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Abstract

In the past decade, the bag-of-feature model has estab-

lished itself as the state-of-the-art method in various visual

classification tasks. Despite its simplicity and high perfor-

mance, it normally works as a black box and the classifi-

cation rule is not transparent to users. However, to better

understand the classification process, it is favorable to look

into the black box to see how an image is recognized. To fill

this gap, we developed a tool called Restricted Support Re-

gion Set (RSRS) Detection which can be utilized to visualize

the image regions that are critical to the classification de-

cision. More specifically, we define the Restricted Support

Region Set for a given image as such a set of size-restricted

and non-overlapped regions that if any one of them is re-

moved the image will be wrongly classified. Focusing on

the state-of-the-art bag-of-feature classification system, we

developed an efficient RSRS detection algorithm and dis-

cussed its applications. We showed that it can be used to

identify the limitation of a classifier, predict its failure mode,

discover the classification rules and reveal the database

bias. Moreover, as experimentally demonstrated, this tool

also enables common users to efficiently tune the classifier

by removing the inappropriate support regions, which can

lead to a better generalization performance.

1. Introduction

Classification based on bag-of-feature (BoF) model [11,

2] has become very popular in the past several years. It

works surprisingly well in various classification tasks, e.g.

object [2], scene [8], action [7], human pose [10], subjec-

tive properties [4], to name a few. By simply following local

feature extraction, coding, and pooling three steps, an image

is represented as a fixed length vector and a classifier can be

learned [1, 15, 14, 9]. Despite the simplicity and high per-

formance, the BoF model usually works as a black box and

the classification rule is not transparent to users. However,

(a) Original Image (b) Heat Map Image

(c) Support Region 1 (d) Support Region 2

Figure 1: The comparison between our Support Region Vi-

sualization and the existing Heat Map [19] visualization.

(a). Original Image; (b). Heat Map Image; (c),(d) Two

support regions detected for this image

it is favorable to look into the black box and visualize how

an image is classified in many occasions. For example, for

many computer vision applications in which human is in-

volved, e.g. computer-aided medical image diagnosis, it is

highly desirable that the classification system can provide

information about how a decision is made rather than sim-

ply giving a positive/negative result. More generally, this

visualization can also facilitate users to identify the poten-

tial problems and improve the classification system.

Based on the above motivations, we proposed a visual-

ization method by examining the dependency between the

presence/absence of a particular image region and the clas-

sification decision. Formally, we put forward a concept

named “Restricted Support Region Set” (RSRS) for a given

image. It is defined as a set of size-restricted and non-

overlapped regions having the property that if any one of
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the regions is removed, this image will be wrongly classified.

The idea behind is that if the absence of a particular region

makes the classification result flip from right to wrong, this

region must have provided a supporting role for correctly

recognizing the image. Thus by examining whether these

regions are really related to the visual concept to be learned,

we can tell whether the classifier has learned the visual con-

cept as required.

As will be shown in Section 3.2, the restricted support

region set is system-specific. In this paper, we mainly focus

on developing a RSRS detection algorithm for the state-of-

the-art classification systems which use dense sampled local

features, with sparse coding coefficients, max-pooling and

linear classifier. Nevertheless, the concept of the restricted

support region set and its detection principle can be applied

to general classification systems.

We also show examples about the applications of this

tools: by examining the support regions of a single image,

we can predict under what kind of occlusion the image will

be misclassified. By conducting experiments on PASCAL

VOC 2007 dataset, we reveal some interesting phenomenon

about the classification rules based on the support region lo-

cations in multiple images. We also employ this tool as an

interactive interface which enables users to remove the inap-

propriate support regions to generate new training samples.

Adding these new samples to the training set and retrain-

ing, the generalization performance of the classifier can be

improved as discovered in our experiment.

2. Related Work

In the literature, there are mainly two ways to visualize

the classification rule. The first one is to visualize the proto-

types which are useful for classification. Examples include

visualizing the learned part in shape model [3], mined pro-

totypes [18], or to be more relevant to the BoF model, show-

ing the patches assigned to the visual words with maximal

inter-category discrimination [5]. While this kind of visu-

alization attempts to directly display the visual components

whose occurrences will increase the confidence of predict-

ing the presence of the object, it will become less practical

when the codebook size becomes larger, for example, sev-

eral thousands, or when the feature dimension is amplified

by using Spatial Pyramids [8]. The other way is to display

the highly weighted interest points on the image [17] or use

the heat map [19] when dense sampled local feature is used.

