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Abstract
We propose to use action, scene and object concepts

as semantic attributes for classification of video events in
InTheWild content, such as YouTube videos. We model
events using a variety of complementary semantic attribute
features developed in a semantic concept space. Our con-
tribution is to systematically demonstrate the advantages
of this concept-based event representation (CBER) in ap-
plications of video event classification and understand-
ing. Specifically, CBER has better generalization capabil-
ity, which enables to recognize events with a few training
examples. In addition, CBER makes it possible to recog-
nize a novel event without training examples (i.e., zero-shot
learning). We further show our proposed enhanced event
model can further improve the zero-shot learning. Further-
more, CBER provides a straightforward way for event re-
counting/understanding. We use the TRECVID Multimedia
Event Detection (MED11) open source event definitions and
datasets as our test bed and show results on over 1400 hours
of videos.

1. Introduction
Recognizing atomic human actions from videos “in the

wild” has received considerable attention in the past few
years [17, 15, 18]. However, atomic actions, such as
“walking”, “kissing”, “placing an object” are too primi-
tive to be used for search of internet videos. In Internet
searches users usually look for events such as “wedding cer-
emony”,“woodworking” or “birthday party”, but rarely re-
trieve videos of a simple action such as “person walking” or
“person bending”. In this work, we characterize an event as
a juxtaposition of various actions, scenes and objects, which
is more descriptive and meaningful. Our goal is to recog-
nize complex events from large-scale open source videos.

In order to accurately recognize an event, an effective
event representation is required. Unlike an action, the visual
contents of a video event are usually very diverse. For ex-
ample, a “wedding ceremony” consists of various concepts
including actions such as “hugging” and “kissing”, scenes
such as “church” and “garden”, and objects such as “cake”

Figure 1. Examples of Events (i.e., Event 02 “feeding an animal”, Event
04 “wedding ceremony”, Event 05 “woodworking”, and Event 06 “birth-
day party”). Each row corresponds to one video selected from the event.
The examples indicate that a diverse set of action, scene, and object con-
cepts constitute these events.

and “ring”, as shown in Fig. 1. In such a scenario, the
low-level feature based event representation ( LLFeat, e.g.,
the bag-of-visual-word model) may have difficulty in han-
dling the intra-class variability, especially when the number
of example event videos is small. In addition, the numeric
LLFeat is not suitable for high-level event analysis and un-
derstanding, such as event recounting.

We propose to represent events in a semantic space con-
sisting of concepts related to actions, scenes and objects.
Based upon this space, we are able to model an event with
various concept features. Basically, this Concept-Based
Event Representation (CBER) divides the event recogni-
tion problem into two parts: concept detection followed
by event recognition. Concept detection is performed using
low-level visual features, and it is not restricted to a specific
event. In other words, the universal concept detectors are
shared across different events. Meanwhile, event recogni-
tion is able to focus on high-level inference using semantic
concept features.

In order to capture various aspects of the concept dis-
tribution over an event, we develop five complementary
semantic concept features for event representation. We
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demonstrate that CBER has stronger generalization capa-
bility versus to direct event recognition using low-level fea-
tures. This property is particularly useful for learning events
with just a few training examples. In fact, the generalization
capability is due to the information sharing among events
in terms of concepts. Thanks to CBER models, we further
demonstrate how to recount and summarize an event for un-
derstanding beyond the recognition.

The notion of representing an event in a semantic con-
cept space is inspired by recent work in object recognition
[5, 14, 24, 23, 29], action recognition [16, 31], and image
retrieval [25] with attributes. Indeed, we characterize an
event by treating the action, scene and object concepts as
event attributes. These semantic attributes usually embody
the information of who, what, where and how, which is usu-
ally discriminative for an event. Therefore, CBER can not
only be used for recognizing a familiar event with training
examples, but it can also be used to describe and recognize
a novel event without training examples.

To recognize a novel event, one needs to manually de-
fine/localize it in the semantic concept space according to
its semantic description which indicates the presence or ab-
sence of concepts in the event. This manual process is com-
monly employed in most existing work to recognize novel
objects [14, 24] and actions [16]. In general, however, the
human-provided description is subjective and incomplete,
thus the human-defined event models may not be accurate.
For instance, “dancing” and “hugging” can be left out when
one defines an event model vector for the “wedding cer-
emony”, as they are not as common as concepts such as
“kissing”, “church”, “bride”, and “groom” for a wedding.
To enhance the event model, we propose to use seman-
tic similarity between concepts to augment the model with
other concepts similar to the one provided by a user. Our
idea is inspired by [7] on sharing semantic labels for im-
age classification. Semantic similarity between concepts
can be estimated from the statistical distribution of concepts
on videos.

