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Abstract
The question of which views may be inferred from a set of

basis images is addressed. Under certain conditions, a dis-
crete set of images implicitly describes scene appearance for
a continuous range of viewpoints. In particular, it is demon-
strated that two basis views of a static scene determine the
set of all views on the line between their optical centers. Ad-
ditional basis views further extend the range of predictable
views to a two- or three-dimensional region of viewspace.
These results are shown to apply under perspective projec-
tion subject to a generic visibility constraint called mono-
tonicity. In addition, a simple scanline algorithm is pre-
sented for actually generating these views from a set of ba-
sis images. The technique, called view morphing may be
applied to both calibrated and uncalibrated images. At a
minimum, two basis views and their fundamental matrix are
needed. Experimental results are presented on real images.
This work provides a theoretical foundation for image-based
representations of 3D scenes by demonstrating that perspec-
tive view synthesis is a theoretically well-posed problem.

1 Introduction
Image-based representations of 3D scenes are currently

being developed by many researchers in the computer vi-
sion and computer graphics communities (see, for example,
[4, 5, 1, 3, 13]). These representations encode scene appear-
ance with a set of images that may be adaptively combined
to produce new views of a scene. Image-based techniques
are especially attractive because they provide photometric
information which has proven very valuable for recognition
tasks. In addition, these representations are readily acquired
from a set of basis views, avoiding the need for automatic or
manual techniques for acquiring 3D object models.

At the heart of this new area lies a fundamental question:
to what extent may scene appearance be modeled with a
sparse set of images? Clearly, the images provide scene ap-
pearance at a discrete set of viewpoints. It is not clear, how-

The support of the National Science Foundation under Grant Nos. IRI-
9220782 and CDA-9222948 is gratefully acknowledged.

ever, that a more complete coverage of viewspace is theo-
retically possible. A number of “view synthesis” techniques
have been developed recently [4, 2, 5, 7] to extend the range
of predictable views. However, those methods require solv-
ing ill-posed correspondence tasks, suggesting that the view
synthesis problem is inherently ill-posed.

As a foundation for work in this area, we feel it is neces-
sary to answer the following two questions: given two per-
spective views of a static scene, under what conditions may
new views be predicted? Second, which views are deter-
mined from a set of basis images? In this paper, we show
that a specific range of perspective views is theoretically de-
termined from two or more basis views, under a generic vis-
ibility assumption called monotonicity. This result applies
when either the relative camera configurations are known or
when only the fundamental matrix is available. In addition,
we present a simple technique for generating this particu-
lar range of views using image interpolation. Importantly,
the method relies only on measurable image information,
avoiding ill-posed correspondence problems entirely. Fur-
thermore, all processing occurs at the scanline level, effec-
tively reducing the original 3D synthesis problem to a set
of simple 1D transformations that may be implemented ef-
ficiently on existing graphics workstations. The work pre-
sented here extends to perspective projection previous re-
sults on the orthographic case [10]. In addition, this paper
discusses extensions to three or more basis views, an impor-
tant generalization not considered in [10].

We begin by introducing the monotonicity constraint and
describing its implications for view synthesis in Section 2.
Section 3 considers how views may be synthesized, and de-
scribes a simple and efficient method called view morphing
for synthesizing new views by interpolating images, under
the assumption that the relative geometry of the two cam-
eras is known. Section 4 investigates the case where the
images are uncalibrated, i.e., the camera geometry is un-
known. Section 5 presents extensions when three or more
basis views are available. Section 6 presents some results
on real images.
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2 View Synthesis and Monotonicity
Can the appearance from new viewpoints of a static

three-dimensional scene be predicted from a set of basis
views of the same scene? One way of addressing this ques-
tion is to consider view synthesis as a two-step process—
reconstruct the scene from the basis views using stereo or
structure-from-motion methods and then reproject to form
the new view. The problem with this paradigm is that view
synthesis becomes at least as difficult as 3D scene recon-
struction. This conclusion is especially unfortunate in light
of the fact that 3D reconstruction from sparse images is
generally ambiguous—a number of different scenes may be
consistent with a given set of images; it is an ill-posed prob-
lem [8]. This suggests that view synthesis is also ill-posed.