An example of heat map is shown in Figure 1 where the

warmer color indicates the higher weight. The drawbacks

of this visualization method are two folds: (1) although it

shows the highly weighted region, it is still unclear how im-

portant these regions are, e.g. whether they are so crucial

that without them the image will not be correctly classified?

(2) In max-pooling where multiple occurrences of a same

visual word are only counted once (or only the maximum

coding coefficient is recorded), the importance of a local

patch is determined by two factors: (a) the word (or coding)

to which the patch is quantized into; (b) whether there is

another patch quantized into the same word and its coding

coefficient is larger. The heat map, which only considers

the first factor, becomes less accurate in this scenario. For

example, a homogeneous region such as the sky region in

Figure 1 may have many patches assigned to the same word

(coding), hence removing a large portion of it will have no

impact on the classification decision score as long as there

is still one patch assigned to the same visual word left (or

the patch with the largest coding coefficient is not removed).

However, all the patches in the sky region are shown with

equal importance in heat map.

The detection of restricted support region set in this pa-

per also shares similar spirit with the problem of efficiently

searching for the most discriminative window/sub-region

[6]. At the first glance their methods can be readily ap-

plied to the classification rule visualization. However, their

efficient solutions assume the linearity, that is, the sum of

classification decision scores of two separate regions equals

to the score of the region obtained by merging them to-

gether. However, this assumption will not hold anymore

in the state-of-the-art classification systems where max-

pooling is used. This is because in max-pooling the “dis-

criminativeness” of one region, which can be evaluated by

the change of classification decision score after removing it,

is not solely determined by the region itself but also by the

remaining parts of the image (for the reason, see the factor

(b) above). So we cannot evaluate the “discriminativeness”

of one region by simply summing the contribution of each

sub-region within but have to calculate it dynamically as

shown by the algorithm developed in this work.

Finally, our work is also related to a recent study on an-

notator’s rationales [4]. However, its purpose is to incor-

porate the annotator’s rationale to design a better classifier,

while our aim is to visualize the “rationales of a classifier”

learned purely from a set of training samples.

3. Support Region Detection

3.1. Background and Notations

Let I = {I1, I2, · · · , IM} denote a set of image

samples. In the BoF model, a set of local features

{xi
1,x

i
2, · · · ,x

i
Ni
} are extracted from each image Ii and

they are encoded with a learned dictionary B ∈ R
d×V .

This step is called “coding”, which maps the local feature

x
i
j ∈ R

d to the coding coefficient ui
j ∈ R

V . In this pa-

per we assume u
i
j ≥ 0 and this is true for most exist-

ing coding methods [15, 14, 9]. Recent studies [15, 14, 9]

show that assigning a local feature to a small number of vi-

sual words to produce sparse coding coefficients can boost

recognition performance. To obtain image-level representa-



tion, the coding coefficients of all local features in an im-

age are pooled together. Two pooling strategies are usually

used: sum-pooling and max-pooling. The former sums all

the coding coefficients to obtain the image representation

z
i =

∑Ni

j=1 u
i
j while the latter computes the dimension-

wise maximum, that is, zik = max
j

ui
jk, where zik and ui

jk

denote the kth component of zi and the kth component of

u
i
j , respectively. It has been shown [1] that max-pooling can

produce the state-of-the-art performance by using a sim-

ple linear SVM classifier and it significantly outperforms

sum-pooling in this situation. Hence, in this paper we focus

on the following setting: coding methods producing sparse

coding coefficient [15, 14, 9], max-pooling, and linear clas-

sifier.