1.1. Related Work
The definitions of event and action are ambiguous in

computer vision literatures. As both event and action videos
generally contain plenty of object motions, the terminolo-
gies of event and action are alternatively used [3, 13]. In
this work, however, an event depicts a complex visual hap-
pening consisting of a number of actions, scenes and ob-
jects. For instance, our event definitions include life events
such as “weddings” and “birthday parties”, as well as how-
to events such as “wood-working’ [1]. In contrast, in past
work on action recognition [21, 17, 9], actions largely con-
sist of atomic actions such as “tennis swing”, “jumping”,
etc. detection for surveillance by fixed cameras, usually ap-
peal to object tracking and action analysis [8, 12, 2].

There are some recent works on recognizing events from

still images [10, 20]. For example, Imran et al. [10] pro-
poses to use PageRank to recognizing events from photo
collections. Luo et al. [20] also combines GPS informa-
tion with photos for event recognition. Since these works
concentrate on images, they use scene information to distin-
guish events to a large extent. However, the action concept
is a critical component in event classification. Therefore,
both action and scene are important concepts for our CBER.

Our event recognition task is similar to [22, 4, 11, 27],
but our goals are significantly different. [27] focus on event
detection with low-level features. In [22, 4], the authors aim
at comparing the performance of their Vector Models with
that of various low-level feature based models for event de-
tection with a relatively large number of training examples.
As a comparison, we demonstrate that the CBER has bet-
ter generalization capability (e.g., recognizing events with
a few examples), and enables recognizing a novel event,
as well as better event understanding (e.g., event recount-
ing). To the best of our knowledge, all these advantages of
CBER have not been discussed for video event recognition.
In addition, we proposed several complementary semantic
features rather than the Vector Model in [22, 4].

We treat concepts as the attributes of events in our
CBER, which is related to the usage of attributes in object
recognition [14, 24, 5, 23, 28], action recognition [16, 31],
image retrieval [25], and event recognition in still images
[26]. We explore more informative event representations
derived from the semantic concept space, which capture not
only the distribution of concepts, but also the co-occurrence
relationship between concepts. Our goal is similar to [31],
in which they learn an action base using sparse coding from
still images. Moreover, unlike most existing works which
usually directly employ manually defined models by a user
to recognize novel categories, we further utilize the se-
mantic similarity between concepts to enhance the human-
defined event model. Our method differs from [23], which
uses ranking technique to assign relative attributes to im-
ages. Our approach is data-driven, and no further informa-
tion (e.g., attributes ranking) is required.

1.2. Contributions
Unlike the previous work in CBER, our work is the first

to systematically demonstrate the advantages of represent-
ing events using concepts as event attributes in some event
recognition and understanding applications. More specif-
ically, we propose various semantic concept features and
demonstrate three interesting applications well-supported
by CBER: (1) We demonstrate that CBER improves the
generalization capability of event models. (2) We devise
and demonstrate an approach to improve human-defined
event models for recognizing a novel event by enhancing
the model components using semantic similarities between
concepts. (3) Beyond recognition, we further present a
method to recount the detected event for a video, on the



basis of which we can assess the strength of contribution of
each concept towards the classification of the event.

We evaluate our approach on the TRECVID Multime-
dia Event Detection (MED11 [1]) dataset. This source is
the first of its kind to make public large scale videos from
open sources. We wish to emphasize that experimentation
with such a large scale video dataset implies that our exper-
imental results validate conclusions that could be broadly
applicable to YouTube like videos.

2. Event Recognition in Concept Space
2.1. Learning Concept Detectors

We define our concept collection C = {C1, C2, ..., CK},
where K=101. It includes 81 action concepts, as well as 17
scene and object concepts such as “kitchen”, “lake/pond”,
“wheel-closeup”, and so on (The full list is attached in the
supplemental material) . In addition, it contains three com-
mon object concepts “face”, “car” and “person”. For each
concept, we acquire training examples (video segments for
actions and keyframes for scene and objects) from our de-
velopmental dataset.