In this section we present an alternate paradigm for view
synthesis that avoids 3D reconstruction and dense corre-
spondence as intermediate steps, instead relying only on
measurable quantities, computable from a set of basis im-
ages. We first consider the conditions under which recon-
struction is ill-posed and then describe why these conditions
do not impede view synthesis. Ambiguity arises within re-
gions of uniform intensity in the images. Uniform image re-
gions provide shape and correspondence information only
at boundaries. Consequently, 3D reconstruction of these re-
gions is not possible without additional assumptions. Note
however that boundary information is sufficient to predict
the appearance of these regions in new views, since the re-
gion’s interior is assumed to be uniform. This argument
hinges on the notion that uniform regions are “preserved” in
different views, a constraint formalized by the condition of
monotonicity which we introduce next.

Consider two views, V0 and V1, with respective optical
centers C0 and C1, and images I0 and I1. Denote C0C1

as the line segment connecting the two optical centers. Any
point P in the scene determines an epipolar plane contain-
ing P, C0, and C1 that intersects the two images in con-
jugate epipolar lines. The monotonicity constraint dictates
that all visible scene points appear in the same order along
conjugate epipolar lines of I0 and I1. This constraint is used
commonly in stereo matching [6] because the fixed relative
ordering of points along epipolar lines simplifies the cor-
respondence problem. Despite its usual definition with re-
spect to epipolar lines and images, monotonicity constrains
only the location of the optical centers with respect to points
in the scene—the image planes may be chosen arbitrarily.
An alternate definition that isolates this dependence more
clearly is shown in Fig. 1. Any two scene pointsP andQ in
the same epipolar plane determine angles �0 and �1 with the
optical centersC0 andC1. The monotonicity constraint dic-
tates that for all such points �0 and �1 must be nonzero and
of equal sign. The fact that no constraint is made on the im-
age planes is of primary importance for view synthesis be-
cause it means that monotonicity is preserved under homo-

P
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Figure 1: The Monotonicity Constraint. Any two points P
andQ in the same epipolar plane determine angles �0 and �1
with the respective camera optical centers,C0 andC1. For
monotonicity to apply, these angles must satisfy �0�1 > 0.
If satisfied forC0 andC1, monotonicity applies as well for
any other view with optical center alongC0C1.

graphies, i.e., under image reprojection. This fact will be
essential in the next section for developing an algorithm for
view synthesis.

A useful consequence of monotonicity is that it extends
to cover a continuous range of views in-between V0 and
V1. We say that a third view Vs is in-between V0 and V1
if its optical center Cs is on C0C1. Observe that mono-
tonicity is violated only when there exist two scene points,
P and Q, in the same epipolar plane such that the infinite
line PQ through P and Q intersects C0C1. But PQ in-
tersects C0C1 if and only if it intersects either C0Cs or
CsC1. Therefore monotonicity applies to in-between views
as well, i.e., signs of angles are preserved and visible scene
points appear in the same order along conjugate epipolar
lines of all views along C0C1. We therefore refer to the
range of views with centers onC0C1 as a monotonic range
of viewspace. Notice that this range gives a lower bound on
the range of views for which monotonicity is satisfied in the
sense that the latter set contains the former. For instance, in
Fig. 1 monotonicity is satisfied for all views on the open ray
from the point C0C1

T
PQ through both camera centers.

However, without a priori knowledge of the geometry of the
scene, we may infer only that monotonicity is satisfied for
the rangeC0C1.

The property that monotonicity applies to in-between
views is quite powerful and is sufficient to completely pre-
dict the appearance of the visible scene from all viewpoints
along C0C1. Consider the projections of a set of uniform
Lambertian surfaces (each surface has uniform radiance, but
any two surfaces may have different radiances) into views
V0 and V1. Fig. 2 shows cross sections S1, S2, and S3 of
three such surfaces projecting into conjugate epipolar lines
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Figure 2: Correspondence Under Monotonicity. Cross-
sectional view of three surfaces projecting into conjugate
epipolar lines of three images. Although the projected in-
tervals in l0 and l1 do not provide enough information to re-
construct S1, S2, and S3, they are sufficient to predict the
appearance of ls.

l0 and l1. Each connected cross section projects to a uni-
form interval (i.e., an interval of uniform intensity) of l0 and
l1. The monotonicity constraint induces a correspondence
between the endpoints of the intervals in l0 and l1, deter-
mined by their relative ordering. The points on S1, S2, and
S3 projecting to the interval endpoints are determined from
this correspondence by triangulation. We will refer to these
scene points as visible endpoints of S1, S2, and S3.

