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Abstract

The success of sparse representation based classification
(SRC) has largely boosted the research of sparsity based
face recognition in recent years. A prevailing view is that
the sparsity based face recognition performs well only when
the training images have been carefully controlled and the
number of samples per class is sufficiently large. This pa-
per challenges the prevailing view by proposing a “pro-
totype plus variation” representation model for sparsity
based face recognition. Based on the new model, a Super-
posed SRC (SSRC), in which the dictionary is assembled by
the class centroids and the sample-to-centroid differences,
leads to a substantial improvement on SRC. The experi-
ments results on AR, FERET and FRGC databases validate
that, if the proposed prototype plus variation representa-
tion model is applied, sparse coding plays a crucial role in
face recognition, and performs well even when the dictio-
nary bases are collected under uncontrolled conditions and
only a single sample per classes is available.

1. Introduction
The sparse representation-based classification (SRC) al-

gorithm for face recognition was introduced by Wright et
al. in a highly-cited papers [15]. The key idea of that pa-

per is a judicious choice of dictionary: representing the test

image as a sparse linear combination of the the training im-

ages themselves. Motivated by the conditional equivalence

of the sparsity measured by �0 norm and �1 norm [4], the

efficient �1-minimization technique was applied to find the

sparsest coding vector. Finally, the test sample is classified

by checking which class yields minimum representation er-

ror.

The success of SRC has largely boosted the research of

sparsity based face recognition. Huang et al. introduced

a transformation-invariant SRC for face recognition [5].

Zhou et al. combined SRC with markov random fields to

recognize the disguise face with large contiguous occlusion

[20]. Wagner et al. extended the SRC framework to simul-

taneously handle the mis-alignement, pose and illumination

invariant recognition problem [12]. Based on the sparsity

assumption, Zhang et al. applied the sparse coding to joint-

ly address blind image restoration and blurred face recogni-

tion [18]. Yang et al. introduced a discriminative dictionary

learning method to improve the accuracy and efficiency of

face recognition [17].

Despite its simplicity and effectiveness, SRC has often

been criticized for being excessively sensitivity on the qual-

ity and quantity of training samples, as stated in the review

paper [14] by Wright et al.

The sparse representation based face recognition

assumes that the training images have been care-

fully controlled and that the number of samples

per class is sufficiently large. Outside these op-

erating conditions, it should not be expected to

perform well. [14]

It is the purpose of this paper to challenge the common

view that the sparsity based face recognition is inadequate

with the uncontrolled training samples. The inferior per-

formance of SRC can properly be traced to the training

samples based dictionary that do not distinguish the class-

specific prototype and the intra-class variation. It is shown

in this paper that a simple variant of SRC, which represents

the test sample as a sparse linear combination of the class

centroid and the differences to the class centroid, leads to

an enormous improvement under the uncontrolled training

conditions. The added complexity of the algorithm is triv-

ial. Our experimental results on the AR, FERET, and FRGC

databases validate that, if the proposed prototype plus vari-

ation representation model is applied, sparse coding plays

a crucial role in face recognition, and performs well even

when the dictionary bases are collected under uncontrolled

conditions and only a single sample per classes is available.

2. The Debates on SRC
Denote the training samples of all k classes as the ma-

trix A = [A1, A2, . . . , Ak] ∈ R
d×n, where the sub-matrix

Ai ∈ R
d×ni stacks the training samples of class i. Then, the
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linear representation of a testing sample y can be rewritten

as

y = Ax0 + z (1)

where x0 is a sparse vector whose entries are zeros except

those associated with the ith class, and z ∈ R
d is a noise

term with bounded energy ‖z‖2 < ε. The theory of com-

pressed sensing reveals that if the solution of x0 is sparse

enough, it can be recovered efficiently by the following �1-

minimization problem [4]:

x̂1 = argmin
x
‖Ax− y‖22 + λ‖x‖1 (2)

where λ is a trade-off parameter between sparsity and re-

construction. Ideally, the nonzero entries in the estimate x̂1

will all be associated with the column of A from a single

class.

2.1. Is the �1-norm sparsity useful?

A recent paper of Shi et al. [11] suggested that the �1 nor-

m regularization is not useful for face recognition, and the

computational �1-minimization problem can be simplified

to the well-established least-square approximation problem

min
x
‖Ax− y‖22 (3)

where the objective is the sum of the squares of residuals.

