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Abstract

Within the field of pattern classification, the Fisher ker-
nel is a powerful framework which combines the strengths
of generative and discriminative approaches. The idea is to
characterize a signal with a gradient vector derived from a
generative probability model and to subsequently feed this
representation to a discriminative classifier. We propose to
apply this framework to image categorization where the in-
put signals are images and where the underlying generative
model is a visual vocabulary: a Gaussian mixture model
which approximates the distribution of low-level features in
images. We show that Fisher kernels can actually be under-
stood as an extension of the popular bag-of-visterms. Our
approach demonstrates excellent performance on two chal-
lenging databases: an in-house database of 19 object/scene
categories and the recently released VOC 2006 database. It
is also very practical: it has low computational needs both
at training and test time and vocabularies trained on one
set of categories can be applied to another set without any
significant loss in performance.

1. Introduction
Image categorization is the pattern classification prob-

lem which consists in assigning one or multiple labels to an
image based on its semantic content. This is a very chal-
lenging task as one has to cope with inherent object/scene
variations as well as changes in viewpoint, lighting and oc-
clusion. Hence, although much progress has been made in
the past few years, image categorization remains an open
problem. Several approaches consist in modeling the distri-
bution of low-level features contained in images irrespective
of their absolute or relative locations within the image. De-
spite their relative simplicity, such approaches have shown
state-of-the-art performance in a recent evaluation [1].

The most popular approach, which was inspired by the
bag-of-words used in text categorization, is referred to as

the bag-of-keypatches [2] or bag-of-visterms (BOV) [11].
In the following, we use the latter denomination which is
more general (the term keypatches assumes the use of an
interest point detector for the extraction of low-level feature
vectors). Given a visual vocabulary, the idea is to character-
ize an image with the number of occurrences of each visual
word. Any classifier can then be used for the categorization
of this histogram representation. Most of the work on bags-
of-visual-words has focused on the estimation of the visual
vocabulary. This is done through the clustering of low-level
feature vectors using for instance K-means [2, 15], Gaus-
sian Mixture Models (GMM) [3, 14] or mean-shift [7].

It has been observed that, even on databases containing
a restricted number of categories (< 10), the best perfor-
mance is generally obtained with large vocabularies con-
taining from several hundreds to several thousands of visual
words [2, 7, 11, 14, 15, 18]. As the cost of histogram com-
putations depends directly on the number of visual words,
one way to reduce the computational cost is to have more
compact vocabularies. In [17] an approach based on the in-
formation bottleneck principle was proposed. A vocabulary
containing initially several thousands of words was reduced
down to approximately 200 words without any loss of per-
formance. Another way to reduce the computational cost is
to organize the vocabulary in a tree structure, e.g. using Ex-
tremely Randomized Clustering Forests [12]. However, in
both cases, the derived vocabularies are not universal: they
are tailored to the categories under consideration and would
have to be learned again for a new set of categories. This is
an issue when one wants to add new categories incremen-
tally to a category set without fully retraining the system.
This is likely to happen when dealing with a large number
of categories as the full set of categories may not be known
beforehand.

As the two objectives of having a truly universal and
compact vocabulary seem irreconcilable, some researchers
have departed from the idea of having one unique visual
vocabulary across images and proposed to have one (much
smaller) per-image vocabulary. In [18], K-means clustering

1



is applied to estimate 40 visual words per image and the
similarity between image signatures is measured with the
Earth Mover’s Distance (EMD). In [3], a single visual word
(a Gaussian with full covariance matrix) is estimated per
image and the Bhattacharyya distance is used to measure
the similarity between Gaussian distributions. In both cases
kernel-based classification was performed using the Sup-
port Vector Machine (SVM). However, the use of small per-
image vocabularies does not necessarily lead to a reduced
computational cost. Indeed, for such approaches the vocab-
ulary has to be learned online. Moreover, both the EMD and
Bhattacharyya distance are significantly more costly than
the linear or χ2 kernels which are traditionally used to clas-
sify bags-of-visual-words.

