
Script Data for Attribute-based
Recognition of Composite Activities

Marcus Rohrbach1 Michaela Regneri2 Mykhaylo Andriluka1

Sikandar Amin1,3 Manfred Pinkal2 Bernt Schiele1

1Max Planck Institute for Informatics, Saarbrücken, Germany
2Department of Computational Linguistics, Saarland University, Germany

3Department of Computer Science, Technische Universität München, Germany

Abstract. State-of-the-art human activity recognition methods build
on discriminative learning which requires a representative training set
for good performance. This leads to scalability issues for the recognition
of large sets of highly diverse activities. In this paper we leverage the
fact that many human activities are compositional and that the essential
components of the activities can be obtained from textual descriptions
or scripts. To share and transfer knowledge between composite activities
we model them by a common set of attributes corresponding to basic
actions and object participants. This attribute representation allows to
incorporate script data that delivers new variations of a composite ac-
tivity or even to unseen composite activities. In our experiments on 41
composite cooking tasks, we found that script data to successfully cap-
ture the high variability of composite activities. We show improvements
in a supervised case where training data for all composite cooking tasks
is available, but we are also able to recognize unseen composites by just
using script data and without any manual video annotation.

1 Introduction

Human activity recognition in video is a fundamental problem in computer vi-
sion. State-of-the-art methods (e.g. [1–3]) achieve near perfect results for simple
actions (e.g. KTH dataset [4]), and robustly recognize actions in realistic settings
such as Hollywood movies [5], videos from YouTube [6], or sport scenes [7].

The top-performing methods typically rely on discriminative machine lear-
ning, which requires representative training data. Collecting such training sets
is challenging if the number of activities is large and the activities themselves
are complex. In consequence, most current research (with few exceptions [8, 3,
9]) focuses on simple basic-level activities such as walking or drinking, while the
recognition of longer-term, complex, and composite activities such as assembling
furniture or food preparation has been rarely addressed in computer vision.

A promising approach towards scalability of activity recognition methods to a
large number of complex activities is to use intermediate representations that are
shared and transferred across activities by exploiting their compositional nature.
We exploit this technique and propose a new approach building on an attribute-
based representation. Instead of learning a model for each composite activity we
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prepare scrambled egg

version - K

1) get the pan from drawer
2) put some butter on the 
pan then heat it on the stove
3) crack the egg in a bowl
4) put some salt and whisk
5) put the mixture on pan
6) stir for 3-4 minutes
  

version - 02

1) open the egg in a bowl 
and stir, add salt and pepper
2) heat the pan on the stove
3) put some oil on the pan
4) when oil is hot then put 
the mixture in the pan and 
stir for some minutes

version - 01

1) take egg from the fridge
2) put pan on the stove
3) open egg over pan
4) fry for 3-4 minutes

separate eggprepare onion

take-out egg openpan onion fry

prepare scrambled eggs

egg openpan fryScript data collected using 
Mechanical Turk

Fig. 1. Sharing or transferring attributes of composite activities using script data.
Composite activities (gray boxes) are composed of basic-level activities and their par-
ticipants (light-blue boxes), modeled as attributes. These attributes can be transferred
with the help of script data to unseen composite activities (dashed-line box).

learn models for a large set of attributes shared across composite activity classes.
Such approaches have been shown effective to recognize previously unseen object
categories [10, 11] and have also been applied to activity recognition [12].

We evaluate our approach in the daily living domain where many tasks,
such as cleaning the house or preparing a dish, are composed of several basic-
level activities. A major challenge to recognize everyday activities is that these
activities can often be performed in a wide variety of ways, and it is practically
infeasible to create a training set with all possible alternatives.

For the purpose of this paper we focus on the recognition of cooking activities,
which share many basic-level activities, cooking tools, and ingredients. A recent
evaluation [13] has shown that recognizing basic-level activities is already a chal-
lenging task and thus the recognition approach needs to be robust to failures
in detection of basic-level activities. In this work we address the challenges of
difficult basic-level cooking activities as well as the high variability in composite
activities in three complementary ways:

1. We detect activities and objects independently but take their co-occurrence
and context into account. E.g. when looking at cooking activities it is likely
that peeling co-occurs with carrot or potato but not with cauliflower.

