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Abstract

Training a generic objectness measure to produce a
small set of candidate object windows, has been shown
to speed up the classical sliding window object detection
paradigm. We observe that generic objects with well-
defined closed boundary, share surprisingly strong corre-
lation in normed gradients space, when resizing their cor-
responding image windows into a small fixed size. Based
on this observation and computational reasons, we propose
to resize an image window to 8 × 8 and use the normed
gradients as a simple 64D feature to describe it, for ex-
plicitly training a generic objectness measure. We further
show how the binarized version of this feature, namely bi-
narized normed gradients (BING), can be used for efficient
objectness estimation, which requires only a few atomic op-
erations (e.g. ADD, BITWISE SHIFT, etc.). Experiments on
the challenging PASCAL VOC 2007 dataset show that our
method efficiently (300fps on a single laptop CPU) gener-
ates a small set of category-independent, high quality object
windows, yielding 96.2% object detection rate (DR) with
1,000 proposals. With increase of the numbers of proposals
and color spaces for computing BING features, our perfor-
mance can be further improved to 99.5% DR.

1. Introduction

As one of the most important areas in computer vi-
sion, object detection has made great strides in recent years.
However, most state-of-the-art detectors still require each
category specific classifiers to evaluate many image win-
dows in a sliding window fashion [16, 24]. In order to re-
duce the number of windows each classifier needs to con-
sider, training an objectness measure which is generic over
categories has recently becomes popular [2,3,20,21,45,46,
54]. Objectness is usually represented as a value which re-
flects how likely an image window covers an object of any
category [3]. A generic objectness measure has great po-
tential to be used in a pre-filtering process to significantly
improve: i) the computational efficiency by reducing the
search space, and ii) the detection accuracy by allowing the
usage of strong classifiers during testing. However, design-

ing a good generic objectness measure method is difficult,
which should:

• achieve high object detection rate (DR), as any unde-
tected objects at this stage cannot be recovered later;
• produce small number of proposals for reducing

computational time of subsequent detectors;
• obtain high computational efficiency so that the

method can be easily involved in various applications,
especially for realtime and large-scale applications;
• have good generalization ability to unseen object cat-

egories, so that the proposals can be reused by many
category specific detectors to greatly reduce the com-
putation for each of them.

To the best of our knowledge, no prior method can satisfy
all these ambitious goals simultaneously.

Research from cognitive psychology [44, 51] and neuro-
biology [19,37] suggest that humans have a strong ability to
perceive objects before identifying them. Based on the hu-
man reaction time that is observed and the biological signal
transmission time that is estimated, human attention the-
ories hypothesize that the human vision system processes
only parts of an image in detail, while leaving others nearly
unprocessed. This further suggests that before identifying
objects, there are simple mechanisms in the human vision
system to select possible object locations.

In this paper, we propose a surprisingly simple and pow-
erful feature “BING” to help the search for objects using
objectness scores. Our work is motivated by the things-
versus-stuff distinction [3,25,31]: as opposed to amorphous
background stuff, objects are stand-alone things with well-
defined closed boundaries and centers. We observe that
generic objects with well-defined closed boundaries share
surprisingly strong correlation in the normed gradient space
(see Fig. 1 and Sec. 3), after resizing of their corresponding
image windows to small fixed size (e.g. 8 × 8). Therefore,
in order to efficiently quantify the objectness of an image
window, we resize it to 8× 8 and use the normed gradients
as a simple 64D feature for learning a generic objectness
measure in a cascaded SVM framework. We further show
how the binarized version of the NG feature, namely bi-
narized normed gradients (BING) feature, can be used for
efficient objectness estimation of image windows, which re-
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quires only a few atomic CPU operations (i.e. ADD, BIT-
WISE SHIFT, etc.). The BING feature’s simplicity, con-
trast with recent state of the art techniques [3,21,45] which
seek increasingly sophisticated features to obtain greater
discrimination, while using advanced speed up techniques
to make the computational time tractable.