We employ well-established techniques for action, scene
and object detection for building our concept detectors. In
particular, static features (i.e., SIFT [19]), dynamic features
(i.e., STIP [15] and Dense Trajectory Based features [30]),
and the bag-of-word representations [30, 14] defined over
codebooks of these features are used to represent action,
scene and object concepts. Binary SVM classifiers with
Histogram Intersection kernel are used for concept classi-
fication. While the concept detectors of “face”, “car” and
“person” are adopted from some publicity available detec-
tors such as [6] used in our work.

In the rest of this paper, we represent a concept detector
as ϕi for concept Ci. The inputs x for action concept detec-
tors are short video segments, and keyframes for the other
concept detectors. The output is the detection confidence
ϕi(x). Sec. 2.3 describes how to apply a concept detector
to long length videos (e.g., an event video), where we local-
ize the concepts temporally. The performance of detectors
on unconstrained videos is varied. In the next section, we
design more robust concept features from these detectors
for event classification.

2.2. Concept Space Definition
We define a concept space CK as an K-dimensional se-

mantic space, in which each dimension encodes the value
of a semantic property. This space is spanned by K con-
cepts C = {C1, C2, ..., CK}. In order to embed a video x
into the K-dimensional space, we define a set of functions
Φ = {φ1, ..., φK}, where φi assigns a value ci ∈ [0, 1] to a
video indicating the confidence of the ith concept presence
in it. The definition of φi depends on the application. Note
that φi is not necessary the concept detector ϕi. If the con-
cept detector ϕi take the whole video as one single input,

then we can treat φi and ϕi same. However, if the detec-
tor is applied to a video by means of sliding window (i.e.,
split a video into W input windows, and thus produces W
outputs), then we need to define φi (i.e., max function in
Sec. 2.3) to convert W outputs of ϕi into one single con-
fidence value ci. As a result, the function set Φ(x) embeds
a video x in the K-dimensional semantic space as a vector
(c1, ..., cK). Semantically similar videos form a cluster in
the space. Thus we can perform event recognition by train-
ing a classifier in this space. In fact the event classification
is decomposed into phases: (1) Embedding a given video in
the concept space; and (2) Classifying the event with fea-
tures derived from the embedding, as discussed in Sec. 2.3.

On the other hand, we also can define a new event in the
space by manually assign a confidence value ci (e.g., 1 or 0)
to ith concept based on our knowledge to this event. In other
words, it is possible to define a novel event without looking
at video examples. This fact enables to recognize a novel
event without training examples, as discussed in Sec. 2.4.

2.3. Event Modeling over Concept Space
Since the goal of this work is to assess the efficacy of

the CBER, we focus on understanding how the presence or
absence of episodic concepts during the course of an event
influences recognition of the event. We assume detectors
for a suite of concepts that we define for the events at hand
are available to us. Any of the well-known past works can
be used to create detectors for this concept suite.

We apply a sliding-window (i.e., an XYT cube) based
detection scheme for action concepts, while scene and ob-
ject concepts are detected on sampled frames of the video.
Fig. 2 depicts our overall approach for description and
recognition of a video event in terms of a set of concepts.
Since the concept detection is noisy for videos “in the wild”,
our method uses the atomic concept detectors as filters that
are applied to a given XYT segment of a video to capture the
similarity of content to the given concept. So as a first step
towards representing a video with concepts, each concept
detector is applied to each XYT window in a video to obtain
anK×W matrix C of scores, where Cij ∝ p(ci|wj). Each
Cij is the detection confidence of concept i applied to win-
dow j. C represents the complete embedding of the video
in the space of concepts. W is determined by the video
length and the sliding window size which is set to the av-
erage segment length of all training video segments in our
work. Other approaches such as shot detection can be used
to determine the detection windows too. So far, the fixed
size sliding window works for our case.