To overcome the limitations of the previously mentioned
techniques, we propose to apply Fisher kernels to image
categorization. The Fisher kernel is a powerful framework
which combines the strengths of generative and discrimina-
tive approaches to pattern classification [5]. The idea is to
characterize a signal with a gradient vector derived from a
probability density function (pdf) which models the gener-
ation process of the signal. This representation can then be
used as input to a discriminative classifier. For the problem
of image categorization the input signals are images and we
propose to use as a generative model a GMM which approx-
imates the distribution of low-level features in images, i.e.
a visual vocabulary. Note that Fisher kernels have already
been applied to the problem of image categorization but on
a very different model: the constellation model [4]. Also,
Fisher kernels on GMMs have been successfully applied to
audio indexing [13] and speaker recognition [16].

The gradient representation of the Fisher kernel has a
major advantage over the histogram of occurrences of the
BOV: for the same vocabulary size, it is much larger (in our
experiments, a hundred times larger). Hence, there is no
need to use costly kernels to (implicitly) project these very
high-dimensional gradient vectors into a still higher dimen-
sional space: linear classifiers already provide excellent re-
sults.

One important choice in the design of the generative
model of a Fisher kernel is the presence or the absence of
the class label as a latent variable. When the model contains
the label as latent variable, [5] shows that the Fisher kernel
has the desirable property to be asymptotically as good as
the Maximum a Posteriori (MAP) decoder. However, in this
case the visual vocabulary has to be learned in a supervised
manner and cannot be easily extended to a new task.

The remainder of this paper is organized as follows. In
2 we introduce the principle of Fisher kernels. In 3 we ap-
ply Fisher kernels to visual vocabularies modeled by GMMs
and show that the Fisher kernel generalizes the traditional
BOV approach. In 4 we discuss the design of the GMM,
i.e. whether the GMM should contain the class label as la-

tent variable. In 5 we show experimentally the excellent
performance of our approach on two challenging datasets:
an in-house database of 19 object/scene categories and the
recently released VOC 2006 database which contains 10 ob-
jects. We also show how the visual vocabularies derived for
one of these tasks can be directly applied to the other task
without any significant loss of performance. Finally, we
draw conclusions.

2. Fisher Kernels Principle
Pattern classification techniques can be divided into the

classes of generative approaches and discriminative ap-
proaches. While the first class focuses on the modeling of
class-conditional probability density functions, the second
one focuses directly on the problem of interest: classifica-
tion. This explains the theoretical superiority of discrimi-
native methods over generative ones. However, generative
approaches have a number of properties which still make
them attractive, including the possibility to handle variable
length data.

Fisher kernels have been introduced to combine the ben-
efits of generative and discriminative approaches [5]. Let
p be a pdf whose parameters are denoted λ. Then one can
characterize the samples X = {xt, t = 1...T} with the fol-
lowing gradient vector:

∇λ log p(X |λ) . (1)

Intuitively, the gradient of the log-likelihood describes the
direction in which parameters should be modified to best
fit the data. It transforms a variable length sample X into
a fixed length vector whose size is only dependent on the
number of parameters in the model.

This gradient vector can then be classified using any dis-
criminative classifier. For those discriminative classifiers
which use an inner product term it is important to normal-
ize the input vectors. In [5], the Fisher information matrix
Fλ is suggested for this purpose:

Fλ = EX [∇λ log p(X |λ)∇λ log p(X |λ)′] . (2)

The normalized gradient vector is thus given by:

F
−1/2

λ ∇λ log p(X |λ) . (3)

Because of the cost associated with its computation and in-
version, Fλ is often approximated by the identity matrix and
no normalization is performed. In the next section, we will
derive a diagonal approximation of Fλ (this corresponds to
a dimension-wise normalization of the dynamic range) and
in section 5, we will show that using such a normalization
impacts favorably the performance.



