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Abstract

This paper studies the problem of 3D non-rigid shape and
motion recovery from a monocular video sequence, under
the degenerate deformations. The shape of a deformable
object is regarded as a linear combination of certain shape
bases. When the bases are non-degenerate, i.e. of full rank
3, a closed-form solution exists by enforcing linear con-
straints on both the camera rotation and the shape bases
[18]. In practice, degenerate deformations occur often, i.e.
some bases are of rank 1 or 2. For example, cars moving or
pedestrians walking independently on a straight road refer
to rank-1 deformations of the scene. This paper quantita-
tively shows that, when the shape is composed of only rank-
3 and rank-1 bases, i.e. the 3D points either are static or
independently move along straight lines, the linear rotation
and basis constraints are sufficient to achieve a unique solu-
tion. When the shape bases contain rank-2 ones, imposing
only the linear constraints results in an ambiguous solution
space. In such cases, we propose an alternating linear ap-
proach that imposes the positive semi-definite constraint to
determine the desired solution in the solution space. The
performance of the approach is evaluated quantitatively on
synthetic data and qualitatively on real videos.

1. Introduction
Recovery of 3D shape and motion from a monocular video
sequence is an important task for applications like human
computer interaction and robot navigation. The decades of
work has led to significant successes on this problem. When
the scene is static, reliable systems exist for 3D reconstruc-
tion of the scene structure. In reality, many scenes are dy-
namic and non-rigid: expressive faces, cars moving beside
buildings, etc. Such scenes often deform with a class of
basis structures. For example, the shape of a face can be
regarded as a weighted sum of some shape bases, which
correspond to various facial expressions [3].

Bregler and his colleagues [5] first introduced the basis
representation to the problem of non-rigid structure from
motion. Using this representation, in [18], we presented two

sets of linear metric constraints, orthonormality constraints
on camera rotations (rotation constraints) and uniqueness
constraints on shape bases (basis constraints). We proved
that, when the shape deformation is non-degenerate, i.e. all
bases are of full rank 3, enforcing the linear constraints
leads to a closed-form solution [18]. In practice, many
scenes deform with degenerate bases of rank 1 or 2. Such
bases limit the shape to deform only in a 2D plane. For
instance, if a scene contains pedestrians walking indepen-
dently along straight lines, the bases referring to those rank-
1 translations are degenerate. A simple illustration of rank-
3, 2, and 1 bases is shown in Figure 1. Under degenerate
deformations, enforcing the linear metric constraints is not
necessarily sufficient to determine a unique solution.

This paper demonstrates that, when the shape involves
rank-2 bases, the linear constraints leads to an ambiguous
solution space that contains invalid solutions. The degree
of freedom of the space is determined by the number of
the rank-2 bases. Under such situations, we show that a
valid solution in the space must be positive semi-definite.
We then present an alternating linear optimization approach
that combines the linear metric constraints and the positive
semi-definite constraint to determine the desired solution.
When the shape bases are of either rank 3 or rank 1, i.e. all
the 3D points in the scene either are static or independently
move along straight lines, the linear metric constraints pro-
vide a unique solution to reconstructing the dynamic scene
structure and camera motion. Note that such special degen-
erate deformations often occur in real applications. For ex-
ample, when several people walk independently along dif-
ferent directions, each of the independent motions refers to
a shape basis and all of them are of rank 1. Most of previous
approaches [1, 7, 17] on degenerate deformations were pro-
posed for this special case. However they require either the
moving velocities are constant [7, 17] or the camera projec-
tion matrices are given [1].

2. Previous Work
The problem of 3D shape and motion recovery from 2D
image sequences has attracted a lot of attention. Various
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Figure 1: (Left): Three points (red) simultaneously move
along fixed directions in the 3D space. Their trajectories
form a deformation basis of rank 3. (Middle): Two points
move along fixed directions within a 2D plane. Their trajec-
tories form a rank-2 shape basis. (Right): One point move
along a fixed direction. Its trajectory forms a rank-1 basis.

approaches have been proposed for different applications
[12, 10, 18]. Our discussion will focus on the factorization
methods that are closely related to our work.

