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Abstract

Human action and role recognition play an important
part in complex event understanding. State-of-the-art meth-
ods learn action and role models from detailed spatio tem-
poral annotations, which requires extensive human effort.
In this work, we propose a method to learn such mod-
els based on natural language descriptions of the training
videos, which are easier to collect and scale with the num-
ber of actions and roles. There are two challenges with
using this form of weak supervision: First, these descrip-
tions only provide a high-level summary and often do not
directly mention the actions and roles occurring in a video.
Second, natural language descriptions do not provide spa-
tio temporal annotations of actions and roles. To tackle
these challenges, we introduce a topic-based semantic re-
latedness (SR) measure between a video description and
an action and role label, and incorporate it into a poste-
rior regularization objective. Our event recognition system
based on these action and role models matches the state-of-
the-art method on the TRECVID-MED11 event kit, despite
weaker supervision.

1. Introduction
The ability to differentiate complex events is a key step

towards video understanding and has spurred significant re-
search in recent years [17, 8, 23]. Complex events can be
thought of as compositions of atomic actions performed by
people holding different roles. In this work, we provide a
method to learn these action and role models based on eas-
ily obtainable natural language descriptions of event videos
(see Fig. 1). We rely entirely on these descriptions and do
not require separate ground truth annotations of roles and
actions.

The use of action and/or role models trained with exten-
sive spatio temporal annotations has shown to boost event
recognition performance in videos [8, 12]. Such detailed
annotations require expensive human effort and severely
restrict the scalability with the inclusion of more actions

teenager shows 
tricks in a park...

church wedding 
with orchestra...

marching band 
on the road...

person builds a 
wooden guitar...

Figure 1. Our method relies on natural language video descriptions
to train action and role models. Sample videos along with their
descriptions are shown. The descriptions of videos containing the
action “play instrument” are bounded in green, but we do not use
action/role labels during training.

and roles. On the other hand, complex event datasets like
TRECVID-MED11 [1] event kit and MPII Cooking [22]
are accompanied by natural language descriptions, which
are easy to obtain and incur only a one-time annotation cost
during the collection of a dataset. Internet repositories such
as YouTube already have accompanying descriptions, and
require no annotation at all.

Unfortunately, natural language descriptions only pro-
vide a coarse high-level summary of the events occurring
in videos. This coarseness leads to two challenges. First,
the canonical action labels (e.g., “play instrument”) might
not appear in the description (e.g., “church wedding with
orchestra”)—see Fig.1. Bridging the gap between high-
level natural language descriptions and low-level action/role
labels is a challenging problem in natural language seman-
tics. To tackle this, we define a new semantic relatedness
(SR) measure between an action/role label and a natural lan-
guage description. The measure is based on Latent Dirichlet
Allocation [3] trained on YouTube descriptions.

The second challenge is that natural language descrip-
tions do not specify the spatiotemporal extents of actions
and roles. To cope with this missing data, we use the Pos-
terior Regularization (PR) framework [7]. Specifically, we
represent a video as a bag of spatiotemporally-localized hu-
man tracklets, and define an action and role assignment
variable for each tracklet. The natural language supervision
then imposes a soft constraint that at least one of tracklets
in the video is assigned to a semantically-related action/role
label.
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Figure 2. An overview of the system. Inputs to the system are shaded in grey.

We first evaluated our approach on action and role clas-
sification, showing that our SR measure improves accuracy
over existing measures. We also considered event recog-
nition, where the state-of-the-art method [8] requires de-
tailed spatiotemporal annotations of atomic actions. We in-
corporated our action/role models, which are trained only
on natural language descriptions, into our event recogni-
tion model. On the TRECVID-MED11 event kit, our model
matches [8] despite using weaker supervision.

2. Related Work

Natural language processing for vision Recent works at-
tempting to leverage the vast amount of textual data avail-
able with Internet images have developed vision-specific se-
mantic relatedness measures [25, 24] to identify the link be-
tween part-based object attributes and image classes. How-
ever, such measures are derived from general text like
Wikipedia, and are therefore, less suited for language per-
taining to human actions/roles specific to a set of events.
Other attempts to use textual descriptions in conjunction
with attribute recognition were presented in [2, 19]. While,
[2] is restricted to simple part-based attributes directly men-
tioned in the image description, [19] involves humans in the
loop to actively describe a group of images through visual
attributes. Another line of work [9, 29] jointly considers
multiple modalities including text descriptions to perform
image annotation, retrieval or segmentation. [23] transfers
composite action videos to an attribute space enabling com-
parison with textual corpus.