3.2. Basic Definitions

Let F : I → R
V denote the mapping from an image

to its image-level representation. A classifier can then be

expressed as a mapping C : RV → Z from the represen-

tation to the predicted class label ŷ. Combining the two

mappings, we have ŷ = C(F(I)). Let’s focus on binary

classification since multi-class classification can be decom-

posed into multiple one-vs-rest binary classifications. Let

yi ∈ {−1, 1} be the ground truth class label of the ith im-

age, where yi = 1 denotes the positive sample in which the

object is present. Viewing an image as an array of pixels,

we define connected region as a set of pixels such that there

exists a inner path connecting any pair of pixels in this set.

One can use the 4- or 8-neighborhood to define the con-

nectivity. Then a support region can be formally defined as

follows:

Definition 1 For any correctly classified image Ii ∈
{Il|C (F(Il)) = yl}, if there exists a connected region Rs

such that removing it only will make the image wrongly

classified, that is, C (F(Il −Rs)) 6= yl, this region will

be called a support region of image Ii w.r.t the given im-

age representation F and classifier C, denoted as Rs of

(Ii,F , C).

Here, the minus operator in Il −Rs denotes the set differ-

ence. Note that we do not define a support region for incor-

rectly classified images because for those images the mis-

classification may be due to the lack of certain regions. We

are not able to visualize the missing regions since we can-

not create it from nowhere. Also, we focus on detecting the

support regions for the correctly classified “positive” sam-

ples, that is, yi = ŷi = 1, because for those samples support

regions are often more meaningful. They are expected to be

the key parts of the object/scene and therefore are easier for

human to understand and evaluate the behavior of classifier.

Note that if Rs is a support region, its superset could

be a support region too. As a result, many redundant sup-

port regions could be generated by enlarging a current sup-

port region or shifting it slightly. To avoid this situation, we

further define Restricted Support Region Set by introducing

two more constraints:

Definition 2 The Restricted Support Region Set (RSRS)

Rrs of (Ii,F , C) is defined as a set of regions that satisfy

the following three conditions: (1) any region in the set is a

support region of (Ii,F , C); (2) any pair of regions in the

set are not spatially overlapped; (3) the size of each region

is less than a predefined threshold.

The region size constraint also improves the detection

efficiency and avoids generating a meaningless over-large

region, e.g. the whole image as a support region. The maxi-

mum region size is set as large as that we believe human will

not be able to tell the content of the image after removing

such a large region.

3.3. Detecting Restricted Support Region Set

As seen, the definition of RSRS depends on the image

representation F and image classifier C. In this paper, our

focus is to develop RSRS detection algorithm for the state-

of-the-art image classification system introduced in 3.1. Re-

call that ui
j is the coding coefficient for the jth local feature

in the ith image (For the notation simplicity, we omit the

superscript i in u
i
j from now on). Let ujk be the k-th di-

mension of the coding coefficient uj and w, b be the linear

SVM classifier parameters. The decision function is:

ŷ = sgn

(

V
∑

k=1

wk max
j

{ujk}+ b

)

(1)

Note that the max-operator is due to the use of max-pooling.

To compute the decision value after removing a region, we

simply do not take the coding coefficients extracted from

the region into account. Focusing on the case ŷ = 1, a
support regionRs is mathematically expressed as:

V
∑

k=1

wk max
{j|Pj /∈Rs}

{ujk}+ b < 0; where |Rs| ≤ A0 (2)

which indicates that ŷ in (1) changes from +1 to -1 after

removing the region Rs whose size is thresholded by A0.

Here, Pj denotes the spatial location of the jth local feature.

To detect the restricted support region set, we employ a

sequential detection approach, that is, we first detect one

support region and then detect another one outside this re-

gion. This procedure is repeated until no valid support re-

gion can be found. More specifically, a region growing al-

gorithm is used to form a valid support region from a given

seed. Thanks to the sparseness of coding coefficient, the de-

cision value can be updated very efficiently without recal-

culating (1) after a new pixel is added to the current support

region. To explain this algorithm, let’s first define



J (Rp,Rq) =

V
∑

k=1

wk

(

max
{j|Pj∈Rp}

{ujk} − max
{j|Pj∈Rp−Rq}

{ujk}

)

(3)

where Rp and Rq are two image regions satisfying Rq ⊂

Rp. By letting S0 =
∑V

k=1 wk maxj{ujk} + b, we can

redefine (2) as:

J (I,Rs) ≥ S0; where |Rs| ≤ A0 (4)

In the process of region growing, the support region grows
in an iterative way: Rt = Rt−1 ∪ Pt, where Pt denotes
a new pixel 1 added to the current region in each iteration.
Noting thatRt = P1 ∪P2 · · · ∪ Pt, J (I,Rt) (letR0 = ∅)
can be recursively computed as:

J (I,Rt) = J (I,Rt−1) + J (I −Rt−1,Pt). (5)

Pt is selected from the boundary points of current support

region based on the following criterion:

P̂t = argmax
Pt∈Boundary{Rt−1}

J (I −Rt−1,Pt). (6)

Note that J (I − Rt−1,Pt) can be written in the form
of (3). However, we do not need to calculate the

summation,
∑V

k=1, for every dimension k but only
evaluate those corresponding to the very few nonzero
coding coefficients of Pt. This is because for all dimen-
sions where Pt has zero-valued coding coefficient, the term
(

max{j|Pj∈I−Rt−1}{ujk} −max{j|Pj∈I−Rt−1−Pt}{ujk}
)

will be zero and thus can be omitted. Hence, we have:

J (I −Rt−1,Pt)

=
∑

k|utk 6=0

wk

(

max
{j|Pj∈I−Rt−1}

{ujk} − max
{j|Pj∈I−Rt−1−Pt}

{ujk}

)

(7)

Moreover, note that only when the maximum of {ujk}
over {j|Pj ∈ (I − Rt−1)} is produced by the newly

added pixel Pt = Rt − Rt−1, can the difference

term max{j|Pj∈I−Rt−1}{ujk} − max{j|Pj∈I−Rt}{ujk}
become nonzero. In such a situation, the maximum of

{ujk} over {j|Pj ∈ (I − Rt)} will equal to the second

maximum (we regard the duplicated maximum as second

maximum too) in the region (I −Rt−1).
Hence, to efficiently compute (7), two tables storing

max{j|Pj∈I−Rt−1}{ujk} and max2{j|Pj∈I−Rt−1}{ujk}
are maintained, wheremax2 denotes the second maximum.

Once a pixel Pt is added to the existing region Rt−1, we

1Since local patches are densely sampled, a pixel referred here actually

means a patch center. It corresponds to a small block in the original image.

can then quickly check whether its associated utk (k =
1, 2, · · · , V ) is the maximum over the region (I − Rt−1).
If it is, then the above difference term can be calculated as

max{j|Pj∈I−Rt−1}{ujk}−max2{j|Pj∈I−Rt−1}{ujk}, and
zero otherwise. These two tables are updated once a new

optimal growing point P̂t is identified and added. Again,

since adding one pixel only involves the change in few di-

mensions, the update will be very efficient. The overall re-

gion growing algorithm is shown in Algorithm 1.

Algorithm 1 Grow A Single Support Region

Require: A seed point P1 and S0, A0

1: R1 ← {P1} , S← 0 , A← 0
2: Build two tables

T1(R1) = max
{j|Pj∈I−R1}

{ujk}

T2(R1) = j|max2
{Pj∈I−R1}

{ujk} ;

3: while S ≤ S0 and A ≤ A0 do

4: P̂t ← argmax
Pt∈Boundary{Rt−1}

J (I −Rt−1,Pt)

5: Ti(Rt)← Ti(Rt−1 ∪ P̂t) i = 1, 2
6: A← A+1 and S← S+J (I−Rt−1, P̂t) according

to (7).

7: end while

8: Return success if (2) is satisfied, that is, S ≥ S0 and

failure otherwise.

The seed point P1 in Algorithm 1 can be selected in var-

ious ways including random selection. However, not every

seed point can successfully grow a support region under the

region size constraint. To reduce the chance of the support

region growing failure, we develop a heuristic method to

seek the most promising seed points. The method first tests

J (I,P0) for every pixel P0 and selects the K points2 with

top K largest J values as the initial seeds. Once a valid

support region is detected, the seed points falling into the

detected region will be removed and new K seeds are gen-

erated outside the region. The region growing is stopped

when no valid support region can be detected in the remain-

ing part of the image or the number of trials has reached its

limitation. We can use the upper bound in (8) to quickly

assess the possibility of finding a valid support region in the

remaining image region I ′.