The factorization method was first proposed by Tomasi
and Kanade [12]. First it applies the rank constraint to fac-
torize a set of feature locations tracked across the entire se-
quence. Then it uses the orthonormality constraints on the
camera rotations to reconstruct the shape and motion in one
step. This approach and its extensions to various camera
projection models [9, 14] work for static scenes.

Costeira and Kanade [6] proposed a method that factor-
izes the image measurement to segment multiple indepen-
dently moving objects and individually recover their shapes.
Wolf and Shashua [16] derived a geometrical constraint,
called the segmentation matrix, to reconstruct a scene con-
taining two independently moving objects from two per-
spective views. Vidal and his colleagues [15] generalized
this approach to the case of multiple independently mov-
ing objects. For reconstruction of scenes consisting of both
static objects and objects moving along fixed directions,
Han and Kanade [7] proposed a factorization method that
achieves a unique solution assuming constant velocities. A
more generalized solution to reconstructing the shapes that
deform at constant velocity is presented in [17].

Bregler and his colleagues [5] first introduced the ba-
sis representation of non-rigid shapes to embed the defor-
mation constraints into the scene structure. By analyzing
the low rank of the image measurements, they enforce the
orthonormality constraints on camera rotations to factorize
the non-rigid shape and motion. This method was extended
to the nonlinear optimization approaches in [13, 4]. These
three methods impose only the constraints on rotations. In
[18], we proved that enforcing only the rotation constraints
leads to ambiguous and invalid solutions. We then intro-
duced the uniqueness constraints on the shape bases and
proved that imposing both the basis and the rotation con-
straints results in a linear closed-form solution, assuming
the shape deformations are non-degenerate [18]. To recon-
struct the degenerate deformations, most of previous ap-
proaches [1, 7, 17] assume strong prior knowledge on either
shape or motion. The methods in [7, 17] require that the de-

formation velocity is constant. The method in [1] assumes
that the trajectory of each 3D point is either a straight line
or a conic and the camera projection matrices are all given.

3. Problem Statement
Given 2D locations of P feature points across F frames,
{(u, v)T

fp|f = 1, ..., F, p = 1, ..., P}, our goal is to re-
cover the motion of the non-rigid object relative to the
camera, including rotations {Rf |f = 1, ..., F} and trans-
lations {tf |f = 1, ..., F}, and its 3D deforming shapes
{(x, y, z)T

fp|f = 1, ..., F, p = 1, ..., P}, under the assump-
tion of weak-perspective projection model.

We follow the representation of [3, 5]. The non-rigid
shape is represented as linear combination of K shape bases
{Bi, i = 1, ...,K}. The bases are 3×P matrices controlling
the deformation of P points. Then the 3D coordinate of the
point p at the frame f is,

Xfp = (x, y, z)T
fp = ΣK

i=1cfibip (1)

where bip is the pth column of Bi and cif is its combination
coefficient at the frame f . The image coordinate of Xfp

under the weak perspective projection model is,

xfp = (u, v)T
fp = sf (Rf · Xfp + tf ) (2)

where Rf stands for the first two rows of the fth camera
rotation and tf = (tfxtfy)T is its translation relative to the
world origin. sf is the nonzero scalar of the weak perspec-
tive projection.

Replacing Xfp using Eq. (1) and absorbing sf into cfi

and tf , we have

xfp =
(

cf1Rf ... cfKRf

)
·
(

b1p

...
bKp

)
+ tf (3)

Suppose the image coordinates of all P feature points
across F frames are obtained. We form a 2F × P measure-
ment matrix W by stacking all image coordinates. Then
W = MB + T (11...1). where M is a 2F × 3K scaled
rotation matrix, B is a 3K × P bases matrix, and T is a
2F × 1 translation vector,

M =




c11R1 ... c1KR1

...
...