Previous works like [13, 16, 4] use time-synchronized
movie scripts or closed captions to identify video segments
corresponding to specific actions. Again, these methods
rely on presence of the action label in the script or use a pre-
trained classifier [13] to identify the action-text in a script
and require temporal annotations. [31] performs tag pre-
diction by using meta data provided along with YouTube
videos. [18] processes descriptions of action segments to
automatically discover a set of action classes.

In contrast to the above methods, we learn models based
on natural language descriptions which may not contain the
action and role label. In particular, we construct a topic
model based measure specific to our task.
Action, role and event recognition [8, 12] showed signifi-
cant improvement in event recognition by using atomic ac-
tion and role detectors as a part of their event recognition
model. Both methods required spatio temporal annotation
of action and roles in the training videos to learn the models.
Other works which have investigated the use of social roles
in video understanding include [30, 5]. [14] uses attributes
to perform action recognition in videos.
Weakly supervised action models Discriminative spatio
temporal regions in videos or images to localize the actions
in [27, 21, 28]. Similar in spirit to these works, we try to
localize the human actions and roles. However, we develop
a model with latent action and role assignments to different
human tracklets in a video.

3. Our Approach

An overview of our system is shown in Fig. 2. We first
use natural language video descriptions to train action and
role models. The prediction scores from the model are then
used to train event recognition models.

In our setup, each training video is accompanied by a
natural language description, which might or might not con-
tain the action label present in the video. Formally, we de-
note our training dataset by (〈x1, t1〉, . . . , 〈xn, tn〉), where
xi is a video belonging to different event classes and ti is the
corresponding textual description. No textual descriptions
are present in the test data.

We assume a fixed set of actions A and roles R and de-
fine additional variables 〈yi, zi〉 for each xi. Here, yai ∈
{−1, 0, 1} indicates whether the label of the video corre-
sponding to the action a is negative, unknown or positive.
We define zri ∈ {−1, 0, 1} similarly for the role r. These
variables are not observed in the training data.



3.1. Human tracklet extraction

Complex event videos are composed of many atomic ac-
tions and roles, confined to spatio temporal regions. We
attempt to incorporate this locality by representing a video
xi as a bag of human tracklets Hi. The action or role oc-
curring in a video would then correspond to one or more of
these tracklets h ∈ Hi. As illustrated in the corresponding
section of Fig. 2, we obtain tracklets by running a human
detector [6] across different segments in a video and track-
ing the resulting bounding boxes within a temporal window
of 100 frames. In our experiments, we uniformly partition
a video into 20 different segments and obtain 5 tracklets
in each segment based on non-maximal suppression. We
choose the top 50 tracklets based on their detection scores.

3.2. Action and role model

We define a conditional random field (CRF) to model the
actions and roles of different tracklets in a video, similar in
spirit to [12]. However, we neither assume perfect human
tracking nor complete person-wise action and role labels for
training.

We assume that each video xi has a set of human track-
lets given by Hi. The potential Φ(x, h, a, r) of making ac-
tion assignment a ∈ A and role assignment r ∈ R to the
tracklet h in video x is given in Eq. 1.

Φ(x, h, a, r) = wg(a, r) · fxg + win(a, r) (1)

+wac(a) · fhac + wro(r) · fhro,

where fxg ∈ Rdg is the global video feature of x. The
features fhac ∈ Rdac , and fhro ∈ Rdro are the action and
role features for the human tracklet h respectively. The
global weight is denoted by wg ∈ R|A|×|R|×dg , where
wg(a, r) ∈ Rdg gives the global weight for action a and
role r. Similarly, win ∈ R|A|×|R| is the weight for joint
action and role assignment to a track, with win(a, r) ∈ R
corresponding to action a and role r. The action-weight
corresponding to a is given by wac(a) ∈ Rdac and the
role-weight for role r is given by wro(r) ∈ Rdro . The
total set of weights to be learned are then represented by
w = (wg, win, wac, wro).