There may be many ways in which occurrence of con-
cepts determines the presence or absence of a video event.
We exploit a number of increasingly complex features de-
rived from C to model and classify events. These features
span the spectrum from counting the occurrence of concepts
to statistics of concept confidences to co-occurrence and co-



Figure 2. Event Descriptions using Concepts. K concepts detectors are applied within each moving window over the whole video clip to generate and
K ∗W matrix of concept detection scores. These are transformed to generate feature descriptors as event representations. Classifiers are trained with the
feature descriptors to detect events.
occurrence strengths of the confidences. In particular, we
explore the following five feature representations:
Max Concept Detection Score(Max): This method se-
lects the maximum detection score Cmax

i over all sliding
windows as the detection confidence of detector ϕi. As
a result, a video is mapped to a K-dimensional vector
Cmax = (Cmax

1 , Cmax
2 , ..., Cmax

K ). Since the maximum
detection score provides information on the presence of a
concept, this feature is useful for some applications such as
novel event recognition as discussed in Sec. 2.4.
Statistics of Concept Score(SCS): For some application,
knowing the maximum detection score is not enough. We
also need the distribution of the scores to model a spe-
cific event. Therefore, we further compute the following
parameters of the detection scores (cmax, cavg, cstd)i =
(maxj(cij),

1
W Σjcij ,

1
W Σj(cij − cavg)2)

Bag of Concepts(BoC): Akin to the bag of words descrip-
tors used for visual word like features, a bag of concepts
feature measures the frequency of occurrence of each con-
cept over the whole video clip. To compute this histogram
feature, the SVM output of each concept detector is bina-
rized to represent the presence or absence of each concept
in each window.
Co-occurrence Matrix(CoMat): A histogram of pairwise
co-occurrences is used to represent the pairwise presence of
concepts independent of their temporal distance.
Max Outer Product(MOP): Since concepts represent se-
mantic content in a video, the max value of each concept
across the whole video represents the confidence in the pres-
ence of a concept in a video. The outer product of the vector
of max values of each of the concepts represents both the
strength of the presence of each concept (diagonal values)
as well as the strength of co-occurrence of pairwise con-
cepts (off-diagonal values): MOP = Cmax × (Cmax)T .

2.4. Modeling and Recognizing Novel Events
Binary Event Model. Suppose we have n events with train-
ing videos, which are known events. Based on the videos
from these events, we annotate K concepts (in terms of
video segments or keyframes), and train K concept detec-

tors. Thus, we build aK-dimensional concept space. Given
this, our problem is how we recognize the other z events
which don’t have training videos, called novel events. This
is very important issue for event retrieval, since web users
can be potentially interested in tens of thousands of differ-
ent events. Collecting a large training set for each event is
not feasible.

Given the constructed K-dimensional concept space, we
need to define (localize) each novel event in the space.
There are no videos for the novel event, but let’s assume we
know the description of the event in terms of K-concepts.
And then we can make a K-dimensional vector with each
bin having a binary value indicating the presence or absence
of a concept related to this event. This vector is the model of
the novel event in the space. For example, in Fig. 3 there is
a space consisting of 10 concepts including “kitchen”, “per-
son pointing”, “person kissing”, etc. By mapping “Yes”
and “No” to number 1 and 0 respectively, we acquire a 10-
dimensional vector (1, 0, 1, 0, 0, 1, 1, 1, 0, 0) ∈ C10, which
is the position of “making a sandwich” in the semantic
space. Now, as both the novel event and its videos (by con-
cept detectors) are embedded in a common semantic space,
we can tell if a video belongs to an event by computing their
semantic similarity in the space. Thus, we can recognize
novel events based on its description.

Suppose Cy = (cy1, c
y
2, ..., c

y
n) is the location, estimated

from human knowledge, of Event y in the concept space,
then given an event video x, its event label y* is estimated
by y∗ = argmaxy∈Y S(Φ(x),Cy), where S is a function
measuring the semantic affinity between two points in the
space. In our experiments, it is defined using a Gaussian
kernel as follows,

S(z1, z2) = Exp(− ‖ z1 − z2 ‖ /(2σ)). (1)

The assumption on novel event recognition is that the
novel event can be described by K concepts, which means
the novel event shares concepts with other known events.
The concept detectors are not necessary to be trained on an-
notated short video segments (or keyframes) extracted from
the n known events. They can be trained on any dataset.
Enhancing Event Model. The manually defined binary



Figure 3. An example of characterizing an event in terms of concepts.
Based on common knowledge on “making a sandwich”, we can mark its
relevant concepts (“Yes”) from a set of pre-defined concepts.

event model suffers from two issues. One issue is that
a human’s knowledge to an event may be subjective and
incomplete, thus the embedded position derived from this
knowledge will be biased. The other issue is sometimes
the binary coding is restrictive and unnatural [23]. Con-
sider for example “wedding ceremony”, it is hard to tell if
“dancing” should occur in a wedding video. In order to han-
dle these issues, we propose to improve the binary setting
of concepts using the semantic similarity between any two
concepts. The underlying assumption is that semantically
similar concepts co-occur frequently.