3. Fisher Kernels on Visual Vocabularies
We propose to apply Fisher kernels on visual vocabular-

ies, where the vocabularies of visual words are represented
by means of a GMM. X = {xt, t = 1...T} denotes the set
of low-level feature vectors extracted from an image and λ
the set of parameters of the GMM. λ = {wi, µi, Σi, i =
1...N} where wi, µi and Σi denote respectively the weight,
mean vector and covariance matrix of Gaussian i and where
N denotes the number of Gaussians. Each Gaussian repre-
sents a word of the visual vocabulary: wi encodes the rel-
ative frequency of word i, µi the mean of the word and Σi

the variation around the mean.
We denote L(X |λ) = log p(X |λ). Under an indepen-

dence assumption, we have:

L(X |λ) =
T

∑

t=1

log p(xt|λ) . (4)

The likelihood that observation xt was generated by the
GMM is:

p(xt|λ) =
N

∑

i=1

wipi(xt|λ) . (5)

The weights are subject to the constraint:

N
∑

i=1

wi = 1 (6)

and the components pi are given by:

pi(x|λ) =
exp

{

− 1

2
(x − µi)

′Σ−1

i (x − µi)
}

(2π)D/2|Σi|1/2
, (7)

where D is the dimensionality of the feature vectors and |.|
denotes the determinant operator. We assume that the co-
variance matrices are diagonal as (i) any distribution can be
approximated with an arbitrary precision by a weighted sum
of Gaussians with diagonal covariances and (ii) the com-
putational cost of diagonal covariances is much lower than
the cost involved by full covariances. We use the notation
σ2

i = diag(Σi).
In the following, γt(i) denotes the occupancy probabil-

ity, i.e. the probability for observation xt to have been gen-
erated by the i-th Gaussian. Bayes formula gives:

γt(i) = p(i|xt, λ) =
wipi(xt|λ)

∑N
j=1

wjpj(xt|λ)
. (8)

The superscript d denotes the d-th dimension of a vector.

Straightforward derivations provide the following results:

∂L(X |λ)

∂wi
=

T
∑

t=1

[

γt(i)

wi
−

γt(1)

w1

]

for i ≥ 2 , (9)

∂L(X |λ)

∂µd
i

=

T
∑

t=1

γt(i)

[

xd
t − µd

i

(σd
i )2

]

, (10)

∂L(X |λ)

∂σd
i

=

T
∑

t=1

γt(i)

[

(xd
t − µd

i )
2

(σd
i )3

−
1

σd
i

]

. (11)

Note that (9) is defined for i ≥ 2 as there are only
(N−1) free weight parameters due to the constraint (6) (w1

was supposed to be given knowing the value of the other
weights). The gradient vector is just a concatenation of the
partial derivatives with respect to all the parameters.

To normalize the dynamic range of the different dimen-
sions of the gradient vectors, we need to compute the di-
agonal of the Fisher information matrix F . Let us denote
by fwi

, fµd

i

and fσd

i

the terms on the diagonal of F which
correspond respectively to ∂L(X |λ)/∂wi, ∂L(X |λ)/∂µd

i

and ∂L(X |λ)/∂σd
i . The normalized partial derivatives

are thus f
−1/2

wi
∂L(X |λ)/∂wi, f

−1/2

µd

i

∂L(X |λ)/∂µd
i and

f
−1/2

σd

i

∂L(X |λ)/∂σd
i . It can be shown that we have approx-

imately:

fwi
= T

(

1

wi
+

1

w1

)

, (12)

fµd

i

=
Twi

(

σd
i

)2
, (13)

fσd

i

=
2Twi
(

σd
i

)2
. (14)

To the best of our knowledge, this is the first time a closed
form approximation is proposed for the Fisher information
matrix of a GMM. For more details of these derivations, the
reader is referred to the appendix.

Let us now relate the traditional BOV to Fisher kernels.
In the BOV representation, the relative number of occur-
rences of the i-th word is given by:

1

T

∑

γt(i) . (15)

From equations (9) and (15), it is clear that the BOV is di-
rectly related to the Fisher kernel when one considers only
the gradient with respect to the weight parameters: they
both consider 0-th order statistics (word counting). How-
ever, when taking the derivatives with respect to the means
and standard deviations, the Fisher kernel also considers 1-
st and 2-nd order statistics (c.f. equations (10) and (11)).
With a given vocabulary of size N , the BOV leads to an N -
dimensional histogram while the full gradient representa-
tion gives a vector of dimensionality (2×D+1)×N−1. As



D = 50 in our experiments (c.f. section 5), the dimension-
ality of the gradient representation is approximately 100
times larger. This enables to characterize images with very
high-dimensional vectors, even with fairly small vocabular-
ies containing on the order of 100 words.