With a slight abuse of notation, we let ai ∈ A|Hi| be
the action-labels assigned to the tracklets in video xi, and
ahi ∈ A denote the action-label of the tracklet h in the
video. Similarly, we let ri ∈ R|Hi| be the role-labels as-
sociated with xi and rhi ∈ R be the role-label of tracklet h.
The probability p(ai, ri;w) of this assignment to video xi
is given by Eq. 2.

p(ai, ri;w) =
1

Zi
exp

(∑
h∈Hi

Φ(xi, h, a
h
i , r

h
i )

)
, (2)

where Zi is the partition function for the video xi.

The log-likelihood of making action and role assign-
ments a = (a1, . . . , an), r = (r1, . . . , rn) respectively
across n videos is given by Eq. 3

L(a, r;w) =

n∑
i=1

log p(ai, ri;w) (3)

Features: The global video feature uses multiple channels
through HOG3D [10], ASR, OCR, MFCC [20] and SIFT
[15] features. The features fac and fro are bag of words
HOG3D features extracted from the tracklet h.
Training with posterior regularization: We present a
method to learn the model by minimizing L from Eq. 3,
assuming the labels 〈yi, zi〉 are given. We will later use nat-
ural language annotations to derive these labels in Sec. 3.3.
We wish to learn model weights while making latent action
and role assignments to each tracklet in the video. The setup
is close to the Multi Instance Multi Label framework of
[32]. However, to facilitate learning of a model with action-
role relations, we adopt the more general posterior regular-
ization framework [7]. This enables us to optimize the like-
lihood subject to soft constraints on the predicted action and
role distribution. Formally, let Q(a, r) be a distribution of
action and role assignments to the training videos. We wish
to ensure that, in a video tagged as positive for a specific
action, the number of tracklets corresponding to the action
is at least one. Similarly, in negative videos, the number
of tracklets corresponding to an action should be zero. The
same follows for roles. We use these constraints to learn a
model by solving the optimization problem in Eq. 4.

min
w,Q,

δ≥0,η≥0

1

2
‖w‖2−EQ[L]−HQ +

∑
i,a

δai +
∑
i,r

ηri

subject to EQ[Ni(a)] ≥ 1− δai , ∀yai =+1

EQ[Ni(a)] ≤ δai , ∀yai =−1

EQ[Mi(r)] ≥ 1− ηri , ∀zri =+1

EQ[Mi(r)] ≤ ηri , ∀zri =−1,

(4)

where Ni(a) =
∑

h∈Hi
1(ahi = a), Mi(r) =

∑
h∈Hi

1(rhi = r)

and HQ is the entropy of distribution Q.
We optimize Eq. 4 using a modified Expectation Maxi-

mization algorithm shown in Sec. A of the supplementary
document.

3.3. Using natural language video descriptions

The natural language description of a video contains rich
information about the event context and can help infer the
presence of specific actions and roles in the video. For in-
stance, Fig. 1 provides examples of descriptions which do
not contain the action label “play instrument”.



Three measures based on WordNet, World Wide Web
(WWW) and Wikipedia were introduced in [25] to deter-
mine the semantic relatedness between class names and at-
tributes. The WordNet metric is a poor indicator of similar-
ity between concepts not linked by a hypernym hierarchy.
For instance, in Fig. 1 it would be unable to recognize the
relation between “marching band” and “play instrument”
which do not fall under the same subtree. The resulting poor
performance of this measure was also noted in [25], making
it less useful for our purpose. The WWW metric is tailored
to measure the similarity of only a pair of terms based on
co-occurrence in Internet repositories but does not offer a
concept based similarity. While the Wikipedia SR measure
uses Wikipedia concepts, it relies on a generic knowledge
base, provides no dimensionality reduction and is not task-
specific. We address this issue by building a task-specific
language topic model and using it to define the SR measure.
Topic model based SR: A natural source for video descrip-
tions is the vast collection of user-provided descriptions of
YouTube videos. Hence, as shown in Fig. 2, we build a text
corpus by querying YouTube for frequent terms from the
training descriptions. We generate a topic model from this
corpus with 200 topics. Since the text corpus was obtained
based on training descriptions, the generated topic clusters
often capture frequent actions and roles in the data. Sample
topic clusters are shown in Fig. 2.