The solution to this problem is given by the so-called nor-

mal equations

ATAx = AT y (4)

If the columns of A are independent, the least-square ap-

proximation problem has the unique solution

x2 = (ATA)−1AT y (5)

In [11], the experimental results on EYB and AR

databases showed that a simple �2 approach by (5) is signifi-

cantly more accurate than SRC, and thus concluded that the

�1-norm regularization did not deliver the robust or perfor-

mance desired. However, Wright et al. [15] clarified that the

comparison is unfair for SRC: the �2 approach was based

on the matrix A of 19800-dimensional measurements (i.e.

the original image), but SRC relied on a reduced matrix A
of 300-dimensional measurements (derived by random pro-

jections) for the �1-minimization. When the two methods

are compared on a fair footing with the same number of

observation dimensions, the usefulness of �1-minimization

become apparent.

It should be noted that the robustness of �1-minimization

is empirically justified only in the cases when the training

images have been carefully controlled [15]. Once the train-

ing images contain contaminant, the low-dimensional linear

models assumption of SRC would easily break down. As

evidence, in Section 5 of [11] the training images in A are

randomly selected from the AR database regardless of their

nature, the simple �2 approach indeed outperform SRC. The

experiments in [2] also found that SRC tended to recognize

test images to the class with the same type of corruption.

Low-rank matrix recovery technique was applied to recover

the clean training images [2][6], but the performance im-

provement is limited.

2.2. Is the �1-norm sparsity crucial?

The discussion between Shi et al. [11] and Wright et al.
[13] clarified that imposing the �1-norm sparsity is useful

for face recognition, but did not confirm its necessity: Can

the �1-regularization be replaced by other types of regular-

ization? Recently, Zhang et al. [19] propose to replace the

�1-norm regularization of SRC with the �2-norm regular-

ization, which results in a (convex) quadratic optimization

problem:

x̂2 = argmin
x
‖Ax− y‖22 + λ‖x‖22 (6)

where the parameter λ is chosen by the user to give the right

trade-off between making the square error ‖Ax−y‖22 small,

while keeping the �2-norm ‖x‖22 not too big. This regular-

ized least-norm problem has the analytical solution

x̂2 = (ATA+ λI)−1AT y (7)

Since ATA + λI � 0 for any λ > 0, the regularized least-

squares solutions requires no rank (or dimension) assump-

tions on matrix A. In an estimation setting, the regulariza-

tion term penalizing large ‖x‖22 can be interpreted as our

prior knowledge that ‖x‖22 is not too large.

The controlled experiments on EYB and AR databases

[19] first reduced the dimensionality to O(102) by PCA

such that the linear equation Ax = y become underdeter-

mined. Under the underdetermined condition, �1-norm and

�2-norm regularizations were fairly compared, and the re-

sults showed that the �2-regularized method, called collab-

orative representation based classification (CRC), had very

competitive face recognition accuracy to the �2-regularized

method (SRC), but with much lower complexity. Based on

their results, the sparsity based face recognition seems to be

useful, but not necessary.

As suggested in [19], if over-complete dictionaries are

available for representing each class, the sparse solution by

�1-norm regularization is arguably more discriminative than

the dense solution of �2-norm. It is possible that the sam-

ple size per class used in [19] is still not enough to directly

ensemble a over-complete dictionary for the face recogni-

tion problem. Wagner et al. [12] have proposed a system

to collect sufficient samples for SRC, but it is still difficult

for most real-world applications to acquire such number of

samples. How to design an over-complete dictionary with

limited sample size per class is an essential problem for s-

parsity based face recognition.
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3. Prototype plus Variation Model and Algo-
rithm

The previous studies in [11][13][19] have revealed the

limitations of sparsity based recognition when the training

images are corrupted and the number of samples per class is

insufficient. This section introduces a prototype plus varia-

tion (P+V) model and a corresponding sparsity based clas-

sification algorithm to address these limitations of SRC.

3.1. Signal = Prototype + Variation

We assume that the observed signal is a superposition

of two different sub-signals yp, yv and noise z (i.e. y =
yp + yv + z). We further assume that yp is sparsely gen-

erated using the model with a prototype dictionary (ma-

trix) P = [P1, P2, . . . , Pk] ∈ R
d×m, where the sub-matrix

Pi ∈ R
d×mi stacks the mi prototypical bases of class i.