2. We model basic-level activities and participants as attributes of composite
activities, allowing to easily share and transfer across composite activities.
As Fig. 1 shows a decomposition of the activities prepare onion, separate egg,
and prepare scrambled eggs into attributes of basic-level activities such as fry
and open as well as their participating ingredients (egg) or tools (pan).

3. We collect a large number of textual descriptions, instances of so called
scripts, for an activity to compute how relevant a certain attribute is for a
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specific composite activity. Given this script data we can not only handle
the variation of composites but also recognize unseen composite activities.
As illustrated in Fig. 1 the attributes egg, pan, open, and fry are determined
to be important for preparing scrambled eggs using script data and can be
transferred from known composites such as separate egg and prepare onion.

Our contributions are as follows. First, we show how to use text-based script
data for handling the large variability of composite activity recognition by se-
lecting relevant attributes. Second, we not only improve performance in the
supervised case but also can transfer to unseen composite cooking activities.
We achieve this by decomposing composite activities into a flexible attribute
representation. Third, we show that using co-occurrence and temporal activity
context can help recognizing the challenging basic-level activities. Additionally,
we release the challenging recorded video dataset (called MPII Cooking Com-
posite Activities, or short MPII Composites) allowing to evaluate recognition of
activity composites and attribute transfer on a large scale.

2 Related work

This paper addresses the challenging task to recognize complex everyday activ-
ities, taking cooking as running example. Our goal is to leverage on the com-
positional nature of human activities to enable the recognition of activities for
which only few or even no training examples are available. This is in contrast to
approaches that represent activities as bags of spatio-temporal features [14, 1, 2,
15] disregarding potential structure within the activity.

Several recent approaches [16, 3, 12] have aimed at structured representa-
tion of activities that go beyond bags-of-features. Joint modeling of actions and
objects has been explored in [17, 16], demonstrating improved performance for
both tasks. In this work we also include both actions and objects in our repre-
sentation, while aiming to recognize more complex interactions and activities.
[3] model activities as a temporal composition of primitive actions and discrim-
inatively learn such models. The primitive actions are learned in a data-driven
manner complicating transfer to previously unseen activities. In contrast to this
we focus on semantically meaningful basic-level activities, which permit to learn
the relationships between activities and objects from textual sources.

Recent work has shown that attributes are an effective intermediate represen-
tation that facilitates cross-task [10] and cross-modal learning [11]. We build our
approach on such an representation using attributes that are commonly shared
between cooking activities. The attributes correspond either to basic-level activ-
ities such as stir, peel, or grate or to tools and ingredients used in the cooking
process. Our representation is conceptually similar to a recently proposed ob-
ject/action bank representation for scene recognition [18], for still image action
recognition [19], and video action recognition [19]. Similar to these, we first train
a set of detectors for a large set of attributes and then perform reasoning on top
of the detector bank output.
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While attributes have been used for object recognition [20, 10, 21, 11] they
have only recently been applied to activity recognition [19, 12]. [12] builds on
a set of manually defined attributes describing various body motions such as
raise arms and bend torso. The attributes are interpreted as latent variables
and combined with motion trajectory features and attribute co-occurrence fea-
tures within a latent SVM framework. [12] demonstrates the effectiveness to
recognize previously unseen activities, but requires manual specification of ac-
tivity attributes. In contrast to this we put our main focus on investigating how
attribute relationships can be automatically mined from text sources.

Language and cross-modal learning have been used for knowledge transfer
[17, 11]. In [17] visual and RFID data are combined with common-sense know-
ledge to learn recognition models of complex kitchen activities. [11] relied on
publicly available databases such as Wikipedia1, WordNet [22], or Flickr2 to
mine relationship between attributes and objects, and uses them to recognize
novel object classes. Methods such as [11] have not been explored for activity
recognition in the past, likely because generic text corpora do not seem suitable
for mining activity-related attributes as noted by [12]. To address this, we ex-
plicitly gather knowledge about activities by collecting their textual descriptions
from multiple subjects. We then rely on linguistic analysis of such descriptions
in order to compute statistics of the appearance of various attributes within each
activity. We demonstrate that such statistics allow to significantly boost recog-
nition performance and also facilitate recognition of previously unseen activities.

Movie scripts associated to a movie have previously been used by [23] to ob-
tain automatic annotations of activities, in contrast to this we want to capture
unseen variations by script data collected independent of the video. In the mul-
timedia community, MediaMill[24] and LSCOM[25] are efforts to explore large
scale video retrieval using mid-level concepts and exploring combination of tex-
tual and visual information.

