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Abstract

Model-free trackers can track arbitrary objects based on
a single (bounding-box) annotation of the object. Whilst the
performance of model-free trackers has recently improved
significantly, simultaneously tracking multiple objects with
similar appearance remains very hard. In this paper, we
propose a new multi-object model-free tracker (based on
tracking-by-detection) that resolves this problem by incor-
porating spatial constraints between the objects. The spa-
tial constraints are learned along with the object detectors
using an online structured SVM algorithm. The experi-
mental evaluation of our structure-preserving object tracker
(SPOT) reveals significant performance improvements in
multi-object tracking. We also show that SPOT can improve
the performance of single-object trackers by simultaneously
tracking different parts of the object.

1. Introduction
Object tracking is a fundamental problem in computer

vision with applications in a wide range of domains.
Whereas significant progress has been made in tracking spe-
cific objects (e.g., faces [22], humans [11], and rigid ob-
jects [15]), tracking generic objects remains hard. Since
manually annotating sufficient examples of all objects in
the world is prohibitively expensive and time-consuming,
recently, approaches for model-free tracking have received
increased interest [2, 12]. In model-free tracking, the ob-
ject of interest is manually annotated in the first frame of a
video sequence (using a rectangular bounding box). The an-
notated object needs to be tracked throughout the remainder
of the video. Model-free tracking is a challenging task be-
cause (1) little information is available about the object to be
tracked, (2) this information is ambiguous in the sense that
the initial bounding box only approximately distinguishes
the object of interest from the background, and (3) the ob-
ject appearance may change drastically over time.

Most tracking systems comprise three main components:
(1) an appearance model that predicts the likelihood that

the object is present at a particular location based on the
local image appearance, (2) a location model that predicts
the prior probability that the object is present at a particular
location, and (3) a search strategy for finding the maximum
a posteriori location of the object. In our model-free tracker,
the appearance model is implemented by a classifier trained
on histogram-of-gradient (HOG) features [7], the location
model is based on the relative locations of objects, and the
search strategy is a sliding-window exhaustive search.

In many applications, it is necessary to track more than
one object. A simple approach to tracking multiple objects
is to run multiple instances of a single-object model-free
tracker. In this paper, we argue that this is suboptimal be-
cause such an approach fails to exploit spatial constraints
between the objects. For instance, flowers move in the same
direction because of the wind, cars drive in the same direc-
tion on the freeway, and when the camera shakes, all ob-
jects will move in the same direction. We show that it is
practical to exploit such spatial constraints between objects
in model-free trackers by developing a structure-preserving
object tracker (SPOT) that incorporates spatial constraints
between objects via a pictorial-structures framework [8].
We train the individual object classifiers and the structural
constraints jointly using an online structured SVM [3]. Our
experiments show that the incorporation of structural con-
straints leads to substantial performance improvements in
multi-object tracking: SPOT performs very well on Youtube
videos with camera motion, rapidly moving objects, object
appearance changes, and occlusions. In addition, we show
that SPOT may also be used to significantly improve single-
object trackers by using part detectors in addition to the ob-
ject detector, with spatial constraints between the parts.

In summary, our main contributions are: (1) we show
that incorporating spatial constraints between objects in
model-free trackers to improves their performance on
multiple-object tracking and (2) we show that using a part-
based model improves the performance of single-object
model-free trackers. We discuss related work in section 2.
Section 3 introduces our new tracker, section 4 presents our
experimental results, and section 5 concludes the paper.
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2. Related Work

Model-free trackers can be subdivided into (1) trackers
that model only the appearance of the object itself [20] and
(2) trackers that model the appearance of both the object
and the background [2, 9, 12]. Recent results suggest that
the latter type of trackers, which train a classifier to dis-
criminate between the object and the background appear-
ance, outperform the former type of trackers. This result is
supported by theoretical results showing that discriminative
models always outperform their generative counterparts on
a discriminative tasks [17]. Hence, we will focus on learn-
ing discriminative object appearance models in this work.

Much of the recent work in model-free tracking focuses
on exploring different feature representations for the object
that is being tracked: among others, previous studies have
used integral histograms [1], subspace learning [20], sparse
representations [16], and local binary patterns [12]. In this
work, we capitalize on the success of the Dalal-Triggs de-
tector [7] and use HOG features instead.