The semantic affinity matrix S of concepts can be de-
rived from some knowledge databases, such as WordNet
and Wikipedia, or computed from video training examples
of known events, say n-1 events. We estimate matrix S
from the data D = (d1, d2, ..., dM )T , an M × K matrix,
where di is a K-dimensional vector representing a video in
the semantic space. Note that D does’t contain videos from
the novel event, say the n-th event. On the other hand, we
also treat each column cj ∈ RM as a representation of the
corresponding concept j. As a result, each entry S(i, j) of
the affinity matrix can be estimated using Eq. 1. Having
the K × K symmetric affinity matrix S, we can replace
the binary event model vector y = (y1, y2, ..., yK) ∈ CK

with yT ×S. Indeed, each concept location yi is updated by
yi =

∑
j yj×S(j, i). It means the concepts with yi = 1 are

copied between concepts and weighted according to their
semantic affinity.
3. Semantic Concept Recounting

A video event is a complex activity occurring at a spe-
cific time. Such a video may contain a lot of irrelevant in-
formation. Thus, for each recognized event occurrence in
a video, the goal of recounting is to describe the details of
the occurrence. The recounting includes key observations
regarding the scene, people, objects, and actions pertaining
to the event occurrence. Such recounting provides user a
semantic description that is useful to perform further anal-
ysis. As concept features that we use by definition contain
semantic information, concept features are more appropri-
ate for recounting purpose than low-level features.

As our event classification is based on SVMs, we present
an approach to perform the recounting in the context of
SVMs. Given the feature vector x ∈ Rn where n is the fea-

ture dimension, the decision function h(x) is represented as
h(x) =

∑m
l=1 αlK(x,xl) + b, where xl is a support vec-

tor, K is the kernel function, αl is the signed weight of xl

and b is the bias. If the kernel function has the form of
K(x, z) =

∑n
i=1 f(xi, zi), where f can be any function

and xi, zi are the values of the i-th dimension of x and
z. For example, intersection kernel satisfies such a form as
fINT = min(x,z). Linear kernel also follows this form.
Now the decision function can be rewritten as follows,

h(x) =

n∑
i=1

m∑
l=1

αlf(xi, z
l
i) + b.

Suppose hi(x) =
∑m

l=1 αlf(xi, z
l
i), we can decompose the

decision value as,
h(x) =

n∑
i=1

h(xi) + b, (2)

where hi(x) encodes how much the i-th dimension/feature
contributes to the final decision value. As each dimension
has semantic information, we can retrieve the important ev-
idences by sorting hi(x). We have shown our recounting
approach in the context of SVMs. In fact, the approach can
be applied to any additive classifiers as in Eq.2, which cover
a wide spectrum of classification approaches.

4. Experiments and Discussion
4.1. Event Dataset and Experiment Setup

We evaluate CBER based event recognition on the
TRECVID MED11 open source dataset [1], which in-
cludes over 45,000 YouTube-like videos with about 18-
minutes length per video in average, i.e., over 1400 hours of
video data approximately. This dataset contains 15 named
event categories, such as “making a sandwich”, “parkour”,
“Change a vehicle tire”, and more as listed in Fig. 5, plus
other unnamed negative events (UNE) other than the 15
events. All the videos are unconstrained videos.

We selected about 3, 500 videos as our development
dataset (DEV), which includes about 2062 videos from
Event 01-15 plus 1438 UNE videos. The number of videos
for each event ranges from around 110 to 170. The rest
of videos of MED11 dataset are used as our testing data,
including 1751 videos from Event 01-15, ranging from 80
to 170 for each event. From the DEV data, we annotated
about 4, 000 short video segments to develop 81 action con-
cept detectors, and 5, 000 keyframes to develop the scene
and object detectors, as discussed in Sec. 2.1. The main
computation cost comes from low-level feature generation,
which is common to all models. The results are reported in
terms of Average Precision for the top ranked 1000 videos.