We have extensively evaluated our method on the PAS-
CAL VOC2007 dataset [22]. The experimental results show
that our method efficiently (300fps on a single laptop CPU)
generates a small set of data-driven, category-independent,
high quality object windows, yielding 96.2% detection rate
(DR) with 1,000 windows (≈ 0.2% of full sliding win-
dows). With increase of the number of object windows to
5,000, and estimating objectness in 3 different color spaces,
our method can achieve 99.5% DR. Following [3, 21, 45],
we also verify the generalization ability of our method.
When training our objectness measure on 6 object cate-
gories and testing on other 14 unseen categories, we ob-
served similar high performance as in standard settings (see
Fig. 3). Compared to most popular alternatives [3, 21, 45],
the BING features allow us to achieves better DR using a
smaller set of proposals, is much simpler and 1000+ times
faster, while being able to predict unseen categories. This
fulfills afore mentioned requirements of a good objectness
detector. Our source code will be published with the paper.

2. Related works
Being able to perceive objects before identifying them is

closely related to bottom up visual attention (saliency). Ac-
cording to how saliency is defined, we broadly classify the
related research into three categories: fixation prediction,
salient object detection, and objectness proposal generation.

Fixation prediction models aim at predicting saliency
points of human eye movement [4, 36]. Inspired by neu-
robiology research about early primate visual system, Itti
et al. [35] proposed one of the first computational models
for saliency detection, which estimates center-surrounded
difference across multi-scale image features. Ma and
Zhang [40] proposed a fuzzy growing model to analyze
local contrast based saliency. Harel et al. [28] proposed
normalizing center-surrounded feature maps for highlight-
ing conspicuous parts. Although fixation point prediction
models have achieved remarkable development, the predic-
tion results tends to highlight edges and corners rather than
the entire objects. Thus, these models are not suitable for
generating object proposals for detection purpose.

Salient object detection models try to detect the most
salient and attention-grabbing object in a scene, and then
segment the whole extent of that object [5]. Liu et al.
[39] combined local, regional, and global saliency measure-
ments in a CRF framework and derived a binary segmenta-
tion. Achanta et al. [1] localized salient regions using a

frequency-tuned approach. Cheng et al. [10, 13] proposed
a salient object detection and segmentation method based
on region contrast analysis and iterative graph based seg-
mentation. More recent research also tried to produce high
quality saliency maps in a filtering based framework [43],
using efficient data representation [11], or consider hierar-
chical structures [52]. Such salient object segmentation for
simple images achieved great success in image scene anal-
ysis [14,55], content aware image editing [12,53,57], and it
can be used as a cheap tool to process large number of Inter-
net images or build robust applications [7,8,15,30,33,34] by
automatically selecting good results [9,10]. However, these
approaches are less likely to work for complicated images
where many objects are presented and they are rarely dom-
inant (e.g. VOC [22]).

Objectness proposal generation methods avoid making
decisions early on, by proposing a small number (e.g.
1,000) of category-independent proposals, that are expected
to cover all objects in an image [3,21,45]. Producing rough
segmentations [6,20] as object proposals has been shown to
be an effective way of reducing search spaces for category-
specific classifiers, whilst allowing the usage of strong clas-
sifiers to improve accuracy. However, these two methods
are computationally expensive, requiring 2-7 minutes per
image. Alexe et al. [3] proposed a cue integration approach
to get better prediction performance more efficiently. Zhang
et al. [54] proposed a cascaded ranking SVM approach with
orientated gradient feature for efficient proposal generation.
Uijlings et al. [45] proposed a selective search approach to
get higher prediction performance. We propose a simple
and intuitive method which generally achieves better de-
tection performance than others, and is 1,000+ times faster
than most popular alternatives [3, 21, 45] (see Sec. 4).

In addition, for efficient sliding window object detec-
tion, keeping the computational cost feasible is very im-
portant [41, 48]. Lampert et al. [38] presented an elegant
branch-and-bound scheme for detection. However, it can
only be used to speed up classifiers that users can provide
a good bound on highest score. Also, some other efficient
classifiers [16] and approximate kernels [41, 48] have been
proposed. These methods aim to reduce computational cost
of evaluating one window, and naturally can be combined
with objectness proposal methods to further reduce the cost.

3. Methodology
Inspired by the ability of human vision system which ef-

ficiently perceives objects before identifying them [19, 37,
44, 51], we introduce a simple 64D normed gradients (NG)
feature (Sec. 3.1), as well as its binary approximation, i.e.
binarized normed gradients (BING) feature (Sec. 3.3), for
efficiently capturing the objectness of an image window.