Now consider an in-between view, Vs, with image Is and
corresponding epipolar line ls. As a consequence of mono-
tonicity, S1, S2, and S3 project to three uniform intervals
along ls, delimited by the projections of their visible end-
points. Notice that the intermediate image does not depend
on the specific shapes of surfaces in the scene, only on the
positions of their visible endpoints. Any number of dis-
tinct scenes could have produced I0 and I1, but each
one would also produce the same set of intermediate im-
ages. Hence, all views along C0C1 are determined from
I0 and I1. This result demonstrates that view synthesis un-
der monotonicity is an inherently well-posed problem—and
is therefore much easier than 3D reconstruction and related
motion analysis tasks requiring smoothness conditions and
regularization techniques [8].

A final question concerns the measurability of mono-
tonicity. Under the monotonicity assumption we have estab-
lished that view synthesis is feasible and relies only on mea-
surable image correspondence information. However we
have not yet considered whether or not monotonicity itself is
measurable—can we determine if two images satisfy mono-
tonicity by inspecting the images themselves or must we
know the answer a priori? Strictly speaking, monotonicity
is not measurable, in the sense that two images may be con-
sistent with multiple scenes, some of which satisfy mono-

tonicity and others that do not. However, we may determine
whether or not two images are consistent with a scene for
which monotonicity applies, by checking that each epipolar
line in the first image is a monotonic warp of its conjugate in
the second image. That is, if l0 and l1 are conjugate epipolar
lines, expressed as functions mapping position to intensity,
there exists a monotonic function � such that l0 = l1 � �.
If we denote by M the class of all monotonic scenes con-
sistent with two basis images, this consistency property says
that we may determine from the basis images whether or not
M is empty. IfM is nonempty, the result of view synthesis
is a set of images that are consistent with every scene inM.

3 View Morphing
The previous section established that certain views are

determined from two basis views under an assumption of
monotonicity. In this section we present a simple approach
for synthesizing these views based on image interpolation.
The procedure takes as input two images, I0 and I1, their
respective projection matrices,�0 and�1, and a third pro-
jection matrix �s representing the configuration of a third
view along C0C1. The result is a new image Is represent-
ing how the visible scene appears from the third viewpoint.

We begin with a special case where the image planes are
parallel and aligned withC0C1. This configuration is often
used in stereo applications and will be referred to as the par-
allel configuration. The situation is expressed algebraically
using the projection equations as follows. A camera is rep-
resented by a 3�4 homogeneous matrix� = [H j �HC].
The optical center is given byC and the image plane normal
is the last row ofH. A scene point (X;Y; Z) is expressed in
homogeneous coordinates as P = [X Y Z 1]

T and an im-
age point (x; y) by p = [x y 1]

T . Because homogeneous
structures are invariant under scalar multiplication, sP and
P represent the same point, and similarly for sp and p. We
therefore reserve the notationP and p for points whose last
coordinate is 1. All other multiples of these points will be
denoted as ~P and ~p. The perspective projection equation is:

~p = �P

In the parallel configuration, the projection matrices may be
chosen so that�0 = [I j �C0] and�1 = [I j �C1], where
I is the 3� 3 identity matrix. Without loss of generality, we
assume that C0 is at the world origin and C0C1 is parallel
to the world X-axis so that C1 = [CX 0 0]

T . Let p0 and
p1 be projections of a scene point P = [X Y Z 1]

T in the
two views, respectively. Linear interpolation of p0 and p1
yields

(1� s)p0 + sp1 = (1� s)
1

Z
�0P+ s

1

Z
�1P

=
1

Z
�sP

where
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Figure 3: View Morphing in Three Steps. (1) Original im-
ages I0 and I1 are prewarped (rectified) to Î0 and Î1, in par-
allel configuration. (2) Îs is produced by interpolation of the
prewarped images. (3) Îs is postwarped to form Is.

�s = (1� s)�0 + s�1 (1)

Image interpolation, or morphing, therefore produces a
new view whose projection matrix, �s, is a linear in-
terpolation of �0 and �1 and whose optical center is
Cs = [sCX 0 0]T . Eq. (1) indicates that in the parallel
configuration, any parallel view along C1C2 may be syn-
thesized simply by interpolating corresponding points in the
two basis views. In other words, image interpolation in-
duces an interpolation of viewpoint for this special camera
geometry.