Recent work on model-free tracking also focuses on de-
veloping new learning approaches to better distinguish the
target object from background. In particular, previous stud-
ies have investigated approaches based on boosting [9], ran-
dom forests [12], multiple instance learning [2], and struc-
tured output learning to predict object transformations [10].
Our tracker is similar to these approaches in that it up-
dates the appearance model of the target object online. Our
tracker differs from previous approaches in that it uses a
learner that aims to identify configurations of objects or ob-
ject parts; specifically, an online structured SVM [3].

Simultaneous tracking of multiple objects has been stud-
ied a lot as well, in particular, in the context of tracking
people (e.g., [4, 18, 23, 25]). These trackers use a model
of what a human looks like, which makes tracking much
easier. By contrast, we aim to develop a model-free tracker
that can track generic objects based on a single annotation
without any prior knowledge. Up to the best of our knowl-
edge, there is no previous work that attempts to perform
such model-free tracking of multiple objects.

3. Structure-Preserving Object Tracker

The basis of our tracker is formed by the popular Dalal-
Triggs detector [7], which uses HOG features to describe
image patches and an SVM to predict object presence.
HOG features measure the magnitude and the (unsigned)
direction of the image gradient in small cells (we used 8×8
pixel cells). Subsequently, contrast normalization is applied
on rectangular, spatially connected blocks of four cells. The
contrast normalization is implemented by normalizing the
L2-norm of all histograms in a block. The advantages of
HOG features are that (1) they consider more edge orienta-
tions than just horizontal or vertical ones, (2) they pool over

relatively small image regions, and (3) they are robust to
changes in the illumination of the tracked object. Together,
this makes HOG features more sensitive to the spatial loca-
tion of the object [7], which is very important because the
identified location of the object is used to update the clas-
sifiers: small localization errors may thus propagate over
time, causing the tracker to drift. Moreover, efficient imple-
mentations can extract HOG features at high frame rates.

We represent the bounding box that indicates object i∈
V (with V representing the set of objects we are tracking)
by Bi = {xi, wi, hi} with center location xi = (xi, yi),
width wi, and height hi; both wi and hi are fixed. The
HOG features extracted from image I that correspond to lo-
cations inside the object bounding box are concatenated to
obtain a feature vector φ(I;Bi). Subsequently, we define a
graphG=(V,E) over all objects i∈V that we want to track
with edges (i, j)∈E. The edges in the graph model can be
viewed as springs that represent spatial constraints between
the tracked objects. Next, we define the score of a config-
uration C = {B1, . . . , B|V |} as the sum of two terms: (1)
an appearance score that measures the similarity between
the observed image features and the classifier weights for
all objects and (2) a deformation score that measures how
much a configuration compresses or stretches the springs
between the tracked objects as follows:

s(C; I,Θ) =
∑
i∈V

wT
i φ (I;Bi)

−
∑

(i,j)∈E

λij‖(xi − xj)− eij‖2. (1)

Herein, the parameters wi represent linear weights on the
HOG features for object i, eij is a vector that represents
the length and direction of the spring between object i and
j, and the set of all parameters is denoted by Θ: Θ =
{w1, . . . ,w|V |, e1, . . . , e|E|}. We treat the parameters λij
as a hyperparameter because we want to learn the spring co-
efficients eij , i.e. we set ∀i, j :λij=λ. The hyperparameter
λ determines the trade-off between the appearance and de-
formation scores. We use Platt scaling [19] to convert the
configuration score to a configuration likelihood p(C|I; Θ).

Inference. Given the parameters of the model, finding
the most likely object configuration amounts to maximizing
Eqn. 1 over C. This maximization is intractable in gen-
eral because it requires searching over exponentially many
configurations, but for tree-structured graphs G, dynamic
programming can be used to perform the maximization in a
time that is linear in the number of parts; see [8] for details.

Learning. Like other model-free trackers [2, 9, 12], we
use the previous images and tracked object configurations
as positive examples to train our model. After observing an
image I and inferring the object configuration C (by maxi-
mizing Eqn. 1), we perform a parameter update that aims to
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minimize the structured SVM loss ` [21]:

`(Θ; I, C) = max
Ĉ

(
s(Ĉ; I,Θ)− s(C; I,Θ) + ∆(C, Ĉ)

)
,

where ∆(C, Ĉ) is defined as follows:

∆(C, Ĉ) =
∑
i∈V

(
1− Bi ∩ B̂i

Bi ∪ B̂i

)
. (2)

The union and intersection of the two bounding boxes is
measured in terms of pixels. The loss can be rewritten as:

`(Θ; I, C) = max
Ĉ

(
vec(Θ)T

(
Ψ̂−Ψ

)
−

∑
(i,j)∈E

λ
(
‖q̂ij‖2 − ‖qij‖2

)
+ ∆(C, Ĉ)

 ,

where Ψ =
[
φ1, . . . , φ|V |, 2λqi1j1 , . . . , 2λqi|E|j|E|

]T
,

vec(·) concatenates all parameters in a column vector, and
qij =xi − xj . Because it is the maximum of a set of affine
functions of Θ, the loss function is convex. The gradient of
the structured SVM loss with respect to θ ∈ Θ is given by:

∇θ`(Θ; I, C) = ∇θs(C∗; I,Θ)−∇θs(C; I,Θ)

= Ψ∗ −Ψ, (3)

in which the configuration C∗ is given by:

C∗ = argmax
Ĉ

(
s(Ĉ; I,Θ) + ∆(C, Ĉ)

)
. (4)

The configuration C∗ can be computed efficiently by (1)
adding a term to each object filter response that contains
the ratio of overlapping pixels for a bounding box at that
location with the detected bounding box and (2) re-running
exactly the same efficient inference procedure as the one
that was used to maximize Eqn. 1 over configurations.

We use a passive-aggressive algorithm to perform the pa-
rameters updates [5]. The updates take the form:

θ ← θ − `(Θ; I, C)

‖∇θ`(Θ; I, C)‖2 + 1
2K

∇θ`(Θ; I, C), (5)

in which K∈(0,+∞) is a hyperparameter that controls the
“aggressiveness” of the parameter update.

Initialization. The weights wi are initialized by ran-
domly selecting 50 negative examples from the first frame
that have little to no overlap with the initial annotation
B

(init)
i , and training SVMs to discriminate these negative

examples from the positive example given by the initial an-
notation. The parameters eij are initialized based on the
initial object annotations as well: eij ← x

(init)
i − x

(init)
j .

Graph structure. A remaining issue is how we deter-
mine the structure of the graph G, i.e. how we decide on
which objects are connected by an edge. Ideally, we would
employ a fully connected graph G, but this would make in-
ference intractable. Hence, we explore two approaches to
construct a tree on the objects i ∈ V : (1) a star model [8]
and (2) a minimum spanning tree model [24]. In the star
model, each object is connected by an edge with a dummy
object r ∈ V that is always located at the center of all the
objects, i.e. there are no direct relations between the objects.
This requires a minor adaptation of the score function:

s(C; I,Θ) =
∑
i∈V/r

wT
i φ (I;Bi)

−
∑

(i,r)∈E

λi‖(xi − xr)− ei‖2. (6)

The minimum spanning tree model is constructed based on
the object annotations in the first frame; it is obtained by
searching the set of all possible completely-connected tree
models for the tree that minimizes

∑
ij∈E‖xi − xj‖2.

Computational Complexity. The main computational
costs of running our tracker are in the extraction of HOG
features (which are shared between object detectors) and in
the computation of the appearance score per object. After
these appearance scores are computed, the maximization of
Eqn. 1 takes only a few milliseconds. The computational
complexity grows linearly in the number of objects being
tracked (i.e. in |V |). Our Matlab implementation tracks
multiple objects simultaneously in real-time.

4. Experiments

We performed two sets of experiments to evaluate the
performance of our tracker. In the first set of experiments,
we evaluate the performance of the SPOT tracker on a
range of multi-object tracking problems, comparing it to
the performance of various state-of-the-art trackers that do
not employ structural constraints between the objects. In
the second set of experiments, we study the use of SPOT
to improve single-object tracking by tracking parts of an
object and constraining the spatial configuration of those
parts. An implementation of our tracker is available from
http://visionlab.tudelft.nl/spot.

4.1. Experiment 1: Multiple-Object Tracking

We first evaluate the performance of the SPOT tracker on
videos in which multiple objects need to be tracked.

Setup. We used nine videos with multiple objects in this
set of experiments. Three of these videos (Shaking, Basket-
ball, and Skating) were already used in earlier studies [13];
the other six were downloaded from YouTube. The videos
were selected based on characteristics that are challenging
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for current model-free trackers, such as the presence of mul-
tiple, near objects with a very similar appearance. The av-
erage length of the videos is 842 frames. The left column
of Figure 1 shows the first frame of each of the nine videos
along with the corresponding ground-truth annotations of
the objects, i.e. the left column of Figure 1 shows all la-
beled training data that is available to train our tracker.