...
cF1RF ... cFKRF




B =




b11 ... b1P

...
...

...
bK1 ... bKP


, T =




t1

...
tF




(4)

As in [7, 5], we position the world origin at the scene
center and compute the translation vector by averaging the
image projections of all points. We then subtract it from W



and obtain the registered measurement matrix W̃ = MB.
Since W̃ is the product of the 2F × 3K matrix M and the
3K × P matrix B, its rank is at most min{3K, 2F, P}.
In practice, the frame number F and point number P are
usually much larger than the basis number K. Thus under
non-degenerate deformations, i.e. each of the K bases is of
full rank 3, the rank of W̃ is 3K.

Under degenerate deformations, suppose of K shape
bases K1 bases are of rank 1, K2 are of rank 2, and K3

are of rank 3, the rank of B is Kd = K1 + 2K2 + 3K3 and
thus W̃ is of rank Kd. We then perform SVD on W̃ to get
its best possible rank Kd approximation, M̃B̃, where M̃ is
a 2F × Kd matrix and B̃ is a Kd × P matrix. This decom-
position is only determined up to a non-singular Kd × Kd

linear transformation. In such cases, the true scaled rotation
matrix M̂ and bases matrix B̂ are of the form,

M̂ = M̃G, B̂ = G−1B̃ (5)

where G is called the corrective transformation matrix. K3

triple-columns of G refer to the non-degenerate shape bases.
We assume K3 > 0, i.e. there is at least one non-degenerate
basis, because we are not studying degenerate shapes, e.g.
planar objects, but degenerate shape deformations. With-
out the loss of generality, we denote them as the first
K3 triple-columns of G, g̃1 , ..., g̃K3

. The other columns,
g3K3+1 , ..., gKd

correspond to the degenerate bases. Let us
denote them in such a way that the former columns refer to
the K2 rank-2 bases and the latter columns correspond to
the K1 rank-1 bases. Each of g̃

i
, i = 1, . . . , K3, consists of

three columns and each of gj , j=3K3+1,...,Kd
contains only

one column. We have,

M̃g̃i =




c1iR1

...
cFiRF


 , M̃gj =




c1jR1

...
cFjRF


 rj (6)

where rj is a unitary 3 × 1 vector. According to Eq. (6),
the first K3 triple-columns of M̂ correspond to the non-
degenerate bases and are the same as those of M in Eq. (4).
The other columns of M̂ refer to the degenerate bases and
they are unitary projections of the corresponding triple-
columns of M . The unitary vector rj is the eigenvector
of the corresponding degenerate shape basis. For example,
a degenerate basis Bj of rank 1 can be factorized as rjB̂j ,
where rj is the unitary 3×1 eigenvector and B̂j is the 1×P

projection vector. Then rj is absorbed into M̂ as in Eq. (6)
and B̂j becomes one row of B̂.

According to Eq. (5, 6), once G is recovered, the rota-
tions, shape bases, and combination coefficients are all de-
termined. Therefore the problem is reduced to: given the
measurement matrix W , how can we determine the correc-
tive transformation matrix G?

4. Constraints

In [18], we presented that two types of constraints should
be imposed to compute G: orthonormality constraints on
camera rotations (rotation constraints) and uniqueness con-
straints on shape bases (basis constraints).

4.1. Rotation Constraints

The orthonormality constraints on the rotation matrices are
one of the most powerful metric constraints and they have
been used in reconstructing the shape and motion for static
objects [12], multiple moving objects [7], and deformable
objects [5, 18].