To interpolate general views with projection matrices
�0 = [H0 j � H0C0] and �1 = [H1 j � H1C1], we
first apply homographies H�1

0
and H�1

1
to convert I0 and

I1 to a parallel configuration. This procedure is identical to
rectification techniques used in stereo vision [9]. This sug-
gests a three-step procedure for view synthesis:

1. Prewarp: Î0 =H�1
0
I0, Î1 = H�1

1
I1

2. Morph: linearly interpolate positions and intensities of
corresponding pixels in Î0 and Î1 to form Îs

3. Postwarp: Is = HsÎs

Rectification is possible providing that the epipoles are
outside of the respective image borders. If this condition is
not satisfied, it is still possible to apply the procedure if the
prewarped images are never explicitly constructed, i.e., if
the prewarp, morph, and postwarp transforms are concate-
nated into a pair of aggregate warps [12]. The prewarp step
implicitly requires selection of a particular epipolar plane on
which to reproject the basis images. Although the particular

plane can be chosen arbitrarily, certain planes may be more
suitable due to image sampling considerations. Methods of
choosing the rectification parameters that minimize image
distortion with uniform sampling are discussed in [9].

4 Uncalibrated View Morphing
In order to use the view morphing algorithm presented in

Section 3, we must find a way to rectify the images without
knowing the projection matrices. Towards this end, it can be
shown [11] that two images are in the parallel configuration
when their fundamental matrix is given, up to scalar multi-
plication, by

F̂ =

2
4

0 0 0
0 0 �1
0 1 0

3
5

We seek a pair of homographies H0 and H1 such that the
prewarped images Î0 = H�1

0
I0 and Î1 = H�1

1
I1 have the

fundamental matrix given by Eq. (2). In terms ofF the con-
dition onH0 andH1 is

H1

TFH0 = F̂ (2)

Specific solutions to Eq. (2) are discussed in [11, 9].
We have established that two images can be rectified, and

therefore interpolated, without knowing their projection ma-
trices. As in Section 3, interpolation of the prewarped im-
ages results in new views alongC0C1. In contrast to the cal-
ibrated case however, the postwarp step is underspecified;
there is no obvious choice for the homography that trans-
forms Îs to Is. One solution is to have the user provide the
homographydirectly or indirectly by specification of a small
number of image points [4, 12]. Another method is to sim-
ply interpolate the components ofH�1

0
and H�1

1
, resulting

in a continuous transition from I0 to I1 [11]. Both methods
for choosing the postwarp transforms generally result in the
synthesis of projective views. A projective view is a per-
spective view warped by a 2D affine transformation.

5 Three Views and Beyond
The paper up to this point has focused on image synthe-

sis from exactly two basis views. The extension to more
views is straightforward. Suppose for instance that we
have three basis views that satisfy monotonicity pairwise
((I0; I1), (I0; I2), and (I1; I2) each satisfy monotonicity).
Three basis views permit synthesis of a triangular region of
viewspace, delimited by the three optical centers. Each pair
of basis images determines the views along one side of the
triangle, spanned byC0C1,C1C2, andC2C0.

What about interior views, i.e., views with optical cen-
ters in the interior of the triangle? Indeed, any interior view
can be synthesized by a second interpolation, between a cor-
ner and a side view of the triangle. However, the assumption
that monotonicity applies pairwise between corner views is
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not sufficient to infer monotonicity between interior views
in the closed triangle4C0C1C2; monotonicity is not tran-
sitive. In order to predict interior views, a slightly stronger
constraint is needed. Strong monotonicity dictates that for
every pair of scene points P and Q, the line PQ does not
intersect 4C0C1C2. Strong monotonicity is a direct gen-
eralization of monotonicity; in particular, strong monotonic-
ity of 4C0C1C2 implies that monotonicity is satisfied be-
tween every pair of views centered in this triangle, and vice-
versa. Consequently, strong monotonicity permits synthesis
of any view in4C0C1C2.

Now suppose we have n basis views with optical cen-
tersC0; : : : ;Cn�1 and that strong monotonicity applies be-
tween each triplet of basis views1. By the preceding argu-
ment, any triplet of basis views determines the triangle of
views between them. In particular, any view on the con-
vex hull H of C0; : : : ;Cn�1 is determined, as H is com-
prised of a subset of these triangles. Furthermore, the inte-
rior views are also determined: letC be a point in the inte-
rior of H and choose a corner Ci on H. The line through
C and Ci intersects H in a point K. Since K lies on the
convex hull, it represents the optical center of a set of views
produced by two or fewer interpolations. Because C lies
onCiK, all views centered at C are determined as well by
one additional interpolation, providing monotonicity is sat-
isfied between Ci and K. To establish this last condition,
observe that for monotonicity to be violated there must ex-
ist two scene pointsP andQ such thatPQ intersectsCiK,
implying thatPQ also intersectsH. Thus,PQ intersects at
least one triangle 4CiCjCk on H, violating the assump-
tion of strong monotonicity. In conclusion, n basis views
determine the 3D range of viewspace contained in the con-
vex hull of their optical centers.