J (I,Rs) ≤
∑

k|wk≥0

wk

(

max
i|Pi∈I′

{uik}

)

; where Rs ⊂ I
′

(8)

Obviously, if we find the upper bound (RHS of (8)) has been

less than S0 in (4), then it will not be possible to find a

support region Rs in I ′. Combining all these steps, the

RSRS detection algorithm is summarized in Algorithm 2.

2In practice, we require these points not be too close to each other.



Algorithm 2 Detect Restricted Support Region Set (Multi-

ple Support Regions)

1: while RHS (8) is no less than S0 do
2: Select topK points with topK largestJ values from

the remaining part of image as the seed points.

3: for j = 1 toK do

4: Grow one region with seed point Pj by using Al-

gorithm 1.

5: if success then

6: Report one support region;

break;

7: end if

8: end for

9: end while

4. Applications and Examples

In this section, three applications of the proposed RSRS

detection are discussed with examples. They are: (1) predict

the failure mode of classifier. We give two examples from

the commonly used scene and object classification datasets:

Scene-15 and PASCAL VOC 2007 respectively. (2) under-

stand the classification rule and discover the database bias

[12]. We demonstrate this application on PASCAL dataset

because it has the ground truth bounding boxes which en-

able us to make quantitative analysis. (3) interactively de-

select inappropriate support regions and generate new train-

ing samples. We use Graz02 and a subset of PASCAL con-

taining the same three classes bike, car, person in Graz02.

More details about this experiment protocol are discussed

in Section 4.3.

For the first and second applications, we extract the HOG

local feature and apply the Spatial Pyramid by following the

setting in [8] and [16] respectively. For the third applica-

tion, we also extract HOG for the Graz02 with the setting

of [8] but without using the Spatial Pyramid because there

is significant translation of object locations in each image.

The same settings are also used for the three-class subset of

PASCAL dataset to facilitate the cross-dataset performance

test in this application. In all examples, we use linear SVM

as the classifier and use the localized soft-assignment cod-

ing [9] due to its simplicity and high performance.

The maximum region size A0 is set to 200 (patches) for

Scene 15 and 300 (patches) for the other two datasets due to

the different image sizes. Please note that the detected sup-

port region size can be much smaller than A0 and the num-

ber of detected support regions varies automatically with

image content.

(a) (b) (c)

(d) (e) (f)

Figure 2: (a)(d) Original Images: “living room” in Scene-15

and “car” in PASCAL respectively. (b)(e) multiple detected

support regions. (c)(f) synthesized images with one support

region replaced by new content.

4.1. Application I: Predict the FailureMode ofClas
sifier

A straightforward application of RSRS detection is to

predict the failure mode of classifier. According to the def-

inition, if a support region is removed the image will be

wrongly classified. Hence, we could expect that misclassi-

fication will happen if the support region is replaced with

an object irrelevant to the to-be-recognized visual concept.

Figure 2 gives such an example with two images from the

training set in Scene-15 category “living room” and PAS-

CAL category “car” respectively. As shown in Figure 2

(b)(e), the detected support regions 3 suggest that the left

corner region with a lamp is indispensable for the correct

classification of the living room image and the correct clas-

sification of the car image heavily relies on the region with

a bike and a kid. We may predict that if these two regions

are replaced, the images will be misclassified. To verify

this prediction, we produce two “real world alike” synthe-

sized images with the support regions replaced as shown in

the last row of Figure 2. After re-running the classification

system on these synthesized images, the classification de-

cision scores drop from 0.9988 to -0.012 and from 1.0276

to -0.3206 for the living room and car images respectively.

In both cases, the images cannot be correctly classified any-

more. However, as can be seen from the last row of Figure

2, we, as human, can still correctly classify these two im-

ages.

3Since the “pixel” in Algorithm 1 is actually the patch center, the non-

overlapping constraint of RSRS in effect requires no overlapping among

patch centers. That is why small overlapping is observed in multiple sup-

port regions shown in Figure 2 (b)(e).