Denote g̃
i
g̃T

i
by Qi. According to Eq. (6), We have,

M̃2m−1:2mQiM̃
T
2n−1:2n = ΣK

k=1cmkcnkRmRT
n (7)

where M̃2m−1:2m represents the mth two-row of M̃ . Due
to the orthonormality of the rotation matrices,

M̃2m−1:2mQiM̃
T
2m−1:2m = ΣK

k=1c
2
mkI2×2 (8)

where I2×2 is a 2×2 identity matrix. Since Qi is symmetric,
the number of unknowns in Qi is (K2

d +Kd)/2. For a frame
m, Eq. (8) yields two linear constraints on Qi,

M̃2m−1QiM̃
T
2m−1 = M̃2mQiM̃

T
2m (9)

M̃2m−1QiM̃
T
2m = 0 (10)

For F frames, we have 2F linear constraints on (K2
d +

Kd)/2 unknowns. It appears that, given enough images, i.e.
F ≥ (K2

d + Kd)/2, the rotation constraints in Eq. (9,10)
would be enough to determine Qi via the least-square
method. However, this is not true in general. Many of these
constraints are redundant. No matter how many frames are
given, the solution obtained using only these constraints is
inherently ambiguous.

Since the corrective transformation G is a non-singular
matrix, we denote Qi as GHGT . H is a Kd ×Kd symmet-
ric matrix, of which we only need to determine the upper
triangle matrix. As shown in Figure 2, the upper triangle of
H consists of 6 partitions, which correspond to the 6 types
of compositions between the columns of G when construct-
ing Qi. For example, a 3 × 3 block Hmn in Ω1 refers to
the composition of g̃

m
Hmng̃T

n
; A 3 × 1 block Hml in Ω3

refers to the composition of g̃
m

Hmlg
T
l

, where g̃
m

and g̃
n

correspond to non-degenerate rank-3 bases and g
l

refers to a
rank-1 basis. Accordingly, we represent Ω1 as 3×3 blocks,
Ω2 as 3× 2 blocks, Ω3 as 3× 1 blocks, Ω4 as 2× 2 blocks,
Ω5 as 2 × 1 blocks, and Ω6 as individual elements.

Theorem 1 The general solution of the rotation constraints
in Eq. (9,10) can be expressed as GHGT , where G is the



Figure 2: The upper triangle of H consists of 6 partitions,
which refer to 6 types of compositions between the columns
of G.

desired corrective transformation matrix and H satisfies,

Hmn =




λmnI3×3, (m, n) ∈ Ω1, m = n
Ymn(3×3) + λmnI3×3, (m, n) ∈ Ω1, m < n(

Ymn(2×2)

0 0

)
, (m, n) ∈ Ω2

0, (m, n) ∈ Ω4, m = n
Ymn(2×2), (m, n) ∈ Ω4, m < n
0, (m, n) ∈ Ω3

⋃
Ω5

⋃
Ω6

(11)

where λmn is an arbitrary scalar. Ymn is an arbitrary skew-
symmetric matrix, i.e. Ymn = −Y T

mn. Note that the size of
Hmn varies in different partitions. The proving procedure
is similar with that of Theorem 1 in [18]. For details, refer
to [18]. The diagonal elements of a skew-symmetric matrix
are all zeros. Thus a 2× 2 skew-symmetric matrix includes
only 1 free element and a 3 × 3 skew-symmetric matrix
includes 3 free elements. According to Eq. (11), it is easy to
show that the degree of freedom of the solution by enforcing
only the rotation constraints is 2K2

3 − K3 + K3K2 + K2
2 .

4.2. Basis Constraints
In [18] we demonstrate that the ambiguity of rotation con-
straints arises from the non-uniqueness of shape bases be-
cause any non-singular linear transformation on the bases
yields a new set of eligible bases. To eliminate the am-
biguity, we need to determine a unique set of bases. In
non-degenerate cases, this is done by selecting K frames
including independent shapes and treating those shapes as a
set of bases [18]. Specifically, for any group of K frames,
we compute the condition number of the corresponding im-
age measurements (sub-matrix of W̃ ). The group with the
smallest condition number is chosen to determine the bases
because smaller condition numbers refer to more indepen-
dent shapes. However, this process can only determine the
non-degenerate bases.