This constructive argument suggests that arbitrarily large
regions of viewspace may be constructed by adding more
basis views. However, the prediction of any range of view-
space depends on the assumption that all possible pairs of
views within that space satisfy monotonicity. In particular,
a monotonic range may span no more than a single aspect
of an aspect graph [11], thus limiting the range of views that
may be predicted. Nevertheless, it is clear that a discrete
set of views implicitly describes scene appearance from a
continuous range of viewpoints. Based on this observation,
a set of basis views is seen to constitute a scene represen-
tation, describing scene appearance as a function of view-
point. Given an arbitrary set of basis views, the range of
views that may be represented is found by partitioning the
basis views into sets that obey monotonicity pairwise or
strong monotonicity three at a time. Each monotonic set de-
termines the range of views contained in its convex hull.

1In fact, strong monotonicity for each triangle on the convex hull of
C0; : : : ;Cn�1 is sufficient.

6 Experiments
We applied the view morphing algorithm to different

pairs of basis images, two of which are shown in Fig. 4.
Each pair of basis images was uncalibrated. In each case the
fundamental matrix was computed from several manually-
specified point correspondences. The synthesized images
shown in the figure represent views halfway between the ba-
sis views.

The first pair of images represent two views of a person’s
face. For the most part monotonicity is satisfied, except in
the region of the right ear, nose, and far sides of the face.
A sparse set of user-specified feature correspondences was
used to determine the correspondence map, using an image
morphing technique [12]. The synthesized image represents
a view from a camera viewpoint halfway between the two
basis views. The image gives the convincing impression
that the subject has turned his head, despite the fact that only
2D image operations have been performed. Some visible
artifacts occur in regions where monotonicity has been vi-
olated, near the right ear for instance.

The second pair of images show a wooden mannequin
from two viewpoints. The mannequin is an example of an
object for which it is difficult to reconstruct but relatively
easy to synthesize views due to lack of texture. In this exam-
ple, image correspondences were automatically determined
using a dynamic programming technique [6] that exploits
monotonicity. Even with the monotonicity constraint, ob-
taining reliable correspondences with large baselines is a
formidable challenge. However, incorporating limited user
interaction [12] or domain knowledge can significantly im-
prove the results and is a promising line of future research.

As in the previous example, some artifacts occur where
monotonicity is violated, such as near the left foot and the
left thigh. Also, the synthesized view is noticeably more
blurry than the basis views. Blurring is in fact evident in
both synthesized views in Fig. 4, and is a direct result of
image resampling. In our implementation of the view mor-
phing algorithm, the synthesized image—a product of two
projective warps and an image interpolation—is resampled
three times, causing a noticeable blurring effect. The prob-
lem may be ameliorated by super-sampling the intermediate
images or by concatenating the multiple image transforms
into two aggregate warps and resampling only once [12].

7 Conclusion
In this paper we considered the question of which views

of a static scene may be predicted from a set of two or more
basis views, under perspective projection. The following
results were shown: under monotonicity, two perspective
views determine scene appearance from the set of all view-
points on the line between their optical centers. Second, un-
der strong monotonicity, a volume of viewspace is deter-
mined, corresponding to the convex hull of the optical cen-
ters of the basis views. Third, new perspective views may
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Figure 4: Morphed Views. Basis views of a face (Top) and mannequin (Bottom) are shown with halfway interpolations. The
basis views appear at left and right and morphed (synthesized) images appear in the center. The morphed images use 2D image
transforms to synthesize a 3D scene rotation.

be synthesized by rectifying a pair of images and then inter-
polating corresponding pixels, one scanline at a time, a pro-
cess called view morphing. Fourth, view synthesis is pos-
sible even when the views are uncalibrated, providing the
fundamental matrix is known. In the uncalibrated case, the
synthesized images represent projective views of the scene.
These results provide a theoretical foundation for image-
based representations of three-dimensional scenes, demon-
strating that a discrete set of images implicitly models scene
appearance for a potentially wide range of viewpoints.
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