4.2. Experimental Results
We conducted the following experiments to demonstrate

the advantages of CBER for event classification: (I) exper-
iments showing the effectiveness of various semantic fea-
tures; (II) experiments verifying CBER has better general-



Figure 4. The Average Precision of event recognition using various semantic features. The last column lists the mean Average Precision (mAP) over all
events. The last row shows the performance of Sparse-Base approach, which is proposed in [31] for action recognition in still images.

Figure 5. The fifteen events defined in MED11 dataset.

ization capability; (III) experiments on novel event recog-
nition; (IV) experiments demonstrating event recounting on
CBER for semantic event understanding.
I. Effectiveness of semantic features. As discussed in Sec.
2.3, the concept space enables the design of various se-
mantic features, which capture a variety of complementary
properties of concepts for an event. We train a binary SVM
classifier for each event on DEV, and test it on the testing
dataset. For BOC and CoMat, we use histogram intersec-
tion kernel, and RBF kernel for SCS, MOP and Sparse-
Bases [31]. The default parameters are used for SVM. Fig.
4 shows the Average Precision [31] for each event using
different features. Although MOP and SCS obtain better
performance in terms of mean AP, no specific feature wins
for all events. This observation also means the features are
complementary to each other. Combining all features, we
achieve about 4% improvment in terms of mean AP. More-
over, each feature has a big variance in performance across
events due to various diversities in visual contents of each
event. For example, it is difficult to recognize “feeding an
animal” and “grooming an animal”, while easier to recog-
nize “attempting a board trick” and “flash mob gathering”.
The direct comparison between semantic concept features
and low-level features is exploited in next experiment II.

There is little work studying our problem on event clas-
sification. But as aforementioned, the goal of our seman-
tic features is similar to the sparse bases learning approach,
which is originally proposed in [31] to capture high order
relationship between attributes and parts for action recog-
nition in still images. So we apply this approach over our
concept space too. A variety of bases are learnt from around
2,000 video segments, and the best performance is reported
with 500 learned bases in Fig. 4 (i.e., the last row). Overall,
MOP and SCS features work better than SparseBases. We
conjecture the data is so noisy that it is hard to learn robust
sparse bases, while our features deal with noise better. Note
that we can not conduct the same experiments on the im-
age dataset as [31] does, because our features are generated
from videos.
II. Generalization capability. In this experiment, we eval-

uate event classification as a function of number of positive
training examples for both concept-base (CBER) and low-
level feature based (LLFeat) event representation. For a fair
comparison, we extract DTF [30] and STIP [15] low-level
dynamic features, which are also used to train our concept
detectors, and represent an event as a bag of visual words
using these features. The reported results are the fusion of
that of DTF and STIP. Other classification setups are same
to that of experiment I. Fig. 6 shows the performance com-
parison in terms of mean AP over all events (i.e., (a)), as
well as the comparison in terms of AP for three other events
(i.e., (b-d)). Obviously, CBER achieves much better perfor-
mance than LLFeat when the number of positive training
videos is small, which means semantic concept features are
more generalized as compared to low-level features. This is
because features with semantic meanings are more helpful
for recognition. These observations are especially impor-
tant for event retrieval in cases when large training samples
are not available while concept detectors are available.

On the other hand, we notice the performance of CBER
is worse than that of LLFeat when the number of posi-
tive training examples increases across some point. Ideally,
CBER is able to accurately recognize events with a few rep-
resentative examples due to its good generalization capabil-
ity. In other words, increasing number of training examples
does not necessarily gain better performance. In practice,
however, due to the information loss caused by lower qual-
ity concept detectors, CBER also needs more training ex-
amples to gain more event information. But its performance
grows slowly with increased training examples. In contrast,
LLFeat directly acquires information from low-level fea-
tures, so it performs better when a significant number of
training examples are available. So in practice, improving
concept detector can boost CBER’s performance.