3 Modeling attributes and composite activities

We are interested in two activity recognition tasks: First we would like to rec-
ognize different composite activities, such as preparing cucumbers. Secondly, we
want to recognize the various activity attributes associated to and making up
the composite activity. Those attributes characterize the composite activity and
are either basic-level activities (such as peeling or washing) or the respective
participants (such as grater, knife, or cucumber).

This section first describes the attribute recognition approach that equally
applies to basic-level activities and participants (Sec. 3.1). Composite activities
are recognized based on these attributes (Sec. 3.2). We then show how to use
prior knowledge (Sec. 3.3) to improve the recognition of composite activities,
overcoming the notorious lack of training data and handling the large variability
of activities.

1 http://www.wikipedia.org
2 http://www.flickr.com
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Fig. 2. Our approach to recognition of attributes (a) and composite activities (b).

3.1 Recognizing activity attributes using context and co-occurrence

For a time interval t we want to classify if a particular activity attribute ai
is present. As mentioned before ai can be any attribute including cut, knife, or
cucumber. To obtain the final classifier score for an attribute ai we are proposing
to use three different types of features. The first type of feature is given by a
video-feature-based attribute classifier providing us with confidence score f0(ati)
for attributes ai at time interval t. In addition to f0(ati), we define features
based on context (in the same video sequence) as well as features based on the
co-occurrence of other attributes (in the same time interval t).

Contextual features formalize the intuition that close or adjacent time frames
have strongly related attributes: E.g. if a cucumber is peeled in one time interval,
the cucumber is probably also present in the surrounding time frames, and it
is likely that the same video sequence contains a cutting activity as well. More
formally (visualized in Fig. 2(a)) we define a context feature vector f con(ati) as

f conj (ati) = max
u=1,...,t−1,t+1,...,T

f0(auj ) ∀j ∈ {1, 2, . . . n}, (1)

where n is the total number of attributes. Element j of the context feature vector
contains evidence that attribute aj occurs in the context of attribute ai.

Similarly, activity attributes happening at the same time instance t are rela-
ted, e.g. if we peel something it is more likely to observe also carrot or cucumber
rather than cauliflower. We thus define the co-occurrence by a feature vector
f coocc(ati) of all attribute scores excluding ati:

f coocck (ati) = f0(atk) ∀k ∈ {1 . . . n}\i (2)

Based on these features we train an activity attribute classifier using the features
individually or by stacking them (see Fig. 2(a)). This formulation can be easily
extended to other attribute representations depending on the task and available
features. In the following, s(ai) refers to the score of such an attribute classifier.
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3.2 Composite activity classification using activity attributes

We now want to classify composite activities that span an entire video sequence,
given attribute classifier scores s(ati). In this approach we rely on the representa-
tion that captures likelihoods of the presence or absence of a particular attribute
and leave modeling temporal ordering of attributes for future work. For each se-
quence d we build a feature vector fseq(d) by computing the maximum score of
each attribute over all time intervals (see Fig. 2(b)):

fseqi (d) = max
t=1,...,T

{s(ati)} ∀i ∈ {1, 2, . . . n}. (3)

To decide on the category of a sequence we use the feature representation
fseqi (d) and classify using a nearest neighbor classifier (NN) or support vector
machines (SVM) given a set of labeled training sequences. The following sec-
tion describes the additional incorporation of semantic relatedness to select the
relevant attributes ai, i.e. feature dimensions in fseqi (d).

3.3 Script data for recognizing composite activities

Composite activities show a high diversity which is practically impossible to
capture in a training corpus. Our system thus needs to be robust against many
activity variants that are not present in the training data. The use of attributes
allows to include external knowledge to determine relevant attributes for a given
composite activity. For this we assume associations between attribute ai and
composite activity class z in a matrix of (normalized) weights wz

i . Our system
extracts those associations from script data (see Sec. 4), but the approach gen-
eralizes to arbitrary other external knowledge sources. We explore two options
to use such information, one of which does not require any visual training data
of a specific composite activity and thus enables zero-shot recognition.
Script data: To compute a confidence score sscriptdata(z|d) of the composite
activity d being of class z we use the attribute based feature representation
fseqi (d). Given the weights wz

i we compute a weighted sum

sscriptdata(z|d) =

∑n
i=1 w

z
i f

seq
i (d)∑n

i=1 w
z
i

, (4)