To find generic objects within an image, we scan over



various quantized sizes (scales and aspect ratios1). Each
window is scored with a linear model w ∈ R64 (Sec. 3.2),

sl = 〈w,gl〉, (1)

l = (i, x, y), (2)

where sl, gl, l, i and (x, y) are filter score, NG feature,
location, size and position of a window respectively. Us-
ing non-maximal suppression (NMS), we select a small set
of proposals from each size i. Some sizes (e.g. 10 × 500)
are less likely than others to contain an object instance (e.g.
100 × 100). Thus we define the objectness score (i.e. cali-
brated filter score) as

ol = vi · sl + ti, (3)

where vi, ti ∈ R are sperately learnt coefficient and a bias
terms for each quantised size i (Sec. 3.2). Note that cali-
bration using (3), although very fast, is only required when
re-ranking the small set of final proposals.

3.1. Normed gradients (NG) and objectness

Objects are stand-alone things with well-defined closed
boundaries and centers [3, 25, 31]. When resizing windows
corresponding to real world objects to a small fixed size
(e.g. 8 × 8, chosen for computational reasons that will be
explained in Sec. 3.3), the norm (i.e. magnitude) of the
corresponding image gradients shows a strong correlation,
because of the little variation that closed boundaries could
present in such abstracted view. As demonstrated in Fig.
1, although the cruise ship and the person have huge differ-
ence in terms of color, shape, texture, illumination etc., they
do share clear correlation in normed gradient space. To uti-
lize this observation for efficiently predicting the existence
of object instances, we firstly resize the input image to dif-
ferent quantized sizes and calculate the normed gradients of
each resized image. The values in an 8× 8 region of these
resized normed gradients maps are defined as a 64D normed
gradients (NG) feature of its corresponding window.

Our NG feature, as a dense and compact objectness fea-
ture for an image window, has several advantages. Firstly,
no matter how an object changes its position, scale and as-
pect ratio, its corresponding NG feature will remain roughly
unchanged because of the normalized support region of
this feature. In other words, NG features are insensitive
to change of translation, scale and aspect ratio, which will
be very useful for detecting objects of arbitrary categories.
And these insensitivity properties are what a good object-
ness proposal generation method should have. Secondly,
the dense compact representation of the NG feature makes

1In all experiments, we test 36 quantized target window sizes
{(Wo, Ho)}, where Wo, Ho ∈ {10, 20, 40, 80, 160, 320}. We resize
the input image to 36 sizes so that 8 × 8 windows in the resized smaller
images (from which we extract features), correspond to target windows.

...

(a) source image

(b) normed gradients maps

(c) 8× 8 NG features

(d) learned model w ∈ R8×8

Figure 1. Although object (red) and non-object (green) windows
present huge variation in the image space (a), in proper scales and
aspect ratios where they correspond to a small fixed size (b), their
corresponding normed gradients, i.e. a NG feature (c), share strong
correlation. We learn a single 64D linear model (d) for selecting
object proposals based on their NG features.

it very efficient to be calculated and verified, thus having
great potential to be involved in realtime applications.

The cost of introducing such advantages to NG feature is
the loss of discriminative ability. Lucky, the resulted false-
positives will be processed by subsequent category specific
detectors. In Sec. 4, we show that our method results in
a small set of high quality proposals that cover 96.2% true
object windows in the challenging VOC2007 dataset.

3.2. Learning objectness measurement with NG

To learn an objectness measure of image windows, we
follow the general idea of the two stages cascaded SVM [54].

Stage I. We learn a single model w for (1) using linear
SVM [23]. NG features of the ground truth object windows
and random sampled background windows are used as pos-
itive and negative training samples respectively.

Stage II. To learn vi and ti in (3) using a linear SVM [23],
we evaluate (1) at size i for training images and use the
selected (NMS) proposals as training samples, their filter
scores as 1D features, and check their labeling using train-
ing image annotations (see Sec. 4 for evaluation criteria).

Discussion. As illustrated in Fig. 1d, the learned linear
model w (see Sec. 4 for experimental settings), looks sim-
ilar to the multi-size center-surrounded patterns [35] hy-
pothesized as biologically plausible architecture of primates
[26,37,51]. The large weights along the borders of w favor
a boundary that separate an object (center) from its back-
ground (surrounded). Compared to manually designed cen-



Algorithm 1 Binary approximate model w [27].
Input: w, Nw

Output: {βj}Nw
j=1, {aj}Nw

j=1

Initialize residual: ε = w
for j = 1 to Nw do
aj =sign(ε)
βj = 〈aj , ε〉/‖aj‖2 (project ε onto aj)
ε← ε− βjaj (update residual)

end for

ter surround patterns [35], our learned w captures a more
sophisticated, natural prior. For example, lower object re-
gions are more often occluded than upper parts. This is rep-
resented by w placing less confidence in the lower regions.