4. Design of the Visual Vocabulary
We now discuss the design of the visual vocabulary (i.e.

of the GMM) that is used as the generative model for the
Fisher kernel. The simplest idea is to train the GMM in
an unsupervised manner with the low-level feature vectors
from all categories or even on a separate dataset [2, 7, 11,
15]. However, in [5], the authors state that

“A kernel classifier employing the Fisher ker-
nel derived from a model that contains the label
as latent variable is, asymptotically, at least as
good a classifier as the MAP labeling based on
the model”.

In the case of a GMM, for a K-class problem where classes
are denoted ωk, having the label as latent variable means the
pdf has the form:

p(x) =

K
∑

k=1

p(ωk)p(x|ωk) , (16)

where each class-conditional p(x|ωk) is itself a GMM.
These class-conditional pdfs have to be learned in a super-
vised manner using the training material of the correspond-
ing category. In this case, the same vocabulary cannot be
used across tasks and has to be learned for each different
set of categories.

Supervised learning of GMMs has already been consid-
ered in the BOV framework. In [3], the authors propose
the training of one vocabulary p(x|ωk) per category and the
creation of a single vocabulary by folding together all the
Gaussians. A significant improvement was demonstrated
compared to unsupervised vocabulary estimation. Unfortu-
nately, this approach is impractical for a large number of
categories as the vocabulary size increases linearly with the
number of categories. To make this approach more practi-
cal, the authors of [14] transform the K-class problem into
K 2-class problems. They make use of both a universal vo-
cabulary, which describes the visual content of all the con-
sidered classes, and class-vocabularies. For each class, a
new combined vocabulary is created by merging the univer-
sal and class-vocabulary. For a given image, one histogram
is computed for each category on the combined vocabular-
ies. Each of these histograms describes whether the image
content is best modeled by the universal vocabulary or the
corresponding class vocabulary. Due to the strong link be-
tween the BOV and the Fisher kernel (c.f. previous section),

the fact that the models of [14] and [3] include the label as a
latent variable may explain why they outperform those ap-
proaches where the vocabulary is trained in an unsupervised
manner.

Hence we will test the Fisher kernels on vocabularies
trained in an unsupervised manner (i.e. in the case where
the model does not contain the label as a latent variable)
and also in a supervised manner (i.e. in the case where the
model contains the label as a latent variable). For the latter
case, we preferred the approach of [14] over [3] due to its
practicality and its better performance. This means that, for
a given image, we will derive one gradient representation
per category.

5. Experimental Validation
In this section, we first describe our experimental setup.

We then carry out a comparative evaluation of the proposed
Fisher kernel on two challenging databases: an in-house
database of 19 object/scene categories and the recently re-
leased VOC 2006 database [1]. We finally perform cross-
database experiments where the vocabulary derived from
one database is used for the other one.

5.1. Experimental setup
We used two types of low-level local feature vectors in

our experiments. They are extracted on regular grids at dif-
ferent scales. As all images were resized to contain ap-
proximately the same number of pixels, roughly the same
number of features was extracted from all images (between
500 and 600 for each feature type). The first features are
based on local histograms of orientations as described in
[10] (128 dimensional features). The second ones are sim-
ple local RGB statistics (96 dimensional features). In both
cases, the dimensionality of the feature vectors was reduced
to 50 through Principal Component Analysis (PCA).

To train a GMM in an unsupervised manner we used the
Maximum Likelihood (ML) criterion. The strategy we em-
ployed consists in starting with one Gaussian and then in-
creasing progressively the number of Gaussians in the sys-
tem as in [14]. This vocabulary is later referred to as “uni-
versal”. To train class-vocabularies we also followed the
approach of [14] and adapted them from the universal vo-
cabulary using the MAP criterion.