We experiment with three variants of the SPOT tracker:
(1) a baseline tracker that does not use structural constraints
(i.e. a SPOT tracker with λ = 0; no-SPOT), (2) a SPOT
tracker that uses a star model (star-SPOT), and (3) a SPOT
tracker that uses a minimum spanning tree (mst-SPOT). We
compare the performance of our SPOT trackers with that of
two state-of-the-art (single-object) trackers, viz. the OAB
tracker [9] and the TLD tracker [12], which we use to sep-
arately track each object. The OAB and TLD trackers were
run using the implementations provided by their developers.

We evaluate the performance of the trackers by measur-
ing (1) average distance error (Err.): the average distance
of the center of the identified bounding box to the center
of the ground-truth bounding box and (2) precision (Prec.):
the average percentage of frames for which the overlap
between the identified bounding box and the ground-truth
bounding box is at least 50 percent. For each video, these
two measurements are averaged over all target objects, over
all frames, and over five separate runs of the tracker. In
all experiments with star-SPOT and mst-SPOT, we fixed
λ=0.001 andK=1. In preliminary experiments, we found
that are results are very robust under changes of λ and K.

Results. The performance of the five trackers on all nine
videos is presented in Table 1. The results in the table show:
(1) that our baseline no-SPOT tracker performs on par with
state-of-the-art trackers such as TLD and OAB, and (2) that
the use of spatial constraints between objects leads to sub-
stantial performance improvements when tracking multiple
objects, in particular, when minimum spanning trees (mst-
SPOT) are used. The performance improvements are par-
ticularly impressive for videos in which objects with a sim-
ilar appearance are tracked, such as the Car Chase, Parade,
and Red Flowers videos, because the structural constraints
prevent the tracker from switching between objects. Struc-
tural constraints are also very helpful in videos with a lot of
camera shake (such as the Air Show video), because camera
shake causes all objects to move in the same direction in the
image. The SPOT tracker even outperforms single-object
trackers when perceptually different objects are tracked that
have a relatively weak relation in terms of their location,
such as in the Hunting video, because it can share informa-
tion between objects to deal with, e.g., motion blur. The
mst-SPOT tracker outperforms star-SPOT in most videos,
presumably, because a minimum spanning tree imposes di-
rect (rather than indirect) constraints on the object locations.

Figure 1 shows five frames of all videos with the

tracks obtained by mst-SPOT (colors correspond to ob-
jects). Videos showing the full tracks are provided online.
We qualitatively describe the results on four of the videos.

Air Show. The video contains a formation of four vi-
sually similar planes that fly very close to each other; the
video contains a lot of camera shake. Whereas the base-
line trackers (OAB, TLD, and no-SPOT) confuse the planes
several times during the course of the video, star-SPOT and
mst-SPOT track the right plane throughout the entire video.

Car Chase. This video is challenging because (1) the
two cars are very small and (2) both cars are occluded for
around 40 frames, while various other cars are still visible.
Whereas this occlusion confuses the baseline trackers, the
two SPOT trackers do not lose track because they can use
the location of one car to estimate the location of the other.

Red Flowers. The video shows several similar flowers
that are moving and changing appearance due to the wind,
and that sometimes (partially) occlude each other; we track
four of these flowers. The baseline trackers lose track very
quickly because of the partial occlusions. By contrast, the
two SPOT trackers flawlessly track all flowers during the
entire length of the video (2249 frames) by using the struc-
tural constraints to distinguish the different flowers.

Hunting. The cheetah and gazelle in this video clip are
very hard to track, because their appearance changes sig-
nificantly over time and because their relative location is
changing (the cheetah passes the gazelle). Nevertheless, the
SPOT trackers can exploit the fact that both animals move in
a similar direction, which prevents them from losing track.

4.2. Experiment 2: Single Object Tracking

With some minor modifications, our SPOT tracker may
also be used to improve the tracking of single objects. The
problem of using a global appearance model is that it is sus-
ceptible to partial occlusions of the object. By contrast, the
appearance of (most of the) parts of the object remains un-
altered by such occlusions. SPOT may be used to track the
parts of a single object (treating them as individual objects
in V ) with structural constrains between the parts. This
makes the tracker more robust to partial occlusions. In-
spired by [8], we experiment with a SPOT tracker that has a
single “global” object detector and a number of “local” part
detectors. We experiment with a star model in which the
global detector forms the root of the star (star-SPOT), and
with a model that constructs a minimum spanning tree over
the global object and the local part detectors (mst-SPOT).

