric equation, one surface normaln̂ yields one
triplet I , and therefore onên yields one orientation ofI . Thus,8 is one-to-one if any two
distinct normalŝn1 andn̂2 do not yieldI1 andI2 such thatI1 = αI2. This condition can be
stated as follows:αI 6∈ SI for anyI ∈ SI and for anyα 6= 1.

If f is strictly increasing, its inversef −1 exists, which is also strictly increasing, and
f −1(0)= 0 and f −1(1)= 1. Hence, for the mapping9, its inverse9−1 exists, which is
given by

n = L−1

 f −1(I1/ρ1)

f −1(I2/ρ2)

f −1(I3/ρ3)

 .
From Eqs. (9), (10), and (11), it can be seen that a tripletI = [ I1, I2, I3]> is an element

of SI if and only if ∣∣∣∣∣∣∣L−1

 f −1(I1/ρ1)

f −1(I2/ρ1)

f −1(I3/ρ3)


∣∣∣∣∣∣∣ = 1. (12)

We defineT(α) as

T(α) ≡

∣∣∣∣∣∣∣L−1

 f −1(α I1/ρ1)

f −1(α I2/ρ2)

f −1(α I3/ρ3)


∣∣∣∣∣∣∣ . (13)
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(Note thatT(1)= 1.) Then the condition for8 to be one-to-one can be expressed as
T(α) 6= 1 for anyα 6= 1.

As shown in Fig. 1, the condition thatf is increasing does not guarantee8 to be one-to-
one. Intuitively, however,8 seems to become one-to-one iff has some sort of monotonicity.
Such a condition onf actually exists. It is expressed in Theorem 4.1. This requires that the
illuminant directions are set symmetrically.

THEOREM4.1. Assume(H1) and(H2). Assume alsôl1, l̂2,and l̂3 are mutually symmetric;
that is, the angles between any two of the three vectors are the same. If its first-order
derivative is monotonic, that is, its second derivative f′′(x) ≥ 0 or f ′′(x) ≤ 0 for any
x ∈ (0, 1), then8 is one-to-one.

Proof. We first consider the casef ′′(x) ≤ 0. Letg(x) ≡ f −1(x). ThenT(α) is rewritten
as

T(α) = |g(α I1/ρ1)(l̂2× l̂3)+ g(α I2/ρ2)(l̂3× l̂1)+ g(α I3/ρ3)(l̂1× l̂2)|/detL . (14)

We show that ifα 6= 1, thenT(α) 6= 1 by showingT(α) > 1 for α > 1 andT(α) < 1 for
α < 1. We first show the former. In order to simplify the notations, we define

ai ≡ g(Ii /ρi ), bi ≡ g(α Ii /ρi ), i = 1, 2, 3, (15)

and letT1(α) ≡ detL · T(α). Here, we assume detL > 0. Then we showT1(α) > T1(1).
Usingbi andai , T1(α) andT1(1) is written by

T1(α) = |b1(l̂2× l̂3)+ b2(l̂3× l̂1)+ b3(l̂1× l̂2)|,
T1(1) = |a1(l̂2× l̂3)+ a2(l̂3× l̂1)+ a3(l̂1× l̂2)|.

The angles between any two illuminant directions are assumed to be the same. Letc
denote their inner products, and

c ≡ l̂>1 l̂2 = l̂>2 l̂3 = l̂>3 l̂1. (16)

Since|l̂ i | = 1,−1< c < 1. Several vector products can be expressed usingc as

(l̂2× l̂3)>(l̂3× l̂1) = (l̂3× l̂1)>(l̂1× l̂2) = (l̂2× l̂3)>(l̂1× l̂2) = c(c− 1), (17)

and

|l̂1× l̂2| = |l̂2× l̂3| = |l̂3× l̂1| =
√

1− c2. (18)

Using these, the square ofT1(α) is written as

T1(α)2 = (1− c2)
(
b2

1 + b2
2 + b2

3 − 2c
/

(1+ c)(b1b2+ b2b3+ b3b1), (19)

and the square ofT1(1) is written as

T1(1)2 = (1− c2)
(
a2

1 + a2
2 + a2

3 − 2c
/

(1+ c)(a1a2+ a2a3+ a3a1). (20)
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We denoteC ≡ −2c/(1+ c). Since−1< c < 1,−1< C. Taking the difference between
T1(α)2 andT1(1)2, we have