For the classification of word histograms and gradi-
ent representations, we experimented with the SVM using
the SVMlight package [6] and our own implementation of
Sparse Logistic Regression (SLR) [8], i.e. logistic regres-
sion with a Laplacian prior. In both cases, one linear clas-
sifier was trained per category in a one-versus-all manner.
As both classifiers performed very similarly (as observed
experimentally in [8]), we report results only for SLR.

We ran two systems separately, one for each feature type.
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Figure 1. Performance of the three baseline systems as a function
of the number of Gaussian components on our in-house dataset.
Performance plateaus after 2048 Gaussians.

The final score is simply the average of the scores of the two
systems.

5.2. In-house database
The first set of experiments was carried out on an in-

house dataset of 19 object/scene categories: beach, bicy-
cling, birds, boating, cats, clouds/sky, desert, dogs, flowers,
golf, motorsports, mountains, people, sunrise/sunset, surf-
ing, underwater, urban, waterfalls and wintersports. This is
a very challenging dataset as the training and test images
were collected independently. Approximately 30K images
were available for training and 5K for testing. Both sets
were manually multi-labeled. Our measure of performance
is the maximum of the F1 criterion which is heavily used in
the text categorization literature. The F1 measure is defined
as the harmonic mean of the precision and the recall.

As this is not a publicly available dataset, we ran three
systems which will serve as a baseline for Fisher kernels:
(i) the traditional BOV where the universal vocabulary is
trained in an unsupervised manner (unsupervised BOV), (ii)
the approach of [14] which makes use of both a universal
and class vocabularies (supervised BOV) and (iii) the MAP
decoder based on the class vocabularies. The main param-
eter which will affect the performance of these methods is
the number of Gaussian components, i.e. of visual words.
Hence, the performance is shown on figure 1 for a varying
number of Gaussian components. The approach of [14] is
the best performing one and its best performance is reached
for 2048 Gaussians with maxF1 = 73.1%.

As for the Fisher kernel approach, two parameters will
mainly affect its performance: (i) the number of Gaussian
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Figure 2. Performance of the Fisher kernels as a function of the
number of Gaussian components on our in-house database. Per-
formance plateaus after 128 Gaussians.

components and (ii) the parameters with respect to which
the gradient is computed. We first study on figure 2 the in-
fluence of the number of Gaussian components in the case
where the gradient is taken with respect to all three param-
eter types (weights, means and standard deviations). We
provide results in the cases where (i) the class label is a
latent variable of the visual vocabulary (Fisher supervised)
and (ii) the class label is not a latent variable of the visual
vocabulary (Fisher unsupervised). Despite the significantly
higher complexity of the supervised approach (one gradient
vector per image per category instead of a single gradient
vector per image for the unsupervised approach) both ap-
proaches perform very similarly. Hence, the unsupervised
approach is preferred for its simplicity. The best perfor-
mance of the Fisher kernel on the visual vocabulary learned
in an unsupervised manner is 74.1% with a GMM contain-
ing 128 Gaussians. Note that, if we had approximated the
Fisher information matrix with the identity matrix instead
of using the diagonal approximation proposed in section 3,
the performance of this model would have decreased down
to 70.7%. Also, if we had used a simpler normalization in
the range [-1,1], as done in [4], the performance would have
been 72.2%.

While the improvement in terms of max F1 is modest
(+1.0% absolute compared to the approach of [14]), the re-
duction of the computational cost at both training and test
time is very significant due to the fact that we can use a
much more compact vocabulary. With our implementa-
tion of [14], training the whole system from scratch for
both types of low-level feature vectors with 30K images
takes approximately 19h of CPU time on a 2.4GHz AMD



step BOV Fisher
feature low-level 150
extraction high-level 550 20

Training
vocabulary 1000 + 30× C 40

SLR 3× C 4 × C

Testing
classification 0.02 × C 0.06× C

Table 1. Breakdown of the computational cost (in ms) per image
for the BOV approach of [14] and the proposed Fisher kernel. C

is the number of considered categories. The first two steps are
common to both training and testing phases. The high-level fea-
ture extraction corresponds to the computation of the histograms
of word occurrences for the BOV and to the gradient computation
in the case of Fisher kernels.

