
DalTREC 2007 QA System Jellyfish:

Experiments with Integration of Lucene and

GATE, and Improved Usage of WordNet and

Qrel

Tony Abou-Assaleh,∗ Chris Whidden, Vlado Kešelj,
Hathai Tanta-ngai, and Nick Cercone†

Faculty of Computer Science
Dalhousie University, Halifax, Canada

{vlado,taa,whidden,hathai,nick}@cs.dal.ca

16 October 2007

Abstract

We present a question-answering system Jellyfish. Our approach is
based on marking and matching steps that are implemented using the
methodology of cascaded regular-expression rewriting. In addition to bug
fixes and minor tweaks, Jellyfish 2007 includes Apache Lucene as a passage
retrieval system, coreference resolution using GATE, and question relation
marking assisted by WordNet. We present the system architecture and
evaluate the system using the TREC 2006 and 2007 datasets.

1 Introduction

Previous work has explored the application of several approaches to question an-
swering in the overlapping area of unification-based and stochastic NLP (Natural
Language Processing) techniques [1, 6]. Two novel methods that were explored
relied on the notions of modularity and just-in-time sub-grammar extraction.

One of the learned lessons of the previous experiments is that the regular
expression (RegExp) substitutions are a very succinct, efficient, maintainable,
and scalable method to model many NL subtasks of the QA task. This is
also observed in the context of lexical source-code transformations of arbitrary
programming languages [2], where RegExp substitutions are an alternative to

∗Abou-Assaleh is also the Director of Research and Development at GenieKnows.com,
Halifax, Nova Scotia, Canada.

†Cercone is also the Dean of the Faculty of Science and Engineering, York University,
Toronto, Ontario, Canada.

1



manipulating the abstract syntax tree, and proved to be more robust in the face
of missing header files, errors, usage of macros, templates, and other embedded
programming language constructs.

We employ RegExp rewriting as a primary technique in our question-answering
(QA) system Jellyfish. We use RegExp matching and rewriting at various stages
of the system, whose architecture is described in section 3.

We evaluate our system using the datasets from TREC 2006 and TREC
2007. Our system was originally developed with respect to the TREC 2004
dataset and has been updated based on the analysis of its performance on the
TREC 2006 dataset. The TREC 2007 dataset is used for testing.

Our goal is to apply a unification-based approach as a high-level answer-
extraction step on top of the low-level RegExp processing.

2 Regular Expression Rewriting

The basic method used at various components of the QA system is RegExp
rewriting. The open angle bracket (<) is used as a special escape character,
hence we make sure that it does not appear in the source text, which is either
a question or a passage. The basic text substrings, such as the target or named
entities, are recognized using regular expressions and replaced with an angle-
bracket-delimited expression. For example, the target is marked as <TARGET>.
More commonly, a named entity e of type t is replaced with <t_es>, where es

is the named entity e encoded as a string of printable characters that do not
include <. The RegExp rewriting can be seen as a bottom-up deterministic
parsing technique. For example, the rewriting in which “<NP_x> <VP_y>” is
replaced with “<S_z>” corresponds to the context-free rule S → NP VP. The
value z is obtained by decoding x and y, concatenating them, and encoding the
result again.

3 System Architecture

The current system consists of the following phases: 1) Question Process-
ing, 2) Passage Retrieval, 3) Target Marking, 4) Question Category Marking,
5) Question Relation Marking, 6) Matching, 7) Answer selection.

3.1 Question Processing

The Question Processing phase takes the original questions as input, parses
them, and generates complete questions as output. Questions are parsed using
RegExp matching and substitution to identify the question category and extract
some related metadata. Some metadata extracted during parsing is analyzed
using WordNet [4] to identify additional metadata and relationships between
the target and what the question is asking about.

2



In TREC datasets, question are grouped by targets. Replacing the anaphoric
references in questions with the target results in self-contained questions. These
complete questions are used in passage retrieval.