Similarly, yv is sparsely generated using the model with a

variation dictionary (matrix) V ∈ R
d×q represents the u-

niversal intra-class variant bases, such as the unbalanced

lighting changes, exaggerated expressions, or occlusions

that cannot be modelled by the small dense noise z. Then,

the linear representation of a testing sample y can be rewrit-

ten as

y = Pα0 + V β0 + z (8)

where we assume that the samples from the class i are

formed by taking the same sparse linear combination α0

with nonzero elements corresponding to Pi, but a differen-

t variation term β0 that represents the style of this face: it

describes systematic contribution to the image from uncon-

trolled viewing conditions. Note that β0 differs for each

view condition and so it tells us nothing about identity. If

the number of classes k is reasonably large, the combination

coefficients in α0 is naturally sparse. If there are redundant

and overcomplete facial variant bases in V , the combination

coefficients in β0 are naturally sparse. Hence, the sparse

representation α0 and β0 can be recovered simultaneously

by �1-minimization.

In general, P+V model has two advantages over the tra-

ditional sparse model in (3):

• P+V model improves the robustness against the con-

taminative training samples. By separating the image

contaminations to the variation matrix that is shared by

all classes, the class-specific prototypes would become

clean and natural, and thus the classification would not

be deteriorated by the corrupted training sample.

• P+V model requires less samples per class to construct

an over-complete dictionary. As the variation matrix is

shared by all classes, the dictionary size of the class i
is expanded from mi to mi + q. Once q is sufficiently

large, the overcomplete dictionary for each class can

be readily constructed.

(a)

(b)

Figure 1. The illustrative examples of the prototype plus variation

(P+V) model. (a) the randomly selected training images from AR

database. (b) the first column contains the “prototypes” derived by

averaging the images of the same subject, and the rest columns are

the “sample-to-centroid” variation images.

3.2. A Superposed SRC Algorithm

To show the strength of the P+V model, we propose a

very simple classification algorithm according to this mod-

el and demonstrate its effectiveness on face recognition un-

der uncontrolled training conditions. Given a data set with

multiple images per subject, the ni samples of subject i, s-

tacked as vectors, form a matrix Ai ∈ R
d×ni ,i = 1, . . . , k,∑k

i=1 ni = n. The prototype matrix can be represented as

follows

P = [c1, . . . , ci, . . . , ck] ∈ R
d×k (9)

where ci =
1
ni
Aiei is the geometric centroid of class i, and

ei = [1, . . . , 1]T ∈ R
ni×1. As the prototypes are repre-

sented by class centroids, the variation matrix is naturally

constructed by the sample based difference to the centroids

as follows:

V = [A1 − c1e
T
1 , . . . , Ak − cke

T
k ] ∈ R

d×n (10)

where ci is the class centroid of class i. Fig. 1 illustrates

an typical examples of the prototype and variation matrices.

When number of samples per class is insufficient, and in

particular when only a single sample per class is available,

the intra-class variation matrix would become collapsed. To

address this difficult, one can acquire the variant bases from

the generic subjects outside the gallery, as the P+V model

has assumed that the intra-class variations of different sub-

jects are sharable.

Based on the P+V model in (8), we further propose

an Superposed Sparse Representation-based Classification
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(SSRC) which casts the recognition problem as finding a

sparse representation of the test image in term of a super-

position of the class centroids as and the intra-class differ-

ences. The nonzero coefficients are expected to concentrate

on the centroid of the same class as the test sample and on

the related intra-class differences.

Algorithm 1. Superposed Sparse Representation
based Classification (SSRC)

1: Input: a matrix of training samples A =
[A1, A2, . . . , Ak] ∈ R

d×n for k classes, and an reg-

ularization parameter λ > 0. Compute the prototype

matrix P according to (9), and the variation matrix V
according to (10). When the sample size per class is

insufficient, the matrix V can be computed from a set

of generic samples outside the gallery.

2: Derive the projection matrix Φ ∈ R
d×p by applying

PCA on the training samples A, and project the proto-

type and variation matrices to the p-dimensional space.