This formulation is similar to the sum formulation by [26] used for image recogni-
tion with attributes, which itself is an adaption of the direct attribute prediction
model introduced by [10]. Note that the weight matrix retrieved from script data
is sparse (often, wz

i = 0). When mining from other corpora one might need to
threshold or cut-off the weights wz

i to achieve good performance.
NN+script data: When training data is available we can use a nearest neigh-
bor classifier. Often, only a handful of attributes are likely to be indicative for
a composite activity class, while the majority of other attributes will provide
irrelevant, potentially noisy information. When searching for nearest neighbors
such irrelevant attributes might dominate the distance, resulting in suboptimal
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performance. To reduce this effect we rely on the script data to constrain the
attribute feature vector to the relevant dimensions.

More specifically, we replace the distance measure of nearest neighbor with
the following training class dependent similarity function, taking weights of class-
attribute associations into account. It is defined between the test attribute vector
of unknown class fseqi (dtest) and the training attribute vector fseqi (dtrainz ) of class
z as

Sim(dtest, dtrainz ) =

(∑n
i=1 w

z
i

(
fseqi (dtest)− fseqi (dtrainz )

)2∑n
i=1 w

z
i

)0.5

. (5)

To enhance robustness further, we binarize all association weights wz
i by setting

all non-zero weights to 1. This reduces the distance computation to the relevant
attributes, normalized by the total number of relevant attributes. Using con-
tinues weights requires their inversion, which performed worse than binarized
weights for our purposes.

4 Mining script data

Linguistics and psychology literature knows prototypical sequences of certain
activities as so-called scripts [27, 28]. Scripts describe a certain scenario (e.g.
“eating in a restaurant”) with temporally ordered events (the patron enters
restaurant, he takes a seat, he reads the menu... ) and participants (patron,
waiter, food, menu,...). Written event sequences for a scenario can be collected
on a large scale using crowdsourcing [29]. We make use of this method regarding
our composite activities as scenarios and assembling a large number of written
sequences for each of those. After a more detailed description of the data collec-
tion, we show how to match attribute labels to the text data, and what kind of
statistics we use to compute the association weights wz

i in Eq. 4 and 5.

4.1 Data acquisition via crowdsourcing

We collect natural language sequences similar to [29] using Amazon’s Mechanical
Turk3. For each composite activity, we asked the subjects to give tutorial-like
sequential instructions for executing the respective kitchen task. The instructions
had to be divided into sequential steps with at most 15 steps per sequence. We
select 53 relevant kitchen tasks as composite activities by mining the tutorials for
basic kitchen tasks on the webpage “Jamie’s Home Cooking Skills”4. All those
tasks are steps to process ingredients or to use certain kitchen tools. In addition
to the data we collected in this experiment, we use data from the OMICS corpus5

and [29] for 6 kitchen-related composite activities. This results in a corpus with
2124 sequences in sum, having a total of 12958 event descriptions.

3 http://www.mturk.com
4 http://www.jamieshomecookingskills.com
5 http://openmind.hri-us.com/
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1. get a large sharp knife 1. gather your cutting board
and knife.

1. wash the cucumber

2. get a cutting board 2. wash the cucumber. 2. peel the cucumber
3. put the cucumber

on the board
3. place the cucumber flat

on the cutting board.
3. place cucumber on

a cuttingboard.
4. hold the cucumber

in your weak hand
4. slice the cucumber

horizontally into round slices.
4. take a knife and rock it back

and forth on the cucumber
5. chop it into slices with

your strong hand
5. make a clean thin

slice each time.

Fig. 3. 3 example scripts for the composite activity cutting a cucumber

This dataset provides much more variation than the limited number of video
training examples can capture. Of course this poses also a challenge, because
we need to overcome the problem of different wordings and coordinated events:
Fig. 3 shows three examples we collected for the composite activity chopping
a cucumber. They differ in verbalization (cf. slice, chop and make a slice) and
granularity (getting something is often left out). Further, the sequences reflect
different ways of preparing the vegetable, some include peeling it, some do not
wash it, and so on. Some sentences contain conjugated events (take a knife and
rock it...). While we clean the data to a certain degree by fixing spelling mistakes
and resolving pronouns with the method in [30], we end up with both challenges
and blessings of a very noisy but very big training data set.