III. Recognizing novel events. In these experiments, we se-
lected 81 action concepts to form the concept space. Given
a novel event, we define an 81-dimensional model vector,
in which each bin holds a binary value indicating the pres-
ence/absence of the corresponding concept, as one example
shown in Fig. 3. (The description for all events in terms of



Figure 6. The performance of event recognition as a function of number of positive training examples. Red and blue curves depict the results of CBER and
LLFeat (low-level feature) respectively. Sub-figure (a) shows the performance comparison in terms of mean Average Precision over all events. Sub-figures
(b), (c) and (d) illustrate the results corresponding to three selected events.

concepts is included in the supplemental materials.) Note
that in our experiments when Event A is selected as the
novel event, any video segments from A in DEV will be ex-
cluded from the concept detector training, which means no
concept detectors have seen information of A. In this way,
Event A is novel to the system. In each experiment, we
treated one event as the novel event, and returned a confi-
dence value (estimated by Eq.1) for each of test videos. We
repeat this experiment for all events.

Fig. 7 (a) shows the mean APs of three approaches.
“Binary”, as our baseline, represents the directly usage of
human-defined binary event models for recognition. “SS-
Based” is our approach of using semantic similarities be-
tween concepts to enhance binary event models. The se-
mantic affinity matrix S of concepts is estimated from the
DEV data excluding videos from the novel event. All
of them are evaluated on the testing data. As a compari-
son, we also use the sparse bases to enhance binary mod-
els. As [31] does, we project both binary event models
and testing data into the same sparse base before recogni-
tion. Overall, “SS-based” improves about 2.5% in terms
of mAP than “Binary”, which is significant considering the
baseline is only 12.3%. “SparseBases” does not improve
the baseline. It is interesting that CBER based zero-shot
approaches obtained comparative or event better results, as
compared to the event recognition of LLFeat with 5 positive
and more than 1000 negative examples (i.e., “LLFeat-05” in
Fig. 7 (a)). This is reasonable because classifier trained on
LLFeat generalize event models from only five examples,
while the model generalization capability of CBER is en-
dowed by the pre-trained concept detectors, which serve as
the bridge of information sharing across different events.

Figure 7. (a) The mean AP of recognizing novel events. As a comparison,
last column shows the trained based approach using low-level features with
5 positive training examples. SparseBases represents the approach in [31].
(b) The performance comparison between various zero-shot learning ap-
proaches for each event. Note that “LLFeat-05” is training-based method
using LLFeat with 5 positive training examples.

Although it seems CBER does not have training examples
for the novel event, it actually gains more information from
the known events. Fig. 7 (b) lists the detailed results for
each of the events with different approaches. We can see
some events, such as “Wedding ceremony” and “Flash mob
gathering”, which share more concept detectors with other
events, achieve much better performance than the ones with
less information sharing with other events.
IV. Event Recounting. We show two recounting examples,
i.e. for Event 1 and Event 4, in Fig. 8. BOC concept fea-
ture is used to train the event classifier (a SVM classifier
with intersection kernel). For a video that is correctly clas-
sified, we show the top recounted concepts in Fig. 8 (a) and
(b). The concepts are shown together with the confidence
contributed to the final event decision. The center frame of
the sliding window with maximum detection confidence is
shown as the exemplar. The red bounding box shows the de-
tected object concept. It is worth noting that, although our
concept detection contains a lot of noise in terms of both
false alarm and miss detection, the top recounted concepts
are all sort of relevant to the event.

To show Fig. 8 (a) and (b) are not by chance, we demon-
strate the overall recounted concepts from both events. We
collect the top recounted concepts from all positive videos
and create a histogram shown in Fig. 8 (c) and (d) . Note
that, the concepts that have significant hits are all relevant
to the event to some extent.

5. Conclusion
In this paper we proposed a novel representation of

events defined in terms of a semantic space of action, scene
and object concepts. We demonstrated that our CBER
representation requires fewer number of training examples
versus low-level features for similar event classification
performance. We also demonstrate that CBER based
approach has good classification performance on new
events that can be defined over the same concept space with
zero training examples. Our approach was evaluated on the
challenging TRECVID MED11 [1], which is completely
unconstrained, and large scale dataset from open sources.
Beyond event classification, we also presented a method
to recount the most relevant semantic concepts for a
video. The recountings indicate that the CBER approach
accurately captures the semantic concepts related to videos



Figure 8. Event recounting examples. Given a video clip that is classified as a positive, the top six recounted concepts are shown in (a)(b). In (c)/(d), we
show a list of the most recounted concepts among all positive videos of Event 01 or Event 04. The x axis shows the concept indices and y axis shows the
number of positive videos in that of a concept ranks top. The list of concepts is in the same of order that the arrow line intersects the histogram bars.

“in the wild”.
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