P ← ΦTP, V ← ΦTV (11)

3: Normalize the columns of P and V to have unit �2-

norm, and solve the �1-minimization problem

[
α̂1

β̂1

]
= argmin

∥∥∥∥[P, V ]

[
α
β

]
− y

∥∥∥∥
2

2

+λ

∥∥∥∥
[

α
β

]∥∥∥∥
1
,

(12)

where α, α̂ ∈ R
k, β, β̂ ∈ R

n.

4: Compute the residuals

ri(y) =

∥∥∥∥y − [P, V ]

[
δi(α̂1)

β̂1

]∥∥∥∥
2

, (13)

for i = 1, . . . , k, where δi(α̂1) ∈ R
n is a new vector

whose only nonzero entries are the entries in α̂1 that

are associated with class i.

5: Output: Identity(y) = argmini ri(y).

3.3. Related Works and Discussions

There are several previous methods that aim to improve

the robustness of SRC by appending additional bases to the

conventional dictionary of training images. Wright et al.
addressed the disguise problem by adding a complete set

of single-pixel based bases to the dictionary of SRC [15].

Yang and Zhang [16] used the Gabor features for SRC with

a learned Gabor occlusion dictionary to reduce the compu-

tational cost. Deng et al. introduced Extended SRC (ES-

RC) method to address the undersampled problem of SRC

by representing the typical facial variations in an additional

dictionary [3]. These methods are effective to improve the

robustness against the corruption of the test images, but they

are still sensitive to the corruption of the training images.

Table 1. Comparative recognition rates of SSRC and other recog-

nition methods. The results of the first five rows are cited from

[11] under identical experimental settings.

Algorithms Dictionary Size Accuracy

�2[11] 19800×1300 95.89±2.35%

Nearest Subspace 19800×1300 92.34±4.16%

Random OMP 300×1300 84.85±3.43%

Hash OMP 300×1300 86.92±3.44%

SRC 300×1300 93.12±2.94%

SRC 300×1300 92.82±0.95%

ESRC 300×2600 96.88±0.71%

SSRC 300×1400 98.31±0.44%

SRC 19800×1300 93.75±1.01%

ESRC 19800×2600 97.36±0.59%

SSRC 19800×1400 98.58±0.40%

The proposed P+V model and the corresponding SSRC

algorithm, for the first time, design the dictionary by the de-

composition of the training samples into the separated part-

s of prototypes and variations. Therefore, the P+V model

based classification is expected to be robust against the cor-

ruption of both the training and test images. A recent work

of Chen et al. [2] also aimed to address the training corrup-

tion problem, but they only filtered out the corruption by

low-rank and sparse decomposition, without any concern of

the typical intra-class variations in the dictionary setting.

4. Experimental Study
This section presents experiments on publicly available

databases to demonstrate the efficacy of the proposed SS-

RC. For fair comparisons, SRC [15], ESRC [3], and SS-

RC use the Homotopy1 method [8][4] to solve the �1-

minimization problem with the regularization parameter

λ = 0.005 and identical parameters, so that the perfor-

mance difference will be solely induced by the different

choice of dictionary.

4.1. Recognition with Uncontrolled Training Set

The AR database consists of over 3,000 frontal images

of 126 individuals. There are 26 images of each individu-

al, taken at two different occasions [7]. The faces in AR

contain variations such as illumination change, expressions

and facial disguises (i.e. sun glasses or scarf). We random-

ly selected 100 subjects (50 male and 50 female) for our

experiments, and the images are cropped with dimension

165×120.

The first experiment is a reproduction of that in the sec-

1This optimization method had acceptable accuracy and fastest speed

on the comparative study in [19], and its source code was downloaded at

http://www.users.ece.gatech.edu/˜sasif/homotopy/
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tion 5 of [11]. Specifically, for each subject, the 26 images

are randomly permuted and then the first half is taken for

training and the rest for testing. In this way, we have 1300

training images and 1300 test images. For statistical stabil-

ity, 10 different training and test set pairs are generated by

randomly permuting, and averaged accuracy and standard

deviation are reported.

We first evaluate SRC in the both 300 dimensional

eigenspace and the 19800 dimensional image space. SR-

C obtains a better recognition rate of 93.75% on the full

image dimension, which is compared to a 95.89% recogni-

tion rate obtained with basic �2 approach [11]. As suggest-

ed by Wright et al. [13], SRC performs worse because the

randomly selected training set contains corruption images

occlusion that would break the sparsity assumption.