3.3. Binarized normed gradients (BING)

To make use of recent advantages in model binary ap-
proximation [27, 56], we propose an accelerated version of
NG feature, namely binarized normed gradients (BING), to
speed up the feature extraction and testing process. Our
learned linear model w ∈ R64 can be approximated with a
set of basis vectors w ≈

∑Nw

j=1 βjaj using Alg. 1, where
Nw denotes the number of basis vectors, aj ∈ {−1, 1}64
denotes a basis vector, and βj ∈ R denotes the correspond-
ing coefficient. By further representing each aj using a bi-
nary vector and its complement: aj = a+j − a+j , where
a+j ∈ {0, 1}64, a binarized feature b could be tested using
fast BITWISE AND and BIT COUNT operations (see [27]),

〈w,b〉 ≈
∑Nw

j=1
βj(2〈a+j ,b〉 − |b|). (4)

The key challenge is how to binarize and calculate our
NG features efficiently. We approximate the normed gradi-
ent values (each saved as a BYTE value) using the top Ng

binary bits of the BYTE values. Thus, a 64D NG feature
gl can be approximated by Ng binarized normed gradients
(BING) features as

gl =
∑Ng

k=1
28−kbk,l. (5)

Notice that these BING features have different weights ac-
cording to its corresponding bit position in BYTE values.

Algorithm 2 Get BING features for W ×H positions.
Comments: see Fig. 2 for illustration of variables
Input: binary normed gradient map bW×H

Output: BING feature matrix bW×H

Initialize: bW×H = 0, rW×H = 0
for each position (x, y) in scan-line order do
rx,y = (rx−1,y � 1) | bx,y
bx,y = (bx,y−1 � 8) | rx,y

end for

 

  

bk,i,x,y ∈ {0, 1}8×8

shorthand: bx,y or bk,l

rk,i,x,y ∈ {0, 1}8
shorthand: rx,y or rk,l

bk,i,x,y ∈ {0, 1}
shorthand: bx,y

Figure 2. Illustration of variables: a BING feature bx,y , its last row
rx,y and last element bx,y . Notice that the subscripts i, x, y, l, k,
introduced in (2) and (5), are locations of the whole vector rather
than index of vector element. We can use a single atomic variable
(INT64 and BYTE) to represent a BING feature and its last row,
enabling efficient feature computation (Alg. 2).

Naively getting an 8 × 8 BING feature requires a loop
computing access to 64 positions. By exploring two special
characteristics of an 8× 8 BING feature, we develop a fast
BING feature calculation algorithm (Alg. 2), which enables
using atomic updates (BITWISE SHIFT and BITWISE OR) to
avoid the loop computing. First, a BING feature bx,y and its
last row rx,y could be saved in a single INT64 and a BYTE
variables, respectively. Second, adjacent BING features and
their rows have a simple cumulative relation. As shown in
Fig. 2 and Alg. 2, the operator BITWISE SHIFT shifts rx−1,y

by one bit, automatically through the bit which does not
belong to rx,y , and makes room to insert the new bit bx,y
using the BITWISE OR operator. Similarly BITWISE SHIFT
shifts bx,y−1 by 8 bits automatically through the bits which
do not belong to bx,y , and makes room to insert rx,y .

Our efficient BING feature calculation shares the cu-
mulative nature with the famous integral image represen-
tation [49]. Instead of calculating a single scalar value over
an arbitrary rectangle range [49], our method uses a few
atomic operations (e.g.ADD, BITWISE, etc.) to calculate a
set of binary patterns over an 8× 8 fixed range.

The filter score (1) of an image window corresponding
to BING features bk,l can be efficiently tested using:

sl ≈
∑Nw

j=1
βj

∑Ng

k=1
Cj,k, (6)

whereCj,k = 28−k(2〈a+j ,bk,l〉−|bk,l|) can be tested using
fast BITWISE and POPCNT SSE operators.

Implementation details. We use the 1-D mask [−1, 0, 1]
to find image gradients gx and gy in horizontal and ver-
tical directions, while calculating normed gradients using
min(|gx| + |gy|, 255) and saving them in BYTE values.
By default, we calculate gradients in RGB color space.
In our C++ implementation, POPCNT SSE instructions and
OPENMP options are enabled.