3.2 Passage Retrieval

The passage retrieval from the AQUAINT dataset is performed by an external
search engine using the full questions generated in the question processing phase.
We use two different sets of passages. The first set is the passages provided by
NIST using the PRISE search engine. The second set is retrieved using the
Apache Lucene [7] open-source search engine. In both cases, the PRISE and
Lucene, the results are treated in the same way—as passages relevant to the
question.

For the Blog dataset we used the passages provided by NIST, which were a
result of the PRISE search engine. We have not obtained the full Blog dataset.

3.3 Target Marking

The string in the question that constitutes that target is identified during the
question processing step (section 3.1). Using simple RegExp rewriting rules,
the target is identified in the passages and replaced with the <TARGET> tag.
In effect, this phase annotates sentences in the passages that may contain an
answer.

Target marking in the previous versions of Jellyfish only used an exact match
for the target. This meant that any references to the target by last name,
type, or via pronouns were ignored by Jellyfish. In Jellyfish 2007, we added
coreference resolution by incorporating GATE [3]. Using GATE’s coreference
resolution module, we improved target marking when the target type is person,
since GATE is good at resolving names and pronouns. However, GATE was
less suitable for handling location and event coreference resolutions.

3.4 Question Category Marking

During this step, the system scans all the relevant passages and uses RegExp
rewriting to mark entities that belong to the question category. The type of Reg-
Exp used depends on the question category and may be a simple keyword-based
RegExp or a sophisticated multipart RegExp. Question category marking acts
as a just-in-time annotation phase where only the passages that may be relevant
to the current question are annotated, and the annotation data is customized
based on the question category.

3.5 Question Relation Marking

One of the new features in Jellyfish 2007 is question relation marking. A question
relation is a relation involving one or more entities in the question, usually the
target. For example, the question “How did Beethoven die?” has the relation

3



die involving Beethoven. The question relation marking component of Jellyfish
uses WordNet [4] to identify synonyms of question relations. First the question
relation is reduced to a base form by WordNet. Then each word of the passages
is examined to see if it has the same base form, is a synonym, or has a subtype
of the same base form as the question relation. If so, it is marked as a question
relation. For the example question above, occurrences of die, died, and killed
would all be marked as question relations.

3.6 Answer Matching

During answer matching, question metadata and annotated passages are com-
bined using special RegExp rules to generate candidate matches. The rules
are applied sequentially. Every time a match is found, it is added to the list of
matches. The relative order of the rules imposes an implicit ranking of matches.
Consequently, more specific rules are placed before the more general ones. Since
some questions may have no answers in the dataset, one must avoid using rules
that are too general. Appropriate rule generality and ordering depends on the
question category. Typically, more specific question categories permit the usage
of more general rules, and vice versa.

3.7 Answer Selection

This phase is a filtering step that takes the list of answer for each question
from the matching phase and selects the answers that are to be included in the
output. For TREC, we set the number of answers for factoid questions to 1 and
for list questions to 7. Presently, we simply select the first answers in the list.

The selected answers are formatted to be used either for evaluation, inspec-
tion, or integration in other systems.

4 Evaluation

Run Correct Factual List Other Other per series
Dal06l 43 0.107 0.061 - -
Dal07n 34 (4/2/1) 0.094 0.029 0.033 0.051
Dal07p 28 (2/6/0) 0.078 0.028 0.034 0.046
Dal07t 38 (3/6/2) 0.106 0.034 0.048 0.063
Best 07 - 0.706 0.479 0.329 0.484

Median 07 - 0.131 0.085 0.118 0.108
Worst 07 - 0.019 0.000 0.000 0.015

Table 1: DalTREC 2007 Results. The numbers in parentheses refer to the
unsupported, inexact, and locally correct, respectively.