However, one should not deny the the usefulness of the

sparsity based recognition according to the above result-

s, as we find that the discrimination power of sparse rep-
resentation relies heavily on the suitable choice of dictio-
nary. Specifically, we fairly compare SRC, ESRC, and SS-

RC in both the 300 dimensional eigenspace and the 19800

dimensional image space. The comparative results are re-

ported in Table 1. By simply re-designing the dictionary

by the P+V model, the SSRC dramatically boost the spar-

sity based recognition accuracy to over 98%. The ESR-

C method, which appends an intra-class dictionary to the

training samples, also increases the accuracy to about 97%,

but using a much larger dictionary of 2600 bases. Clearly,

sparsity based classification can outperform the �2 approach

even using drastically lower dimensional features.

The second experiment is a reproduction of that in [2]

which specifically evaluates the robustness of the sparsity

based face recognition by considering the following three

scenarios of corrupted training images as follows:

• Sunglasses: Seven neutral images plus one randomly

chosen image with sunglasses at session 1 are select-

ed for training, and the remaining neutral images (all

from session 2) plus the rest of the images with sun-

glasses (two taken at session 1 and three at session 2)

for testing. In total, there are 8 training images and 12

test images per person.

• Scarf : Seven neutral images plus one randomly chosen

image with scarf at session 1 are selected for training,

and the remaining neutral images (all from session 2)

plus the rest of the images with sunglasses (two taken

at session 1 and three at session 2) for testing. In to-

tal, there are 8 training images and 12 test images per

person.

• Sunglasses+Scarf : Seven neutral images and two cor-

rupted images (one with sunglasses and the other with

scarf) at session 1 are selected for training. In total,
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Figure 2. The comparative recognition rates between SRC and SS-

RC on the AR data set with different kinds of corrupted training

images.

there are 9 training images and 17 test images (seven

neutral images at session 2 plus the remaining ten oc-

cluded images) are available for this case.

We vary the dimension of the eigenspace from 20 to 500,

and compare the recognition performance of between SRC

and SSRC. Each scenario is repeated three times, and the

averaged performance is reported. Fig. 2 shows the com-

parative recognition rates between SRC and SSRC on the

AR data set with different kinds of corrupted training im-

ages, and one can see from the figure that SSRC outper-

forms SRC by a margin about 6% to 12%, depending on the

percentage of occlusion. Specifically, SRC performs bet-

ter on the sunglasses scenario (about 84% accuracy with

20% occlusion) than the scarf scenario (about 80% accura-

cy with 40% occlusion), followed by the sunglasses+scarf

scenario (about 78% accuracy). The performance of SR-

C deteriorates when the percentage of occlusion involved

in the training images increases, and this is an observation

consistent with the common criticism on SRC with uncon-

trolled training images [14]. In contrast, The accuracy of

SSRC reaches about 90% in all the three scenarios. Besides

the boosted accuracy, SSRC displays the stability against

various kinds of corruption in the training images.

Table 2 summarizes the performance comparisons a-

mong different approaches under three different scenarios.

The average accuracies of the first five methods are cited

from [2], of which the best-performed method, denoted as

LR+SI+SRC, applied low-rank matrix recovery with struc-

tural incoherence to filter out the corruption of the train-

ing images. LR+SI+SRC method achieves very competitive

performance when the dimension is as low as 100, since it

use only the low-rank components of the training images

for recognition. However, as the dimension increasing, L-

R+SI+SRC cannot capture more information for recogni-

tion, and thus becomes significantly worse than SSRC when

401401403



Table 2. Comparative recognition rates of SSRC and other recognition methods. The results of the first five rows are cited from [2] under

identical experimental settings.

Methods

Dimension=500 Dimension=100

Sunglasses Scarf
Sunglasses

Sunglasses Scarf
Sunglasses

+Scarf +Scarf

Fisherfaces – – – 72.50 57.67 61.80

NN 66.47 56.53 57.55 65.06 54.56 55.41

LLC+SRC [1] 84.47 76.61 79.03 79.14 70.08 72.04

SRC 84.22 76.25 78.00 79.92 71.70 71.59

LR+SI+SRC [2] 85.42 84.36 81.62 85.27 81.67 81.37
SRC 84.50±0.58 80.17±0.46 78.55±0.69 77.81±0.34 73.44±0.42 70.63±1.62

ESRC 89.33±0.65 87.31±0.71 85.65±0.66 82.28±0.65 78.92±0.68 77.29±0.69

SSRC 90.89±0.24 90.89±0.59 89.98±0.39 84.75±0.17 84.50±0.58 79.61±0.59

(a)

(b)

Figure 3. (a) The cropped images of some gallery images and cor-

responding probe images in the FERET database. (b) Example

images of the differences to the class centroid computed from the

FRGC version 2 database.

the dimension is equal to 500.