gradient max F1 (in %) gradient dimension
w 58.1 127
µ 69.4 6,400
σ 70.4 6,400

µσ 74.1 12,800
wµσ 74.1 12,927

Table 2. Contribution of each parameter (w = weights, µ = mean
and σ = standard deviation) to the classification accuracy and to the
dimensionality of the gradient space for a GMM with 128 Gaus-
sians.

OpteronTMwith 4GB Ram. With Fisher kernels, the training
cost is reduced down to approximately 2h30. As for the test
time, it is reduced from 700ms down to 170ms per image.
One can refer to table 1 for a breakdown of the training and
testing costs.

We now analyze the contribution of each parameter type
of the GMM to the classification accuracy. This is done
by taking the gradient of the log-likelihood with respect to
only a subset of the parameters. Experiments were car-
ried out on our best system with 128 Gaussians. Results
are shown in table 2, along with the dimensionality of the
gradient representation. When one takes the gradient with
respect to weights only (equivalent to the traditional BOV
histogram), one obtains a much poorer performance than
when taking the gradient with respect to means or stan-
dard deviations only. This is not surprising as the gradient
with respect to weights has a much lower dimensionality
(50 times smaller). When taking the gradient with respect
to both means and standard deviations one obtains a signif-
icant improvement over either parameter alone. However,
when taking the gradient with respect to means, standard
deviations and weights, no further improvement is obtained.

5.3. VOC 2006 database
The second set of experiments was carried out on the

recently released VOC 2006 database [1]. It consists of 10
object categories: bicycle, bus, car, cat, cow, dog, horse,
motorbike, person and sheep. 2,618 images are available for
training and 2,686 for testing. As was the case for our in-
house database, we trained one GMM with 128 Gaussians
for both types of low-level feature vectors and, to build our
representation, we took only the gradient with respect to the
means and standard deviations (c.f. previous subsection).

In Spring 2006, two rounds of public evaluations were
carried out on this database. Our focus is on the compe-
tition called “comp1” for which only the provided training
material could be used to train the classifiers. In the fol-
lowing, we consider those 20 systems which ran against all
categories in the “comp 1” challenge (18 during the first
round and 2 during the second round). The measure of per-
formance used during the competition was the Area Under
the Curve (AUC). In figure 3 we provide our per-category
results and compare them with the median and the best re-
sults reported in [1]. In figure 4 we compare the average
AUC of our system over the 10 categories, which is equal
to 0.931, with the average AUCs of the other systems. The
best average AUC reported on this database is 0.936. The
proposed system is thus very close to the state-of-the-art.

5.4. Cross database experiments
We wanted to make sure that the vocabulary trained for

one set of categories could be used for another set of cat-
egories without any significant performance degradation.
Hence, we trained a visual vocabulary on one database and
used it as the generative model for the Fisher kernel for the
other database. When training on the VOC 2006 database
and testing on our in-house database, the decrease in per-
formance was insignificant (from 74.1% down to 73.9%).
When training on our in-house database and testing on
VOC 2006, no decrease in performance was observed. This
means that Fisher kernels are fairly insensitive to the quality
of the generative model (as observed in [5]) and therefore
that the same vocabulary can be used for different category
sets. Obviously, this property might not hold if the sets of
categories are widely different, for instance, if the visual vo-
cabulary is trained on sketches and used to categorize natu-
ral images.

6. Conclusion
In this paper we introduced a novel approach to image

categorization which consists in applying the Fisher kernel
framework on a visual vocabulary, i.e. a GMM which mod-
els the generative process of the low-level feature vectors
extracted from images.
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Figure 3. Per category results on the PASCAL VOC 2006: AUC for the Fisher kernel approach (in white) compared to the median and best
AUC reported in [1] (in black and grey respectively).
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Figure 4. Average AUC over the 10 categories of the PASCAL VOC 2006: ranking of the proposed Fisher kernel approach with respect to
the other 20 systems reported in [1].