(a) chair (b) aeroplane (c) cow (d) sheep (e) bus (f) TV/monitor (g) train (h) boat

Figure 3: Some typical support regions detected on PASCAL dataset, see text for more detail. For the reference convenience,

only one support region is displayed in each image even when there are more support regions in the same image.

4.2. Application II: Understand the Classification
and Discover Database bias

To better understand the classification system, we can

investigate the support region locations in multiple images

and see what kinds of objects are frequently covered by

the support regions. Then we can have some intuitive idea

about what visual cues are important for predicting the pres-

ence of the object to be recognized. To demonstrate this

application, we use PASCAL dataset as an example. It

contains 20 object bounding box annotation for each im-

age and this allows us to perform some quantitative anal-

ysis. We first present some examples of detected support

regions in Figure 3, including their ground truth class la-

bels. By checking the locations of the support regions over

the whole training set, we summarize them as three typical

cases: (1) when the classification decision score is close to

zero, that is, the sample is close to the decision hyperplane,

many support regions will be detected because it is easy to

find a small region removing which makes classification in-

correct. Many of the detected support regions in this case

are not relevant to the visual concept to be learned. Figure

3 (a) and (b) show one of such regions in each image. (2)

The support region exactly covers the object to be recog-

nized, such as in Figure 3 (c) and (d). It normally happens

when the object is clearly visible or the background is sim-

ple. (3) The support region covers an object/scene which

is correlated (co-exists) with the to-be-recognized object in

the training set. Examples can be seen in Figure 3 (e) to

(h). These objects/scenes may be interpreted as the “con-

text” [13]. Some context is reasonable such as the harbor

and water for boat recognition as in (h). But some are less

reasonable like person for TV/monitor recognition. The de-

pendency in the latter case can be due to dataset bias. The

images of PASCAL is collected from the Internet and peo-

ple are normally less interested in uploading an image solely

about a TV/monitor. Therefore, for many images on Inter-

net the TV/monitor may happen to occur in the scenario like

“people in the living room” and high correlation between

TV/monitor and person is then resulted.

To quantitatively evaluate the role of context and object

in the image classification, we compute two statistics with
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Figure 4: The per-

centage of images

with at least one sup-

port region not cov-

ering the object to be

recognized.
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Figure 5: The percentage of images with at least one support

region covering the 20 objects, showing in each row for a

category. The blank entry indicates value 0.

the help of the bounding box in the PASCAL dataset. The

first one counts the percentage of images with at least one

support region that does not have any overlap with the ob-

ject bounding box. This measurement indicates the depen-

dency of correct classification on the context, because these

support regions cover the “context” and without their help

the correct classification cannot be made. This is true even

if all the remaining support regions all cover the object. As

shown in Figure 4, the percentage suggests that for most cat-

egories, the classifier heavily (more than 20% of samples)

relies on the context visual cues. For categories like chairs

and pot-plants, the figure suggests that more than half of

the images in the category will be misclassified if a context

region is removed. Only three categories motorbike, horse,



cow have no or little dependency on the context. Examin-

ing the corresponding images, we found they usually have

a clear spatial layout and homogeneous background.

We then further ask what kinds of objects are covered

by the support regions that have no overlapping with the

object to be recognized. To answer this question, we need

to access the bounding box annotation of all objects in all

images. Since we only have the bounding boxes for 20 ob-

jects, we restrict our quantitative analysis on these objects.

For each category, we calculate the percentage of images

with at least one support region covering4 the objects other

than the to-be-recognized object, as shown in the each row

of Figure 5. Some interesting correlation can be seen: (1)

the person category takes a high percentage for many cat-

egories, which means that the presence of person provides

a strong visual cue in correctly classifying these categories.

Taking TV/monitor class for example, it suggests that 16%

of the training images will be misclassified if the person is

removed. For pot-plant, chair and bottle, the percentage

w.r.t person is the highest. Checking their images, we do

find that these objects frequently co-occur with person.

Generally, context may benefit recognition, especially

when an object is small and has no discriminative appear-

ance. However, relying too much on the context may also

bring risks since the context may come from an unreason-

able correlation introduced by a biased dataset. It is also

noteworthy that the dependency between objects and their

context valid in one domain may become invalid in another

domain. For example, the presence of highway may provide

strong visual clue for detecting a car. But this context could

be harmful for the application such as recognizing whether

there is a car on the road or not.