4.2. Recognition with Uncontrolled and Overcom-
plete Dictionary

This experiment is designed to test the robustness of SS-

RC against complex facial variation in the real-world appli-

cations. The experiment follows the standard data partitions

of the FERET database [10] and :

• Gallery training set contains 1,196 images of 1,196

people.

• fb probe set contains 1,195 images taken with an alter-

native facial expression.

• fc probe set contains 194 images taken under different

lighting conditions.

• dup1 probe set contains 722 images taken in a different

time.

• dup2 probe set contains 234 images taken at least a

year later, which is a subset of the dup1 set.

The images are first normalized by a similarity transforma-

tion that sets the centered inter-eye line horizontal and 70

pixel apart, and then cropped to the size of 128×128 with

the centers of the eyes located at (29, 34) and (99, 34) to ex-

tract the pure face region. No further preprocessing proce-

dure is carried out in our experiments, and Fig. 3(a) shows

some cropped images which are used in our experiments.

Note that the images of FERET database has complex intra-

class variability, since they are acquired in multiple sessions

during several years.

As there is only a single sample per gallery class, we

construct the intra-class variation matrix from the standard

training image set of the FRGC Version 2 database [9],

which contains 12,766 frontal images of 222 people tak-

en in the uncontrolled conditions. Fig. 3(b) shows some

intra-class differences computed by (10) from this image

set. Note that the collection of the FRGC database is total-

ly independent from the FERET database. Hence, in this

experiment, the variation matrix is required to universally

represent the complex facial variations under uncontrolled

conditions.

For comprehensive results, we also extract the Gabor

feature and the LBP feature for classification besides the

pixel intensity. For each feature, we test the recognition

performance in the reduced PCA dimension of 125, 250,

and 1000 respectively. In total, there are 36 test cases

(4 probes×3 features×3 dimensions) and Table 3 lists the

comparative performance between SRC and SSRC in all

cases. Further, we define a Error Reduction Rate (ERR),

denoted by a notion ↓, to characterize the proportion of the

402402404



Table 3. Comparative recognition rates of SRC and SSRC on FERET Database. The notation ↓ indicates the percentage of the recognition

errors that are reduced by switching from SRC to SSRC.

Features Methods
Dimension=1000 Dimension=250 Dimension=125

fb fc dup1 dup2 fb fc dup1 dup2 fb fc dup1 dup2

Intensity

SRC 85.2 76.3 63.9 57.3 84.3 75.8 62.5 53.0 80.7 64.9 57.8 46.6

SSRC 87.9 91.8 68.6 67.5 88.3 87.1 65.2 61.5 85.6 80.9 61.6 56.4

↓18% ↓65% ↓13% ↓24% ↓25% ↓47% ↓7% ↓18% ↓25% ↓46% ↓9% ↓18%

Gabor

SRC 93.0 97.4 73.0 78.6 88.6 94.3 63.6 70.5 83.5 90.2 53.5 61.5

SSRC 96.7 99.5 80.7 85.5 93.2 96.4 68.6 76.9 89.0 94.3 57.6 67.9

↓53% ↓81% ↓29% ↓32% ↓40% ↓37% ↓14% ↓22% ↓33% ↓42% ↓9% ↓17%

LBP

SRC 96.9 93.8 87.7 85.0 95.1 86.1 83.4 77.4 91.5 68.0 76.5 68.8

SSRC 98.0 99.5 90.6 90.2 96.7 93.8 85.7 80.8 94.6 83.5 79.5 74.8

↓35% ↓92% ↓24% ↓35% ↓33% ↓55% ↓14% ↓15% ↓36% ↓48% ↓13% ↓19%

errors reduced by switching SRC to SSRC. For instance,

since the 1000 dimensional LBP-PCA feature based SSR-

C improves the accuracy from 85.0% to 90.2% on the fc

probe set, the ERR is ↓35% (=100×(15.0-9.8)/15.0), sug-

gesting that 35% recognition errors can be avoided by using

SSRC instead of SRC.