4. Experimental Evaluation
We extensively evaluate our method on VOC2007 [22]

using the DR-#WIN 2 evaluation metric, and compare our
results with 3 state-of-the-art methods3 [3, 45, 54] in terms
of proposal quality, generalize ability, and efficiency. As
demonstrated by [3,45], a small set of coarse locations with
high detection rate (DR) are sufficient for effective object
detection, and it allows expensive features and complemen-
tary cues to be involved in detection to achieve better qual-
ity and higher efficiency than traditional methods. Note that
in all comparisons, we use the authors’ public implementa-
tions4 with their suggested parameter settings.

Proposal quality comparisons. Following [3,45,54], we
evaluate DR-#WIN on VOC2007 test set, which consists
of 4,952 images with bounding box annotation for the ob-
ject instances from 20 categories. The large number of ob-
jects and high variety of categories, viewpoint, scale, po-
sition, occlusion, and illumination, make this dataset very
suitable to our evaluation as we want to find all objects in
the images. Fig. 3 shows the statistical comparison between
our method and state-of-the-art alternatives: OBN [3], SEL
[45], and CSVM [54]. As observed by [45], increasing the
divergence of proposals by collecting the results from dif-
ferent parameter settings would improve the DR at the cost
of increasing the number of proposals (#WIN). SEL [45]
uses 80 different parameters to get combined results and
achieves 99.1% DR using more than 10,000 proposals. Our
method achieves 99.5% DR using only 5,000 proposals by
simply collecting the results from 3 color spaces (BING-
diversified in Fig. 3): RGB, HSV, and GRAY. As shown in
these DR-#WIN statistics, our simple method achieves bet-
ter performance than others, in general, and is more than
three orders of magnitude (i.e. 1,000+ times) faster than
most popular alternatives [3, 21, 45] (see Tab. 1). We illus-
trate sample results with varies complexity in Fig. 4.

Generalize ability test. Following [3], we show that our
objectness proposals are generic over categories by testing
our method on images containing objects whose categories
are not used for training. Specifically, we train our method
using 6 object categories (i.e. bird, car, cow, dog, and sheep)
and test it using the rest 14 categories (i.e. aeroplane, bicy-

2DR-#WIN [3] means detection rate (DR) given #WIN proposals. This
evaluation metric is also used in [21, 45] with slightly different names. An
object is considered as being covered by a proposal if the strict PASCAL
criterion is satisfied. That is, the INT-UION [22] score is no less than 0.5.

3These 3 methods have been evaluated on the same benchmark and
shown to outperform other alternative objectness proposal methods [6, 20,
24,29,47], saliency measures [32,35], interesting point detectors [42], and
HOG detector [16] (see [3] for these comparisons).

4Implementations and results can be seen at the websites of the
original authors: http://cms.brookes.ac.uk/research/visiongroup/code.php,
http://groups.inf.ed.ac.uk/calvin/objectness/, http://disi.unitn.it/∼uijlings/,
and http://vision.cs.uiuc.edu/proposals/.
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Figure 3. Tradeoff between #WIN and DR (see [3] for more com-
parisons with other methods [6, 16, 20, 24, 29, 32, 35, 47] on the
same benchmark). Our method achieves 96.2% DR using 1,000
proposals, and 99.5% DR using 5,000 proposals. This figure is
best viewed in color.

cle, boat, bottle, bus, chair, dining-table, horse, motorbike,
person, potted-plant, sofa, train, and tv-monitor). In Fig. 3,
the statistics for training and testing on same or different ob-
ject categories are represented by BING and BING-generic,
respectively. As we see, the behavior of these two curves are
almost identical, which demonstrates the generalize ability
of our proposals.

Notice that the recent work [17] enables 20 seconds test-
ing time for detecting 100, 000 object classes, by reducing
the computational complexity of traditional multi-class de-
tection from O(LC) to O(L), where L is the number of
locations or window proposals and C is the number of clas-
sifiers. The ability of our method to get a small set of high
quality proposals of any category (including both trained
and unseen categories), could be used to further reduce the
computational complexity significantly by reducing L.