All video descriptions ti can now be represented by a
200 dimensional vector f tid specifying the distribution of
the topics in the description. An action a can be repre-
sented by fad giving the topic distribution over the action
label (frd is defined similarly for a role r). The cosine simi-
larity sim

(
fad , f

ti
d

)
provides the proximity of a video xi to

an action a. We will refer to this measure as the topic model
SR. Each training video can now be assigned a training label
yai ∈ {−1, 0, 1} based on a threshold τ as shown in Eq. 5
(zri is defined similarly).

yai =


1 if sim(fad , f

ti
d ) ≥ (1− τ) or

ti contains action label a
−1 if sim(fad , f

ti
d ) ≤ τ

0 otherwise

(5)

Handling outliers Discovering semantic relatedness in tex-
tual space is challenging and these measures can be unreli-
able. While yai , z

r
i from Eq. 5 can be used in PR, it would

result in a significant number of outliers. We handle this
problem by defining a pool of potential positive and nega-
tive examples according to Eq. 5 as shown in the first step of
Fig. 3 and letting the model gradually choose more exam-
ples from this pool in successive iterations as illustrated in
the third and fourth step of Fig. 3. This is achieved through
a self-paced learning scheme introduced in [11].

We further modify the self-paced method to treat f tid as
an additional global feature for xi in the initial iterations
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Figure 3. An overview of our self-paced approach shown for one
action or role. The green and red boundaries indicate the positive
and negative pool of samples chosen using the topic model SR.

but gradually reduce it to zero across the iterations. Intu-
itively, we are leveraging the textual information present
along with videos to choose good examples in the initial
phase of the training. However, as the model grows confi-
dent with more iterations, the textual features are ignored
resulting in a model which only uses video features. The
complete details are shown in Sec. B of the supplementary.

3.4. Training the event model

We use the action and role detection scores to perform
video event classification. The expected number of track-
lets corresponding to different actions and roles are used as
additional features along with the global video features to
train a linear SVM. We use the same set of global video
features from Sec. 3.2. Similar to [8], we first train sepa-
rate event classifiers for each individual feature mentioned
in Sec. 3.2 and finally treat the event classification score
from these classifiers as global video features. Since only a
small set of actions and roles are usually related to an event,
we add an additional L1 regularization term for the action
and role feature weights to encourage only the relevant ac-
tion and/or role scores to be selected.

4. Experiments
We test our event, action and role classification models

on the TRECVID-MED11 event kit. The dataset contains
videos belonging to 15 complex event classes. Each video
is accompanied by a synopsis describing the events in the
video, and only a few of them mention the atomic actions
and objects present in the video. We use the same training
and testing splits as [8].

4.1. Implementation details

We define crude action labels ỹi and role labels z̃i for
each video xi based on simple text processing. We set ỹai =



1 if ti contains the action label a, ỹai = −1 if none of the
natural language descriptions in the event class of xi contain
the action label a; otherwise, we set ỹai = 0. We define
z̃ri ∈ {−1, 0, 1} similarly for video xi and role r. These
crude labels are used to train baseline models that does not
use the complete video description as well as to initialize
the self-paced scheme in Sec. 3.3. The value of τ is set to
consider the top 300 (30) videos closest to the action (role)
description as potential positives.

In our experiments, we train separate one-vs-all models
for each action and role. While training an action (role)
model, we consider the relation of the action (role) to all
the roles (actions) including a null role (action). In practice,
this makes the learning more tractable and also performs
better than training a single model considering all actions
and roles together.

4.2. Action and role classification

A set of 62 “atomic events” were used in [8]. Some
of these events were non-human actions like vehicle move-
ment. We select a subset of 46 classes which involve one or
more humans. We choose only the action classes which are
directly mentioned at least once in the training data descrip-
tions. We consider a set of 13 roles appearing in different
events, as listed in Tab. 2. Each video in the test set is anno-
tated with the actions and roles present in it for evaluation.

The action and role classification performance is evalu-
ated by computing the average precision on the testing data
as shown in Tab. 1, 2. We defube the expected number
of tracklets performing an action in a videos as the corre-
sponding action score for the video. Similarly, the expected
number of tracklets holding a role in a video provides the
role score.