We showed that the proposed approach is actually a gen-
eralization of the popular BOV. The main advantage over
the BOV is that, for the same vocabulary size, the gradient
representation of the Fisher kernel has a much higher di-
mensionality than the histogram representation (100 times
larger in our experiments). Hence, high dimensional and
highly informative representations can be derived from im-
ages, even with very compact vocabularies containing on
the order of 100 words. This makes the proposed approach
very attractive from a computational standpoint. The ability
to use compact vocabularies was obtained without sacrific-
ing the generalization ability of our vocabularies. Indeed, it
was shown experimentally that vocabularies trained on one
set of categories could be exported to another set of cate-
gories without any significant loss of performance.

We evaluated our approach on two challenging datasets,
including the recently released VOC 2006 database, and
showed that the proposed approach produces state-of-the-
art results.

It is important to notice that any kernel based on a gen-
erative model can be applied to image categorization with

the framework proposed in this paper, i.e. using the visual
vocabulary as the generative model. Hence, other kernels
such as the log-likelihood ratio kernel [9] introduced in the
field of automatic speech recognition, will most certainly be
worth testing in the future.

A. Derivation of the Fisher Information Matrix
Our derivations are based on two assumptions. The first

one is that the number of low-level features xt extracted
from each image is constant and equal to T . This is a
reasonable assumption in our case (c.f. section 5.1). The
second one is that for each observation xt, the distribution
of the occupancy probability γt(i) is sharply peaked. This
means that there is one Gaussian index i such that γt(i) ≈ 1
and that ∀j 6= i, γt(j) ≈ 0. This second property is based
on empirical observation. In the following, we just provide
the details of the computation of fwi

as similar derivations
lead to the values of fµd

i

and fσd

i

.
We recall that ∂L(X |λ)/∂wi and thus fwi

are defined
for i ≥ 2. Using the definition of the Fisher kernel (2) and



the value of ∂L(X |λ)/∂wi (9) we get:

fwi
=

∫

X

p(X |λ)

[

T
∑

t=1

(

γt(i)

wi
−

γt(1)

w1

)

]2

dX . (17)

Using the following notation:

At(i) =
γt(i)

wi
−

γt(1)

w1

, (18)

we have:

fwi
=

∑

t=1...T

u=1...T

t6=u

∫

xt,xu

At(i)Au(i)p(xt, xu|λ)dxtdxu

+
T

∑

t=1

∫

xt

At(i)
2p(xt|λ)dxt . (19)

For t 6= u, using the independence of xt and xu, we get:
∫

xt,xu

At(i)Au(i)p(xt, xu|λ)dxtdxu (20)

=

∫

xt

At(i)p(xt|λ)dxt

∫

xu

Au(i)p(xu|λ)dxu . (21)

Using the definition of the occupancy probability γt(i) (8),
we obtain:

At(i)p(xt|λ) = pi(xt|λ) − p1(xt|λ) (22)

and integrating both sides we get:
∫

xt

At(i)p(xt|λ)dxt = 0. (23)

Turning to the second term of equation (19), we have:

At(i)
2 =

(

γt(i)

wi

)2

+

(

γt(1)

w1

)2

− 2
γt(i)γt(1)

wiw1

. (24)

Using the property that γt(i) is sharply peaked (i.e. is ei-
ther close to 0 or 1), we can write γt(i)

2 ≈ γt(i), ∀i and
γt(i)γt(1) ≈ 0, ∀i ≥ 2. Thus:

At(i)
2 ≈

γt(i)

w2

i

+
γt(1)

w2

1

. (25)

We obtain:

At(i)
2p(xt|λ) ≈

pi(xt|λ)

wi
+

p1(xt|λ)

w1

. (26)

Integrating both sides we get:
∫

xt

At(i)
2p(xt|λ)dxt ≈

1

wi
+

1

w1

, (27)

which leads to the following formula for fwi
:

fwi
≈ T

(

1

wi
+

1

w1

)

. (28)
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