T1(α)2− T1(1)2 = (1− c2)
{

b2
1 + b2

2 + b2
3 − a2

1 − a2
2 − a2

3

+C(b1b2+ b2b3+ b3b1− a1a2− a2a3− a3a1)
}
. (21)

It can be seen from their definition thatai andbi satisfyai < bi for α > 1, sinceg(·) is
increasing. Thus, it can be shown thatT1(α) > T1(1) if C > 0. Then we consider the case
C ≤ 0. Sinceai < bi , the parenthesized partb1b2+ · · · − a3a1 in (21) is positive, and thus
it is sufficient if it can be shown that (T1(α)2− T1(1)2)/(1− c2) ≥ 0 for the lower limit
C = −1. It is reduced as

(T1(α)2− T1(1)2)/(1− c2)

= b2
1 + b2

2 + b2
3 − b1b2− b2b3− b3b1− a2

1 − a2
2 − a2

3 + a1a2+ a2a3+ a3a1

= (b2− b1)2− (a2− a1)2+ (b3− b1)(b3− b2)− (a3− a1)(a3− a2). (22)

Here, the monotonicity off ′(·) is used. Sincef ′′(x) = −g′′( f (x)) f ′(x)/(g′( f (x)))2, it
holds thatg′′(x) ≥ 0 if f ′′(x) ≤ 0. Hence,g′(αx) ≥ g′(x) for α > 1. Thus, we have

αg′(αx) ≥ g′(x), (23)

for α > 1. Letx1 andx2 be in [0, 1] such thatg(x1) = a1 andg(x2) = a2. By integrating the
above inequality over the interval [x1, x2], we haveb2− b1 ≥ a2− a1. Similarly, we have
b3− b1 ≥ a3− a1 andb2− b1 ≥ a2− a1. It can be seen from these that Eq. (22) must be
either zero or positive. Since this is in the caseC=−1, we have shownT(α) > T(1)= 1
for C>−1.

It is left to showT(α) < 1 for α < 1. Consideringg′′(x) ≥ 0 again, we have

αg′(αx) ≤ g′(x). (24)

for α < 1. By integrating this inequality in the same way as above, we haveb2− b1 ≤
a2− a1 and so on. Thus, we have shown that the form (22) is either zero or negative, and
thusT(α) < 1 for α < 1.

In the case detL < 0, it must be shown thatT(α) > 1 forα < 1 andT(α) < 1 forα > 1.
This can be done in the similar way.

If f ′′(x) ≥ 0, we show thatT(α) > 1 for α < 1 andT(α) < 1 for α > 1 in the case
detL > 0, and thatT(α) > 1 forα > 1 andT(α) < 1 forα < 1 in the case detL < 0. This
can be done also in the same way.

In the above proof,̂l1, l̂2, and l̂3 are assumed to make the same angle with each other.
This is not so critical, namely, even if their angles are slightly different; the above result
should hold. In (21), we showed by considering the caseC = −1. This is the lower limit
and is an impossible case (three directions coincide). Hence, it is conjectured that (21) has
some margin and this relaxes the assumption.

In the above proof,f ′ is assumed to be monotonic. The restriction on the arrangement
of the illuminant directions assumed in the above can be dissolved by a further assumption
on f. Whenf can be written as a power function, a simple result is derived.
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REMARK 4.1. Assume(H2). If f is given by f(x) = xr with a positive number r, then8
is one-to-one.

Proof. The inverse off is given by f −1(x) = x1/r . For the matrixL = [ l̂1, l̂2, l̂3]>, its
inverseL−1 is given by

L−1 = [ l̂2× l̂3, l̂3× l̂1, l̂1× l̂2]/detL . (25)

Thus,T(α) is reduced as

T(α) = | f −1(α I1/ρ1)(l̂2× l̂3)+ f −1(α I2/ρ2)(l̂3× l̂1)+ f −1(α I3/ρ3)(l̂1× l̂2)|/detL

= α1/r | f −1(I1/ρ1)(l̂2× l̂3)+ f −1(I2/ρ2)(l̂3× l̂1)+ f −1(I3/ρ3)(l̂1× l̂2)|/detL

= α1/r T(1)= α1/r . (26)

From this,T(α) 6= 1 if α 6= 1.