“Full model” refers to the complete algorithm using
video descriptions to train PR models in a self-paced set-
ting. The different baselines are explained below. The first
three baselines are trained only with crude labels 〈ỹi, z̃i〉.
• global only: use global video features to train a SVM.
• simple PR: train action or role models without consid-

ering joint action-role potential in Eq. 1.
• full PR: uses action-role relation in addition to tracklet

features to train the PR model.
• wiki SR [25]: train full PR model by identifying pos-

itives and negative training examples based on the
Wikipedia SR using a threshold as defined in Sec. 4.1,
without self paced learning
• topic SR: Our full model without outlier handling

through self paced learning.
Comparing the performance of global only and simple

PR baselines in Tab. 1, 2, we observe that identifying hu-
man tracklets in the videos improves the overall action and
role classification. The effect is even more prominent for
roles, since roles are governed by the humans holding the

Action global only simple PR full PR wiki SR topic SR full model
[25]

bending 0.0604 0.0708 0.0689 0.0688 0.0586 0.0601
blowing candles 0.4616 0.4485 0.5088 0.5222 0.4934 0.5134
carving 0.2131 0.0229 0.0918 0.0794 0.0359 0.2348
casting 0.0046 0.0125 0.0118 0.0119 0.0141 0.0135
clapping 0.1433 0.1865 0.2720 0.2615 0.2236 0.2408
cleaning 0.0262 0.0047 0.0047 0.0048 0.0048 0.0240
cutting 0.1928 0.0794 0.0764 0.0776 0.0760 0.1906
cutting cake 0.0885 0.1361 0.1764 0.2803 0.1208 0.1764
cutting fabric 0.1896 0.0152 0.1541 0.1526 0.1557 0.1351
dancing 0.5941 0.5556 0.6189 0.6052 0.6357 0.6261
drilling 0.0570 0.0145 0.0142 0.0157 0.0661 0.0910
drinking 0.0258 0.0347 0.0445 0.0556 0.0421 0.0322
eating 0.0532 0.0522 0.0613 0.0558 0.0598 0.0569
falling 0.1081 0.1697 0.1523 0.1390 0.1513 0.1512
flipping 0.3995 0.4316 0.4554 0.2636 0.4364 0.4524
hammering 0.0794 0.0057 0.0056 0.0057 0.2743 0.2741
jacking car 0.0734 0.0185 0.0172 0.0164 0.0185 0.0373
jumping 0.5572 0.5184 0.5443 0.5734 0.5203 0.5586
kissing 0.1499 0.5232 0.4976 0.5318 0.4716 0.4976
laughing 0.0853 0.1508 0.1624 0.1605 0.1753 0.1611
lighting candle 0.0218 0.0437 0.0805 0.0772 0.0513 0.0631
open door 0.1276 0.0846 0.0692 0.0692 0.1285 0.0989
petting 0.0253 0.0103 0.0103 0.0103 0.0103 0.0115
planing 0.0525 0.0162 0.0140 0.0084 0.0449 0.0555
play instrument 0.1335 0.2424 0.2059 0.2705 0.2083 0.2059
pointing 0.0159 0.0437 0.0466 0.0398 0.0336 0.0238
polishing 0.0015 0.0015 0.0015 0.0015 0.0017 0.0025
pouring 0.0051 0.0061 0.0103 0.0038 0.0088 0.0026
pushing 0.2768 0.2871 0.1922 0.2865 0.1783 0.1824
reeling 0.4603 0.4675 0.4669 0.4973 0.4665 0.4788
rolling 0.0533 0.0074 0.0072 0.0065 0.0078 0.0091
sawing 0.0416 0.0305 0.0628 0.0667 0.0750 0.2390
sewing 0.3073 0.4089 0.2801 0.2839 0.2660 0.2588
shake 0.0067 0.0062 0.0062 0.0058 0.0064 0.0101
singing 0.0384 0.0900 0.0732 0.0721 0.0901 0.0742
sliding 0.0438 0.0811 0.0776 0.0750 0.0761 0.0806
stir 0.0398 0.2008 0.2037 0.2071 0.1975 0.1967
surfing 0.1039 0.1442 0.1494 0.1510 0.1302 0.1382
turning wrench 0.0788 0.0234 0.0233 0.0232 0.0232 0.0573
using knife 0.0015 0.0016 0.0017 0.0023 0.0016 0.0017
using tire tube 0.0675 0.0145 0.0141 0.0136 0.0138 0.0351
walking 0.1771 0.2562 0.2520 0.2110 0.2697 0.2557
washing 0.1329 0.0309 0.0307 0.0309 0.0307 0.0307
waving 0.0965 0.1302 0.1555 0.1413 0.1473 0.1700
wiping 0.0428 0.0253 0.0253 0.0253 0.0405 0.0369
writing 0.0400 0.1309 0.1080 0.1010 0.1413 0.1856
mean 0.1295 0.1356 0.1415 0.1427 0.1453 0.1616