Setup. Because a single bounding box is used to anno-
tate the object in the first frame of the video, we need to
determine what parts the model will use. As a latent SVM
[8] is unlikely to work well on a single training example, we
use a heuristic that assumes that relevant parts correspond to
discriminative regions inside the object bounding box. We
initialize part i at the location in which the weights of the
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Figure 1. Tracking results obtained by mst-SPOT on all nine videos used in Experiment 1 (from top to bottom: Air Show, Car Chase,
Parade, Red Flowers, Hunting, Sky Diving, Shaking, Basketball, and Skating). The colors of the rectangles indicate the different objects
that are tracked. Figure best viewed in color. Videos showing the full tracks are presented in the supplementary material.
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Table 1. Performance of five model-free trackers on multiple-object videos measured in terms of (1) average distance in pixels between
centers of the predicted and the ground-truth bounding box (Err.; lower is better) and (2) precision (Prec.; higher is better). To measure the
precision, a detection is considered correct if the overlap between the identified bounding box and the ground truth bounding box is at least
50%. The results are averaged over five runs and over all target objects in each video. The best performance on each video is boldfaced.

OAB [9] TLD [12] no-SPOT star-SPOT mst-SPOT
Err. Prec. Err. Prec. Err. Prec. Err. Prec. Err. Prec.

Air Show 9.3 0.86 31.3 0.53 8.8 0.92 6.9 0.92 10.7 0.68
Car Chase 121.8 0.57 11.2 0.76 24.8 0.78 11.2 0.82 9.2 0.89

Parade 12.7 0.82 8.8 0.71 62.3 0.29 19.4 0.35 8.6 0.69
Red Flowers 79.7 0.09 33.3 0.30 50.6 0.38 8.6 0.98 8.2 0.99

Hunting 104.9 0.25 166.4 0.08 171.7 0.07 29.2 0.72 17.9 0.87
Sky Diving 15.5 0.76 35.3 0.13 51.4 0.48 6.73 0.98 13.6 0.95

Shaking 61.9 0.47 14.3 0.47 58.3 0.47 28.7 0.38 9.8 0.97
Basketball 24.4 0.63 15.6 0.67 63.3 0.67 50.9 0.54 12.7 0.85

Skating 100.2 0.05 90.3 0.42 122.2 0.35 98.9 0.27 14.9 0.85
Avg. rank 3.8 3.4 2.9 3.3 4.3 3.1 2.4 2.9 1.4 1.7

initial global SVM w are large and positive:

Bi = argmax
B′

i⊂B

∑
(x′,y′)∈B′

i

(max(0, wx′y′))
2
, (7)

where Bi and B denote the bounding box of the part and of
the global object, respectively. We fix the number of parts
|V |−1 in advance, setting it to 2. We fix the width and
height of the part bounding boxes Bi to 40% of the width
and height of the bounding box B, and we ensure that the
selected part cannot have more than 50% overlap with the
other parts. Unlike [8], we extract the features for the part
detectors on the same scale as the features for the global
detector. In preliminary experiments, we also tried using
finer-scale HOG features to represent the parts, but this did
not lead to performance improvements. In addition, using
the same features for all detectors has computational advan-
tages because the features only need to be computed once.

The experiments are performed on a publicly available
collection of twelve videos [2]. The videos contain a wide
range of objects that are subject to sudden movements and
(out-of-plane) rotations, and have cluttered, dynamic back-
grounds. The videos have an average length of 556 frames.
Each video contains a single object to be tracked, which is
indicated by a bounding box in the first frame of the video.
(First-frame annotations for all movies are shown in [2].)

Again, we evaluate the performance of the trackers by
measuring the average distance error and the precision of
the tracker, and averaging over five runs. We compare the
performance of our tracker with that of three state-of-the-art
trackers, viz., the OAB tracker [9], the MILBoost tracker
[2], and the TLD tracker [12]. All trackers were run on a
single scale; results with multi-scale trackers are presented
in the supplemental material. We could not run the imple-
mentation of the MILBoost tracker as it is outdated (the
MILBoost tracker was not considered in Experiment 1 for

this reason), but because we use exactly the same experi-
mental setup as in [2], we adopt the results presented there.