Computational time. As shown in Tab. 1, our method
is able to efficiently propose a few thousands high quality
object windows at 300fps, while other methods require sev-
eral seconds for one image. Note that these methods are
usually considered to be highly efficient state-of-the-art al-
gorithms and difficult to further speed up. Moreover, our
training on 2501 images (PASCAL VOC2007) takes much
less time (20 seconds excluding xml loading time) than test-

Method OBN CSVM SEL Our
[21] [3] [54] [45] BING

Time (seconds) 89.2 3.14 1.32 11.2 0.003

Table 1. Average computational time on VOC2007.

http://cms.brookes.ac.uk/research/visiongroup/code.php
http://groups.inf.ed.ac.uk/calvin/objectness/
http://disi.unitn.it/~uijlings/
http://vision.cs.uiuc.edu/proposals/


Figure 4. Illustration of the true positive object proposals for VOC2007 test images. See Fig. 3 for statistical results.

ing a single image using some state-of-the-art alternatives
methods [6, 20] (typically 2+ minutes).

As shown in Tab. 2, with the binary approximation to
the learned linear filter (Sec. 3.3) and BING features, com-
puting response score for each image window only needs
a fixed small number of atomic operations. It is easy to
see that the number of positions at each quantized scale and
aspect ratio is equivalent to O(N), where N is the num-
ber of pixels in images. Thus, Computing response scores
at all scales and aspect ratios also has the computational
complexity O(N). Further, extracting BING feature and
computing response score at each potential position (i.e. an
image window) can be calculated with information given by

BITWISE FLOAT INT,BYTE

SHIFT |, & CNT + × +,− min

Gradient 0 0 0 0 0 9 2
Get BING 12 12 0 0 0 0 0
Get score 0 8 12 1 2 8 0

Table 2. Average number of atomic operations for computing
objectness of each image window at different stages: calculate
normed gradients, extract BING features, and get objectness score.

its 2 neighboring positions (i.e. left and upper). This means
that the space complexity is also O(N). We compare our
running time with baseline methods [3, 21, 45, 54] on the
same laptop with an Intel i7-3940XM CPU.



(Nw, Ng) (2,2) (2,3) (2,4) (3,2) (3,3) (3,4)
DR (%) 95.6 95.9 96.2 95.8 96.2 96.1

Table 3. Average result quality (DR using 1000 proposals) at dif-
ferent approximation levels, measured by Nw and Ng in Sec. 3.3.

We further illustrate in Tab. 3 how different approxi-
mation levels influence the result quality and computational
time. According to this comparison, we use Nw = 2 and
Ng = 4 in all the experiments.

5. Conclusion and Future Work
We present a surprisingly simple, fast, and high qual-

ity objectness measure by using 8 × 8 binarized normed
gradients (BING) features, with which computing the ob-
jectness of each image window at any scale and aspect ratio
only needs a few atomic (i.e. ADD, BITWISE, etc.) opera-
tions. Evaluation results using the most widely used bench-
mark (VOC2007) and evaluation metric (DR-#WIN) show
that our method not only outperforms other state-of-the-
art methods, but also runs more than three orders of magni-
tude faster than most popular alternatives [3, 21, 45].

Limitations. Our method predicts a small set of object
bounding boxes. Thus, it shares similar limitations as
all other bounding box based objectness measure methods
[3, 54] and classic sliding window based object detection
methods [16, 24], For some object categories, a bounding
box might not localize the object instances as accurately as
a segmentation region, [6, 20, 21], e.g. a snake, wires, etc.

Future works. The high quality and efficiency of our
method make it suitable for realtime multi-category ob-
ject detection applications and large scale image collections
(e.g. ImageNet [18]). The binary operations and memory
efficiency make our method suitable to run on low power
devices [27, 56].

Our speed-up strategy by reducing the number of win-
dows is complementary to other speed-up techniques which
try to reduce the classification time required for each loca-
tion. It would be interesting to explore the combination of
our method with [17] to enable realtime detection of thou-
sands of object categories on a single machine. The effi-
ciency of our method solves the efficiency bottleneck of
proposal based object detection method [50], possibly en-
abling realtime high quality object detection.

We have demonstrated how to get a small set (e.g. 1,000)
of proposals to cover nearly all (e.g. 96.2%) potential object
regions, using very simple BING features. It would be in-
teresting to introduce other additional cues to further reduce
the number of proposals while maintaining high detection
rate, and explore more applications using BING.

To encourage future works, our source code is free avail-
able in the project page: http://mmcheng.net/bing/.
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