Table 1. Action classification results. The highest score for a class
is shown in bold font. The first three columns do not use the com-
plete video descriptions, but train with labels 〈ỹi, z̃i〉.

roles, whereas most actions like reeling, cutting, jacking
car, turning wrench can be determined by object manipu-
lations in the scene. We notice that actions like kissing,
walking, playing instrument, which can be determined by
observing the complete or the upper human body, benefit
more from the human tracklet representation compared to
actions like cleaning, cutting, petting, turning wrench which
are often shown as close-up shots of the hand. Similarly,
human detectors fail to detect people when they are not up-
right, leading to a drop in performance.

From simple PR and full PR results in Tab. 1, 2, we
notice that jointly modeling the action-role relations using
posterior regularization increases the performance for ac-



Role global only simple PR full PR wiki SR topic SR full model
[25]

bride 0.7115 0.7946 0.7880 0.7873 0.8017 0.7877
groom 0.6751 0.7755 0.7805 0.7857 0.7901 0.7901
priest 0.2686 0.4263 0.4094 0.4468 0.4002 0.4058
performer 0.1499 0.1212 0.1708 0.1805 0.1722 0.1737
musician 0.0990 0.2933 0.2468 0.2506 0.2334 0.2643
parent 0.2084 0.2388 0.2123 0.2028 0.2014 0.2245
birthday child 0.7442 0.8350 0.8212 0.8086 0.8359 0.8359
audience/guest 0.3163 0.4260 0.3623 0.4263 0.3807 0.4429
friends 0.2849 0.5619 0.5671 0.4979 0.5591 0.5641
fisherman 0.2677 0.0238 0.2949 0.2617 0.2925 0.2873
craftsman 0.0957 0.0284 0.0281 0.0285 0.0282 0.0265
mechanic 0.0446 0.0268 0.0267 0.0262 0.0266 0.0264
police/soldier 0.2267 0.2346 0.2122 0.2398 0.2384 0.2303
mean 0.3148 0.3682 0.3785 0.3802 0.3816 0.3892

Table 2. Role classification results. The highest score for a class
is shown in bold font. The first three columns do not use the com-
plete video descriptions, but train with labels 〈ỹi, z̃i〉.
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Figure 4. The weights corresponding to different action-role rela-
tion wI(a, r) are shown. Sample frames depicting the action-role
relations corresponding to some high weights are also shown.

tion classes like kissing, writing, lighting candle, cutting
cake and the roles fisherman, birthday child, performer. In
order to analyze the effect of action-role relations, we visu-
alize the joint action-role weights in Fig. 4. As expected,
we see strong correlation between certain action and role
classes (highlighted by ovals). These correspondences re-

sult in improved classification accuracy for the respective
classes. Sample frames pertaining to some high weights are
shown besides the matrix in Fig. 4. We further demonstrate
some qualitative results in Fig. 5, where the highest scoring
tracklet in a video for a certain action is shown along with
the corresponding role assignment.

groom bride
b'day person

parent
performer

fisherman

kissing writing

blow
candles

cut
cake dance reeling

Figure 5. High scoring tracklets for few action models are shown
for six test videos. The role assignments are also shown.

The Wikipedia SR and topic SR models trained by iden-
tifying positives and negatives based on a SR measure are
seen to only marginally improve the performance. This can
be accounted to the addition of false positive and negative
training labels, demonstrating the difficulty in processing
natural language descriptions. The results are seen to be
worse in the case of Wikipedia SR measure, when using
language at test time.

To analyze the utility of our topic model, we run exper-
iments where natural language descriptions are assumed to
be present both during training and testing. We train two
separate PR models which use topic model based textual
features and Wikipedia SR based textual features respec-
tively as additional global features both during training and
testing. The mean AP of these models correspond to the
green bars in Fig. 6. For Wikipedia features, we concate-
nate the Wikipedia SR measure of a description with each
of the action and role labels to form a feature. We treat f tid
as the topic model feature from description ti. The con-
siderable gain achieved by using topic model features dur-
ing test time over other methods justifies the use of topic
model SR for the current task. The lower performance of
Wikipedia-based methods can be explained by the use of
non task-specific corpus and lack of dimensionality reduc-
tion.