4.3. Application III: Interactive Support Region Se
lection

The third application of RSRS detection is to use it as

an interface for interactively de-selecting inappropriate sup-

port regions. The basic idea is that if a user does not think

a support region reasonable, that is, without this region the

image should still be recognizable, then the user can gener-

ate a new training sample by removing this region, assign

its class label to +1, and add it to the original training set

to retrain the classifier. To test this idea, we carry on an ex-

periment on Graz02 and the three-class subset of PASCAL

dataset. Our experiment protocol is to train a classifier on

Graz02 and test it on both Graz02 and the PASCAL sub-

set. The reason of this protocol is: Both datasets have the

three categories of person, car and bike, but the context of

the three objects in the two datasets are quite different, as

shown in the first and second rows of Figure 6. Compar-

ing with PASCAL, the images in Graz02 are mostly taken

4By covering, we mean a support region occupies more than 20% area

of the object bounding box.

Table 1: Experimental result on Graz-Pascal dataset. Eval-

uated by average precision.

Test Setting Bike Car Person

Without new samples 93.3 79.2 86.4

Test on Graz

With new samples 93.8 79.7 88.3

Test on Graz

Without new samples 73.2 77.5 67.7

Test on Pascal

With new samples 73.4 80.9 68.4

Test on Pascal

in an outdoor environment. Therefore, the context which

is useful for Graz02 may not be useful in classifying im-

ages in PASCAL anymore. So if we can force the classi-

fier to focus more on the to-be-recognized object rather than

the context, we may expect a performance improvement on

the cross-dataset test. To validate this, the classifier is built

in two schemes: (1) directly train it on the training set of

Graz02. (2) Train an initial classifier on the Graz02 train-

ing set and display the detected support regions. Then users

are allowed to de-select the regions not covering the to-be-

recognized object and new samples are generated. Then

we retrain the classifier by adding these new samples to

the Graz02 training set and the performance of these two

schemes is compared. In detail, the Graz02 dataset contains

four class of car, bike, person and background four classes.

We use background as the negative class and car, bike, per-

son as the positive class, respectively, to form three binary

classification tasks. For each task, half of images in the

two involved classes are used for training and the remain-

ing is for test. For PASCAL, we extract the car, person, bike

images from its training/validation set to form the positive

classes respectively, and for each of them, we extract the

same number of images from the remaining classes to from

a negative class.

Examples of deselected support regions are shown in the

last row of Figure 6. If multiple support regions are de-

selected in an image, we generate a single sample by re-

moving all of them. After scanning all the images from the

training set of Graz02, we generate 40, 60, 150 new samples

for bike, person and car respectively. The result is shown

in Table 1. As seen, adding the new samples does improve

the classification performance on several occasions: car in

PASCAL, person in both PASCAL and Graz02. The largest

improvement is observed on car in PASCAL. It is quite rea-

sonable because we observed much more images with in-

appropriate support regions from car in Graz02, which im-

plies the classifier learned on Graz02 may rely more heavily

on the context. Consequently, a better generalization perfor-



Figure 6: First row: example images from Graz02. Second row: example images from PASCAL three class (car, bike,

person) subset. Last row: example inappropriate support regions in Graz02 that are deselected to generate new samples.

mance can be obtained by “reducing” this dependence via

retraining with the new samples. This also explains why no

significant improvement is observed on bike for which the

number of newly generated samples is the smallest. It is

also interesting to note that adding new samples does not

lead to much improvement on the test set of car in Graz02.

This may suggest that in this case the context visual cues

learned from the training set is also useful to the test set.

5. Conclusion

This paper developed a tool, called Restricted Support

Region Set Detection and Visualization, to understand the

Bag-of-feature image classification system. This tool has

been used to predict the failure mode of classifier, under-

stand the classification, reveal dataset bias, and interac-

tively generate new samples to improve generalization per-

formance. Through the interesting phenomenon discovered

by our tool, this study provides more insights on how dif-

ferent visual cues contribute to the classification of images.
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