4.2 Data analysis

To use the prior knowledge from the textual data, we match the attribute labels
from the video annotations to the written script instances and compute several
statistics: the frequency distribution give simple priors of single attributes, and
tf*idf is used to find the most salient composite activity associated with certain
basic-level attributes.

Label matching: To transfer any kind of knowledge from the script corpus to
the attributes from the video annotation, we need to match attribute labels to
language descriptions. The annotated attribute labels are standard English verbs
(for activities, e.g. “wash”) and nouns (for participating objects, e.g. “carrot”),
sometimes with additional particles (e.g. “take apart” and “take out”). Because
the script instances contain unrestricted natural language sentences, they do not
necessarily have any correspondence with the attribute label annotations, thus
we evaluate two ways of mapping between them:

– literal: we look for the exact matching of the attribute label within the data.

– WordNet: we look for attribute labels and their synonyms. We take syn-
onyms as members of the same synset according to the WordNet ontology
[22] and restrict them to words with the same part of speech, i.e. we match
only verbal synonyms to activity predicates and only nouns to object terms.

Statistics computed on the data: We compute two different association
scores between attribute labels and composite activities:
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videos subjects categories ground truth attribute video
composites attributes time intervals instances duration

MPII Cooking 44 12 - 218 3824 15382 3-41 min
MPII Composites 212 22 41 218 8818 33876 1-23 min
combined 256 30 41 218 12642 49258 1-41 min

Table 1. Dataset statistics.

– Freqs: frequency distribution over all attribute labels for each composite
activity.

– tf∗idf : tf∗idf (term frequency ∗ inverse document frequency, [31]) is a mea-
sure used in Information Retrieval to determine the relevance of a word for
a document. Given a document collection D = d1, ..., dn, tf∗idf for a term
(or word) w and a document di is computed as follows:

tf ∗ idf(w, di) = freq(w, di) ∗ log
|D|
|dw∈d|

(6)

dw∈d is the set of documents containing w at least once. tf∗idf represents
the distinctiveness of a term for a document: the value increases if the term
occurs often in the document and rarely in other documents. In our case, one
document corresponds to one composite activity, i.e. it contains all sequences
collected for the same scenario.

We normalize the association scores for each composite activity over all at-
tributes which gives the association weights used in Eq. 4 and 5.

5 Experimental Setup

This section first describes our new MPII Cooking Composite Activities dataset
(MPII Composites) that is publicly available on our webpage. We then outline
the experimental setup for the evaluation (Sec. 6).

5.1 MPII Cooking Composite Activities dataset

To evaluate composite activity recognition, we record a dataset containing diffe-
rent cooking activities. We discard some of the composite activities in the script
corpus (Sec. 4) which are either too elementary to form a composite activity
(e.g. how to secure a chopping board), or were duplicates with slightly different
titles, or because of limited availability of the ingredients (e.g. butternut squash).
This resulted in 41 composite cooking activities for evaluation.

Our dataset recording setup is identical to [13] and, similarly, we do not tell
subjects how to perform a certain cooking task. We compare MPII Cooking [13]
and the newly proposed dataset MPII Composites in Table 1. Recordings are
made with 1624x1224 pixel resolution, with 29.4fps, recording a person at the
counter from the front. We use the same annotation protocol as [13], but addi-
tionally distinguish participants of an activity (cut), namely ingredients (carrot),
tools (knife), and containers (cutting board), for both datasets.
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Attribute Training on: MPII Cooking MPII Cooking
+ MPII Composites

Base (f0) 32.3 18.4
Context only (fcon) 13.1 10.1
Base+Context 34.2 13.3
Co-occurrence only (fcoocc) 27.3 20.3
Base+Co-occurrence 30.9 21.5
Base+Context+Co-occurrence 37.7 17.3

Table 2. Attribute recognition using context and co-occurrence, AP in %

5.2 Video representation and evaluation protocol

We use a bag-of-features representations which uses HOG, HOF, and motion
boundary histograms around densely sampled points, which are tracked for 15
frames by median filtering in a dense optical flow field [1]. This feature showed
best performance on MPII Cooking [13]. The feature extraction and training
is identical to [13], i.e. we generate a codebook using k-means and train the
attribute classifiers using one-vs-all SVMs trained by meanSGD [26] with a χ2

kernel approximation [32]. We generate the codebook only from MPII Cooking,
generating a true zero-shot setting when transferring to MPII Composites.