The TREC 2004 QA dataset was used for deriving the RegExp rules; fur-
ther improvements and fine tuning of the system followed the TREC 2007 QA

4



dataset. Testing of the system used TREC 2007 QA datasets. On the training
data (TREC 2006 dataset), our system was able to correctly answer 43 out of
403 factoid questions in the TREC 2006 dataset yielding an accuracy of 10.7%.
In the TREC 2007 dataset, the number of factoid question was 360. The for-
mulation of the questions in TREC 2007 relied more heavily on expanding the
questions to incorporate the context information provided in the target of each
series. We have not used any external resources, other than WordNet. Beside
the AQUAINT corpus, we use the top 50 Blog documents per target, provide
by NIST based on the PRISE search engine results. Our system answered 38
questions globally correctly, and 2 locally correctly, yielding factoid correctness
accuracy of 10.6%. The results of evaluation are presented in table 1. The
following runs are presented:

• Dal06l: 100 top Lucene passages; GATE for coreference resolution; Word-
Net for question relation marking; TREC 2006 questions

• Dal07n: 100 top PRISE passages; no blog data; GATE for coreference
resolution; no question relation marking; TREC 2007 questions

• Dal07p: 100 top PRISE passages; no blog data; GATE for coreference
resolution on first passage only; WordNet used for question relation mark-
ing; TREC 2007 questions

• Dal07t: 100 top Lucene passages; 50 top PRISE blog passages; no coref-
erence resolution; no question relation marking; TREC 2007 questions

5 Lessons Learned

As a general lesson, we are continuing on building our system using the RegExp
rewriting technique, and our experience is that RegExp rewriting is a simple
and powerful parsing technique. We have effectively used coarse-grained mod-
ularization of RegExp, and combined it with dynamic loading of RegExp. Fine
grained modularization of RegExp is possible, and would simplify the task of
creating RegExp rules. Just-in-time RegExp-based annotation can lower the
computation requirements of deeper analysis. Our system is fairly robust. The
performance of Jellyfish on TREC 2006 and TREC 2007 questions is compara-
ble. The technique itself is not used to its full potential due to limited number
of man-hours that we were able to devote to the project.

Regarding the particular evaluation results returned by evaluators, the run
Dal07t performed significantly better. More experiments need to be performed
with the evaluation script, when it becomes ready, since there are several factors
that may have caused this difference. Those are the use of Lucene, use of Blog
passages, or not using coreference resolution or question relation marking. A
positive influence of not using coreference resolution or question relation mark-
ing is unlikely since our earlier experiments indicated a positive effect of these
techniques. Hence, it needs to be determined whether Lucene is a search engine
that boosted our performance or it was the use of Blog data.

5



References

[1] N. Cercone, L. Hou, V. Kešelj, A. An, K. Naruedomkul, and X. Hu. From
computational intelligence to web intelligence. IEEE Computer, 35(11):72–
76, November 2002.

[2] A. Cox, T. Abou-Assaleh, W. Ai, and V. Kešelj. Lexical source-code trans-
formation. In Proceedings of the STS’04 Workshop at GPCE/OOPSLA,
Vancouver, Canada, October 2004.

[3] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. Gate: A frame-
work and graphical development environment for robust nlp tools and appli-
cations. In Proceedings of the 40th Anniversary Meeting of the Association
for Computational Linguistics (ACL’02), Philadelphia, PA, July 2002.

[4] C. Fellbaum, editor. WordNet: An Electronic Lexical Database. MIT Press,
1998.

[5] V. Kešelj. Question answering using unification-based grammar. In E. Strou-
lia and S. Matwin, editors, Advances in Artificial Intelligence, AI 2001, vol-
ume LNAI 2056 of L.N. in Comp.Sci., Springer, pages 297–306, Ottawa,
2001.

[6] V. Kešelj. Modular stochastic HPSGs for question answering. Technical
Report CS-2002-28, School of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada, June 2002.

[7] The Apache Software Foundation. Apache Lucene. http://lucene.apache.
org/java/docs/index.html, October 2007.

6