Although the variation matrix is constructed from the

FRGC database, SSRC improve the recognition rates on

the FERET database in all the 36 test cases, indicating

that the intra-class variability of face is sharable even when

the generic data are collected from different conditions and

camera set-ups. In addition, in term of the ERR, perfor-

mance enhancement by replacing SRC with SSRC is no-

table on in all test cases. These results suggest that the

P+V model is feasible for various feature representations,

and thus it can be integrated with more informative features

to address uncontrolled face recognition problem. For in-

stance, LBP feature based SSRC achieves over 90% accu-

racy on all the four probe sets.

It should be mentioned that similar experimental results

has been reported on ESRC method [3], but its intra-class

variant dictionary are constructed from the generic training

set of FERET database. There may be some implicit cor-

relation, or even overlap, between the generic training set

and the test sets of the FERET database. Therefore, the re-

sults of Deng et al. may not be feasible on the real-world

applications. In contrast, our experiment, for the first time,
justifies the effectiveness of the sparsity based face recogni-
tion when the dictionary bases are collected from the uncon-
trolled conditions that are independent from the test condi-
tion.

4.3. �1-norm versus �2-norm regularization with
Over-complete Dictionary

Based on the results on the FERET database, we further

investigate the role of sparsity in face recognition with an

uncontrolled and over-complete dictionary. In particular we

evaluate whether the �1-norm regularization of SSRC can be

replaced by the �2-norm that is much more computationally

efficient. For this purpose, we replace the �1 norm regular-

ization in (14) with the the �2 norm as follows.

[
α̂2

β̂2

]
= argmin

∥∥∥∥[P, V ]

[
α
β

]
− y

∥∥∥∥
2

2

+ λ

∥∥∥∥
[

α
β

]∥∥∥∥
2

2

,

(14)

Then test the performance of the �2-regularized minimiza-

tion by increasing the parameter λ from 0.000001 to 100.

The comparative results on the varying dimensional P-

CA space are shown in Fig. 4. When the value of λ is

relatively large in the range of [0.1, 10], �2-norm regular-

ization obtain its optimal performance. However, the op-

timal performance of �2-norm regularization is significant-

ly lower than that of SSRC (�1-norm regularization) tested

with limited number of λ = {0.0005, 0.005, 0.01}. The

superiority of SSRC seems more apparent on the dup1 and

dup2 set. Additionally, the Homotopy used in our experi-

ments is far from the optimal solver of �1-minimization, the

performance of SSRC might be further improved by more

accurate solvers. This implies that �1-norm indeed play a

crucial role in face recognition given an uncontrolled and

over-complete dictionary.

It should be mentioned that our observation on �1-norm

sparsity is different from that by Zhang et al. [19]. Indeed,

both observations are valid, but under different dictionary

settings. Zhang et al. directly ensemble the controlled train-

ing samples themselves to construct an under-complete dic-

tionary, and thus both �1-norm and �2 norm regularization

can provides reasonable results. The dictionary of SSRC

contains an over-complete set of intra-class variation bases,

and most of which are irrelevant to the test sample. The

dense combination of the irrelevant bases would mislead

the classification, and thus the �1-minimization technique is

more desirable than �2 to select a small number of relevant

bases from an over-complete set of bases.
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Figure 4. The recognition rates of SSRC with �1-regularization (plotted by thick symbols) and �2-regularization (plotted by the thin

symbols) as a function of the value of λ.

5. Conclusions

It has been shown in this paper that a simple separation

between the prototype and variation components leads to an

enormous improvement on sparsity based face recognition

under uncontrolled training conditions. The proposed SSR-

C algorithm performs best in several experiments on which

SRC was previously criticized to perform poorly. The added

complexity of the algorithm is trivial. In particular when

only a single sample per class is available, �1-norm regular-

ization based sparse coding the algorithms accurately find

out the intra-class variation bases from an over-complete

dictionary that is constructed from uncontrolled generic im-

ages outside the gallery. Our preliminary results suggest

that the proposed prototype plus variation model provides a

widely applicable framework to address uncontrolled face

recognition problem.
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