Results. Table 2 presents the performance of all six
trackers on all twelve videos. Figure 2 shows the tracks
obtained with the MIL, OAB, TLD, and mst-SPOT track-
ers on seven of the twelve videos. The results reveal the
potential benefit of using additional part detectors when
tracking a single object: mst-SPOT is the best-performing
tracker on eight of the twelve videos in terms of average
distance between centers, and on nine of the twelve videos
in terms of precision. The performance improvements are
particularly impressive in challenging movies such as the
Tiger videos, in which parts of the object are frequently
occluded by leaves; in such situations, the SPOT trackers
benefit from the presence of part detectors that can accu-
rately detect the non-occluded part(s) of the object. The re-
sults also show that mst-SPOT generally outperforms star-
SPOT, which suggests that for object detection in still im-
ages, pictorial-structure models with a minimum spanning
tree [24] may be better than those with a star tree [8].

5. Conclusion and Future Work
In this paper, we have developed a new model-free

tracker that simultaneously tracks multiple objects by com-
bining multiple single-object trackers via constraints on the
spatial structure of the objects. Our experimental results
show that the resulting SPOT tracker substantially outper-
forms traditional trackers in settings in which multiple ob-
jects need to be tracked. Moreover, we have showed that
the SPOT tracker can also improve the tracking of single
objects by including additional detectors for object parts in
the tracker. The computational costs of our tracker only
grow linearly in the number of objects (or object parts) that
is being tracked, which facilitates real-time tracking. Of
course, the ideas presented in this paper may readily be im-
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Table 2. Performance of six model-free trackers on single-object videos measured in terms of (1) average distance in pixels (Err) between
the centers of the predicted and the ground-truth bounding box (lower is better) and (2) precision (higher is better). To measure the
precision, a detection is counted as correct if the overlap between the identified bounding box and the ground truth bounding box is at least
50%. The results are averaged over five runs. The best performance on each video is boldfaced.

OAB [9] MIL [2] TLD [12] no-SPOT star-SPOT mst-SPOT
Err. Prec. Err. Prec. Err. Prec. Err. Prec. Err. Prec. Err. Prec.

Sylvester 20.1 0.42 10.9 0.73 20.0 0.91 9.6 0.88 9.3 0.90 7.1 0.93
David 45.0 0.34 22.9 0.61 4.5 1.00 4.3 1.00 4.5 1.00 3.5 1.00

Cola Can 11.2 0.37 20.9 0.22 16.3 0.52 28.5 0.27 21.4 0.37 7.1 0.75
Occl. Face 1 17.9 0.92 27.2 0.78 16.8 0.99 5.7 1.00 5.5 1.00 4.6 1.00
Occl. Face 2 22.5 0.85 20.2 0.82 22.1 0.77 9.7 0.99 12.1 0.85 7.4 1.00

Surfer 23.7 0.61 9.2 0.76 7.9 0.84 9.8 0.46 189.2 0.26 13.4 0.43
Tiger 1 43.1 0.25 15.3 0.58 28.7 0.13 7.8 0.90 22.1 0.37 6.1 0.89
Tiger 2 21.6 0.44 17.1 0.64 37.5 0.27 25.9 0.42 26.5 0.39 7.6 0.88
Dollar 24.7 0.79 14.8 0.95 3.9 1.00 3.8 1.00 4.5 1.00 5.5 1.00

Cliff bar 33.2 0.67 11.6 0.77 12.3 0.36 36.3 0.42 67.6 0.35 12.1 0.79
Tea Box 8.6 0.94 10.2 0.86 39.0 0.18 15.8 0.74 28.6 0.43 41.9 0.40

Girl 13.5 0.97 32.0 0.57 24.7 0.78 14.7 0.97 10.5 1.00 10.4 1.00
Avg. rank 4.3 3.9 3.7 4.1 4.0 3.8 3.2 2.8 3.6 3.1 2.0 1.8

plemented in other model-free trackers that are based on
tracking-by-detection, such as the TLD tracker. It is likely
that including structural constraints in such trackers will im-
prove their performance in tracking of multiple objects, too.

In future work, we aim to explore the use of different
structural constraints between the tracked objects; for in-
stance, for tracking certain deformable objects it may be
better to use a structural model based on PCA (as is done
in, e.g., constrained local models [6]) or on GPLVMs [14].
We also plan to investigate whether it is possible to identify
the relevant parts of a deformable object in a more princi-
pled way during (model-free) tracking by developing online
learning algorithms for latent SVMs, and we intend to in-
vestigate whether online structured SVMs can be used to
adapt deformable template models during tracking.
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