Note that this result holds, regardless of the illuminant directionlk (as long as they are
linearly independent).

When there is no condition other than (H1) and (H2), we can make8 one-to-one by
setting the illuminant directions so that they make a large angle with each other. This is
expressed in Theorem 4.2.

THEOREM 4.2. Assume(H1) and (H2). Assume also that any two vectors ofl̂1, l̂2, and
l̂3 make angles larger than 90◦. Then8 is one-to-one.

Proof. Since f is increasing,f −1 exists and is also increasing. From this we have
f −1(α Ikρk) > f −1(Ik/ρk) for α > 1 and f −1(α Ikρk) < f −1(Ik/ρk) for α < 1. From the
assumption that̂l1, l̂2, andl̂3 make an angle larger than 90◦, l̂>i l̂ j < 0 for i 6= j . From this
we have

(l̂2× l̂3)>(l̂3× l̂1) > 0 (27a)

(l̂3× l̂1)>(l̂1× l̂2) > 0 (27b)

(l̂1× l̂2)>(l̂2× l̂3) > 0, (27c)

since

(l̂ i × l̂ j )
>(l̂ j × l̂k) = (l̂>i l̂ j

)(
l̂>j l̂k
)− (l̂>i l̂k

)(
l̂>j l̂ j
)
> 0, (i 6= j 6= k).

(Note that̂l>j l̂ j = 1.) Thus, ifα > 1, we reduceT(α) as

T(α) = | f −1(α I1/ρ1)(l̂2× l̂3)+ f −1(α I2/ρ2)(l̂3× l̂1)+ f −1(α I3/ρ3)(l̂1× l̂2)|/detL

> | f −1(I1/ρ1)(l̂2× l̂3)+ f −1(I2/ρ2)(l̂3× l̂1)+ f −1(I3/ρ3)(l̂1× l̂2)|/detL

= T(1)= 1. (28)

It can be also shown in the same way thatT(α) < 1 for α < 1. Hence, we have shown that
T(α) 6= 1 if α 6= 1.
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4.2. Case of General Diffuse Reflectance

We next consider the general case where the reflectance map is not necessarily a function
of the angle between the surface normal and the illuminant direction. Although this case is
difficult to deal with, a result similar to Theorem 4.2 is derived.

THEOREM 4.3. Let D be an open region in the gradient space(pq space) such that for
any(p,q) ∈ D the following inequalities hold:

R2pR3q − R2q R3p > 0 (29a)

R3pR1q − R3q R1p > 0 (29b)

R1pR2q − R1q R2p > 0. (29c)

8 is one-to-one for a set of the normals

{n̂ | n̂ = [ p,q, 1]>/
√

1+ p2+ q2, (p,q) ∈ D}.

Proof. As described earlier, the condition for8 to be one-to-one is equivalent to the
inequality (3) [8]. We may rewrite the determinant in (3) as the vector triple productR1

R2

R3


>

R1p

R2p

R3p

×
R1q

R2q

R3q


 . (30)

For the vector cross product in this form, it can be seen from inequalities (29) that all the
components of the resulting vector are positive inD. Since R1, R2, and R3 are always
positive, the above vector triple product is always positive and therefore the inequality (3)
holds. Hence, we have shown that8 is one-to-one inD.

Note that the same result holds for the regionD′ where

R2pR3q − R2q R3p < 0 (31a)

R3pR1q − R3q R1p < 0 (31b)

R1pR2q − R1q R2p < 0, (31c)

since (30) always becomes negative.
The above result has a practical meaning in the case of diffuse reflectance. The following

assumptions onR(p,q) usually hold for diffuse reflectance:

(H3) R(p,q) is differentiable everywhere.
(H4) The maximal point ofR(p,q) is the only one critical point ofR(p,q) (i.e., (p,q)

whereRp = Rq = 0).
(H5) Any level curve ofR(p,q) (i.e., {(p,q) | R(p,q) = t}) in the gradient space is

a simple closed curve that is convex.