Recordings from subjects which appear in MPII Cooking are only used for
training. The data of all remaining 17 subjects are divided into 6 cross-validation-
splits. We report mean average precision (AP), taking the mean over all classes
and cross validation rounds. If a class is not present in a cross-validation round,
we exclude it from mean computation for this round.

In all evaluation runs for both attributes and composites, we use the same
cross-validation procedure and we always evaluate on MPII Composites. Con-
cerning training, we distinguish two settings: First we train attributes on both
datasets (left columns, Table 2 and 3). To see how well attributes can be trans-
ferred, we also train attribute classifiers only on MPII Cooking (right columns).
In the SVM case, composites are trained using meanSGD on the attribute clas-
sifier output score vector fseq(d).

6 Evaluation

In this section we first evaluate our attributes enhanced with context and co-
occurrence, and then evaluate recognition of composite cooking activities using
different levels of supervision, including a zero-shot approach using script data.

6.1 Attribute recognition using context and co-occurrence

Table 2 summarizes the results for recognizing activities and their participants,
modeled as attributes. For a certain time window, multiple attributes can be
activated, e.g. because a person is mixing a salad with fork and spoon in a bowl,
resulting in 5 attributes activated at the same time.

The left column of Table 2 shows the results for training on both, MPII
Cooking and MPII Composites, but evaluating on MPII Composites only. The
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performance of the base classifier trained on the dense trajectory feature rep-
resentation achieves 32.3% mean average precision (AP) for the 218 attribute
classifiers on MPII Composites.

Using only temporal context to recognize activity attributes performance
drops significantly (13.1% AP). This is the expected result, because the context
is similar for all activities of the same sequence and thus cannot discriminate
attributes. In contrast, when using co-occurrence only, the performance drops
only by 5.0% compared to the base classifiers due to the high relatedness between
the attributes, namely between activities and their participants.

Combining context and co-occurrence information with the base classifier
gives 34.2% and 30.9%, respectively. This is below the base classifier’s perfor-
mance for co-occurrence, but a combination of all training modes achieves a
performance of 37.7% AP, improving the base classifier’s result by 5.4%.

In a second setting, we restrict the training dataset to MPII Cooking but still
evaluate on MPII Composites (right column of Table 2), requiring the activity
attributes to transfer to different composite activities. When comparing the right
to the left column, we notice a significant performance drop for all classifiers.
This decrease can mainly be attributed to the strong reduction of training data
to about one third. Co-occurrence and Base+Co-occurrence achieve the best
results with 20.3% and 21.5% accuracy. Co-occurrence stand out compared to
the other individual attribute classifiers: Because the activity context changes
from MPII Cooking to MPII Composites (having different composite activities),
context leads to tremendous performance drops in all combinations.

6.2 Composite cooking activity classification

After evaluating attribute recognition performance in Sec. 6.1, we now show the
results for recognizing composites using the attributes as described in Sec. 3.2.
We only use the combination of base, context, and co-occurrence. Although this
is not the best choice for recognizing attributes for the attribute transfer setting
we found it to work better or similar to alternatives for composite recognition.

The results are shown in Table 3, which, similar to Table 2, shows results
for training the attributes on both, MPII Cooking and MPII Composites, on
the left and reduced attribute training on MPII Cooking only on the right. In
the first (top) section of the table we use MPII Composites as training data
for the composite cooking activities with 6-fold cross-validation as done before.
For training of composite activities, we are limited to MPII Composites, because
MPII Cooking is not structured into different composite cooking activities. In the
second (bottom) section of the table we use no training data for the composite
cooking activities, often referred to zero-shot learning. This is enabled by the
use of script data as motivated before.