Further, note that in our adaptation of the self-paced ap-
proach, while natural language descriptions are not avail-
able during testing, we use features extracted from natural
language descriptions in the initial iterations of training, and
finally anneal their weights to zero. The effectiveness of our
textual features as shown in Fig. 6 allows us to handle out-
liers introduced by the SR measure.

From Tab. 1, 2, we see that our full model, which handles
outliers, is able to achieve significant improvement over the
other methods. Our method is seen to be particularly ef-
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Figure 6. The green bars correspond to the setting where natural
language descriptions are used at test time. The red bars are from
Tab. 1, 2.

fective for action classes like hammering, writing, planing,
drilling, where the number of training video descriptions di-
rectly containing the action label were below 10. We show
sample videos which were added as positives by our full
method in Fig. 7, along with the corresponding descriptions.
We notice the inclusion of videos whose descriptions do not
contain the action directly.

4.3. Event classification

We compare the event classification performance of our
model from Sec. 3.4 against baseline methods as well as
state-of-the-art results from [8] in Tab. 3. Note that un-
like our method, [8] used extensive spatio temporal anno-
tation to learn completely supervised atomic action classi-
fication models. The prediction scores from these models
were finally used to perform event classification. We report
two sets of results from [8], one using action classification
scores in linear ensemble SVM and the other using them
in a joint CRF model. In addition, we demonstrate results
against the following baselines

• global only: uses global video features only
• global+actions: uses only action classification features

in addition to global video features
• global+roles: uses only role classification features in

addition to global video features
From Tab. 3, we observe that our methods using either

the action or role features outperform an SVM trained only
with global video features. Our full model using both ac-
tion and role scores achieves the maximum mean AP. Thus,
our action and role models trained only with natural lan-
guage descriptions matches state-of-the-art methods from
[8], which uses ground truth spatio temporal action annota-
tions for training. This supports the utility of the our action
and role models learned with very weak supervision.

5. Conclusion
We have presented a method to learn atomic action

and role models based on easily available natural language
video descriptions. We proposed a language topic model

Event global [8] * [8] * joint global + global + full
only SVM CRF action roles model

Boarding trick 0.8766 0.7560 0.7570 0.8276 0.8625 0.8402
Feeding animal 0.4535 0.5820 0.5650 0.4490 0.3958 0.4595
Landing fish 0.6612 0.7410 0.7220 0.6612 0.6811 0.6593
Wedding 0.4729 0.6650 0.6750 0.5942 0.7555 0.7871
Woodworking project 0.2227 0.5760 0.6530 0.3697 0.2086 0.3568
Birthday party 0.9083 0.7090 0.7820 0.9207 0.9041 0.9008
Changing tire 0.5100 0.4650 0.4770 0.5200 0.4977 0.5012
Flash mob 0.9301 0.8590 0.9190 0.9273 0.9248 0.9240
Vehicle unstuck 0.6288 0.6610 0.6910 0.6212 0.5862 0.6173
Grooming animal 0.3881 0.4570 0.5100 0.3914 0.3927 0.5415
Making sandwich 0.5604 0.3560 0.4190 0.5739 0.5442 0.5704
Parade 0.7462 0.6570 0.7240 0.7283 0.6582 0.7335
Parkour 0.5426 0.5340 0.6640 0.6211 0.5681 0.6144
Repairing appliance 0.8025 0.8080 0.7820 0.7989 0.7692 0.7840
Sewing project 0.6579 0.5690 0.5750 0.6563 0.6286 0.6688
mean 0.6241 0.6263 0.6610 0.6441 0.6252 0.6639

Table 3. Event classification results. The highest score for a class
is shown in bold font. * Unlike our method, [8] uses extensive
ground truth spatio temporal annotations for training separate ac-
tion classifiers to aid event classification.

based semantic relatedness measure to identify positive and
negative training examples. These labels were used to train
a CRF model with posterior regularization, which makes
latent action and role assignments to human tracklets. Out-
liers introduced by the SR measure were handled through a
self-paced scheme. The action and role models were used
to achieve state-of-the-art event classification performance
on the TRECVID-MED11 event kits. We demonstrated the
efficacy of the topic model based SR measure in identify-
ing training labels as well as the gain due to the posterior
regularized method in a weakly supervised setting without
temporal annotations. Further, such SR measures could also
be used to tackle the problem of converting video content to
natural language descriptions as proposed in [26].
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