For different reflectance mapsR1(p,q) andR2(p,q) satisfying the above assumptions,
we consider a set of points (p,q) at which R1pR2q − R1q R2p = 0. Geometrically, such
points are the points at which aR1’s contour and aR2’s contour come in contact with each
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FIG. 6. An example of the regionD in Theorem 4.3. (upper left and right)R1(p,q) andR2(p,q). (lower left)
The line ofR1p R2q − R1q R2p = 0. (lower right) The regionD (the triangular region enclosed by the three curves).
The added two lines are drawn by the combination of (R3, R1) and that of (R2, R3).

other (see Fig. 6). Thus, from the assumption that level curves ofR(p,q) are convex, the
described set will be a single curve passing through both of the maximum points ofR1 and
R2 as shown in Fig. 6. From the same assumption, the curve will not branch at least within
the interval between the two maximal points. This curve divides the gradient space into
two regions; on one side of the curve,R1pR2q − R1q R2p is positive, and on the other side,
R1pR2q − R1q R2p is negative.

For R1 andR3 and also forR2 andR3, we have similar boundary curves in the gradient
space. Such three boundary curves enclose a region as shown in Fig. 6, which is nothing but
D in Theorem 4.3. The above result states that8 is one-to-one at least in such a regionD.

If the above assumptions (H3)–(H5) hold and thus the set of the points ofRip Rjq −
Riq Rjp (i, j = 1, 2, 3) forms a single curve, there must be either the regionD or D′ in
the gradient space. Which one appears is dependent on the arrangement of the peaks of
Ri (p,q) (i = 1, 2, 3) in the gradient space, that is, whether the peaks ofR1, R2, andR3 go
in a clockwise or counterclockwise sense. Therefore, there always exists a region (D or D′)
where8 is one-to-one.

Generally, when we set the illuminant directions so that they make large angles with
each other, the maximal points of the reflectance maps move apart from each other, and
thus the resulting regionD may become large. Although this is desirable, we must set the
illuminant directions obliquely with respect to the viewing direction in order to make the
angles become large. This usually yields large shadowed regions on the object surface,
which may be undesirable in these photometric methods. This is true of Theorem 4.2.
Therefore, it is important to balance these two mutually conflicting demands.

5. SUMMARY

We discussed the nature of the three-light-source photometric equation for diffuse non-
Lambertian reflectance. The equation relates the orientation of the 3-vector composed of



UNIQUENESS OF SOLUTIONS OF THE PHOTOMETRIC STEREO 225

the image brightness to the surface normal. For several photometric methods, whether this
relation is one-to-one is an important issue. We derived several sufficient conditions on the
surface reflectance and the illuminant directions for that relation to be one-to-one. In the case
where the reflectance map is written asR(n̂) = ρ f (n̂> l̂), we obtained the following results:

• Just becausef is strictly increasing and the illuminant directions are linearly inde-
pendent, it does not follow that the relation is one-to-one.
• If f is a power function with a positive exponent, the above relation is always

guaranteed to be one-to-one, so that one may set the illuminant directions arbitrarily as long
as they are linearly independent.
• If f ’s first-order derivative is monotonic, the relation is one-to-one if the illuminant

directions are set so that the angles between any two directions are the same.
• If f is increasing, we can make the relation one-to-one by setting the illuminant

directions so that they make angles larger than 90◦.

Using these results, the illumination should be configured according to the surface re-
flectance of the target object.

For general diffuse reflectance, we derived the following results:

• There exists a set of the surface normals for which the relation is guaranteed to be
one-to-one.
• Generally, we can make the set larger by setting the illuminant directions so that

they make larger angles.

The first result just says that at least for the surface normal in a set, the relation is guaranteed
to be one-to-one. It does not say anything about the surface normal outside the set.

The above results would give some insight into the problem of planning illumination when
using several three-light-source photometric methods such as unnormalized photometric
stereo and the methods of computing the curvature sign of the surface. The approximation
of real reflectances by the generalized Lambertian model may be sometimes insufficient in
terms of the approximation accuracy, and thus further study is required to treat a more wide
range of surface reflectances including specular reflection.
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