The results in the top left quarter of Table 3 show the fully supervised setup.
The first setup uses an SVM trained directly on the video feature representa-
tion rather than basic level attributes. This is the same setup as in [13] and as
our Base (f0) classifier, but this time trained and tested on complete compos-
ite activity videos. It achieves 38.4% AP, showing how challenging the dataset
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Attribute Training on: MPII Cooking MPII Cooking
+ MPII Composites

Training composite cooking activities on MPII Composites
SVM (on features) [13] 38.4 -
SVM (on attributes) 51.2 32.2
NN (on attributes) 51.7 34.6
NN+Script data
- freqs-literal 50.9 36.2
- freqs-WN 51.2 35.6
- tf*idf-literal 51.5 32.1
- tf*idf-WN 53.9 30.7

No training data for composite cooking activities
Script data
- freqs-literal 42.6 22.9
- freqs-WN 38.0 22.1
- tf*idf-literal 49.3 22.4
- tf*idf-WN 48.7 21.5

Table 3. Composite cooking activity classification, AP in %. Top left quater: fully supervised,
right column: reduced attribute training data, bottom section: no composite cooking activity
training data, right bottom: true zero shot.

is. However, an SVM, trained on the attribute feature vectors (fseqi ), achieves
51.2% AP, while NN classification reaches slightly better performance of 51.7%.
This demonstrates that our attribute representation is a good way model for
the video. To restrict NN to relevant attributes, we reduce the feature vector
using script data (see Sec. 3.3). We distinguish four options: The first two use
normalized frequency counts, while the third and fourth use tf*idf to determine
the relevance of an attribute for a given composite. For both we mine words in
the collected scripts either literally or using a WordNet (WN) expansion (see
Sec. 4 for details). We first notice that tf*idf for WN (53.9%) outperforms the
purely training data based methods SVM and NN. tf*idf obviously selects the
right attributes for a given composite activity, making the problem of finding
the nearest neighbor simpler. In comparison to the frequency counts (50.9% and
51.2%), tf*idf performs slightly better, because tf*idf activates only the most
distinctive attributes for a specific composite cooking activity, while frequency
counts activate less selectively based on co-occurrence of task and attribute.
Comparing WordNet expansion vs. literal, we find that the expansion helps
(0.3% and 2.4% increase) as it activates a broader attribute inventory.

Next we compare these results to the reduced attribute training set, leading
to disjoint training set for attributes and composite cooking activities (Tab. 3,
upper right quarter). Similar to the previously observed drop of performance of
20.4% for the combined attribute representation (Tab. 2, last row), we also see
a significant drop in composite recognition of 19.0% and 17.1%, for SVM and
NN, and 14.7% to 23.2% for the different NN+Script data versions. While the
best performing approach is again based on NN+Script data, this time literal
frequencies perform best with 36.2% AP. Presumably the attribute classifiers are
all too weak and select only the semantically most relevant attributes like tf*idf,
but this strategy fails if these few happen to be very noisy.
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In the third part (Table 3, bottom left quarter), we evaluate the case when we
do not have any training labels for the composite cooking tasks which does not
allow using SVM or NN. We rely on script data for selecting relevant attributes
instead. Using weighted attributes (Sec. 3.3) with the same measures, we again
find tf*idf to perform best with 49.3% AP for the literal version, which is a drop
by only 4.6% compared to the best fully supervised case. When using frequency
statistics instead of tf*idf, performance drops to 42.6% and 38.0% AP.

Finally, we show our results on a true zero-shot setting (Table 3, right bot-
tom part). We would like to stress that the attributes have only been trained on
MPII Cooking and not as part of the unseen composites, nor are feature repre-
sentations or composite cooking activities trained for the new MPII Composites,
and also subjects are disjoint. Associations to unknown data is only provided by
script data and not manually defined. For this challenging setting, we achieve a
performance of 22.9% AP for the freqs-literal measure outperforming again the
others like for the supervised case above.

Overall we found that script data improves performance by 2.2% AP to 53.9%
AP in the fully supervised case and by 1.6% to 36.2% AP for reduced attribute
training data. It also enables recognizing highly varied cooking tasks without
training data close to supervised performance (49.3%) and obtains encouraging
22.9% for the complete zero-shot case where training happens entirely on a
different dataset, different people, and different cooking tasks.

7 Conclusion

Composite activities are difficult to recognize because of their inherent variability
and the lack of training data for specific composites. This paper shows that
attribute-based activity recognition allows recognizing composite activities well.
Most notably, we have shown how textual script data, which is easy to collect,
enables an improvement of the composite activity recognition when only little
training data is available, and even allows for complete zero-shot transfer. We
have also shown that activity attribute recognition can be improved by using
context and co-occurrence attributes. A direction for future work is to use the
mined textual descriptions to produce detailed textual descriptions of a video
sequence, and exploit more of the script structure for action recognition.
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