In degenerate cases, even if some bases are degenerate,
their linear combination is in general non-degenerate. Thus

the shape in any frame is non-degenerate as a combination
of all bases and we cannot determine the degenerate bases
as we did for the non-degenerate ones. We can only choose
the group of K3 frames of which the image measurements
have the smallest condition number and treat the associated
shapes as the K3 non-degenerate bases. Note that although
the non-degenerate bases are implicitly determined by the
above procedure, their explicit values are unknown at this
point.

Without the loss of generality, we denote the chosen
frames as the first K3 images in the sequence and the corre-
sponding coefficients are

cmm = 1, m ≤ K3

cmn = 0, m �= n, m ≤ K3, n ≤ K
(12)

According to Eq. (7), we obtain 4F (K3 − 1) linear con-
straints on Qi. They are called the basis constraints:

M̃2m−1QiM̃
T
2n−1 =

{
1, (m, n) ∈ ω1

0, (m, n) ∈ ω2
(13)

M̃2mQiM̃
T
2n =

{
1, (m, n) ∈ ω1

0, (m, n) ∈ ω2
(14)

M̃2m−1QiM̃
T
2n = 0, (m, n) ∈ ω1

⋃
ω2 (15)

M̃2mQiM̃
T
2n−1 = 0, (m, n) ∈ ω1

⋃
ω2 (16)

where ω1 = {(m,n)|m = n = i} and ω2 = {(m,n)|m ≤
K3, n ≤ F, m �= i}.

Theorem 2 Enforcing both basis and rotation constraints,
i.e. Eq. (9,10,13∼16), the general solution of Qi = GHGT

satisfies,

Hmn =




I3×3, m = n = i(
Ymn(2×2)

0
0

0 0 0

)
, m = i �= n, (m, n) ∈ Ω1

0, (m, n) �= i, (m, n) ∈ Ω1(
Ymn(2×2)

0 0

)
, (m, n) ∈ Ω2

0, (m, n) ∈ Ω4, m = n
Ymn(2×2), (m, n) ∈ Ω4, m < n
0, (m, n) ∈ Ω3

⋃
Ω5

⋃
Ω6

(17)
where Ymn’s are skew-symmetric matrices that satisfy,

Yim + ΣK3+K2
l=K3+1cmlYil = 0, m ≤ K3, m �= i

Ymn + ΣK3+K2
l=K3+1cmlYln = 0, (m, n) ∈ Ω2, m �= i

(18)

The proving procedure is similar with that of Theorem 2
in [18]. Since a 2×2 skew-symmetric matrix consists of one
free element, H consists of K3−1+K3K2+(K2

2 −K2)/2
free elements. Eq. (18) provides K3 − 1 + K3K2 −K2 in-
dependent linear constraints. Therefore enforcing both the
metric constraints leads to a solution space of which the de-
gree of freedom is ND = (K2

2 + K2)/2. When the shape



bases are either rank-3 or rank-1 (K2 = 0), the metric con-
straints generate a unique solution (ND = 0). Otherwise
when there exist rank-2 bases (K2 > 0), the solution is am-
biguous (ND > 0).

5. Solutions
5.1. Determine the Number of the Bases
To utilize the rotation and basis constraints, we need to
know the number of rank-3, 2, and 1 bases. First let us
determine Kd, the rank of W̃ . We perform SVD on W̃ and
obtain the singular values. In noiseless settings, Kd equals
the number of the non-zero singular values. When noise ex-
ists, Kd is estimated as the smallest number of the singular
values whose sum is larger than some percentage (99% in
our experiments) of the sum of all the singular values.

We then decide K3, the number of non-degenerate bases.
Because these bases are of rank 3, 1 ≤ K3 ≤ Kd/3. In
previous section, we show that the basis constraints only
determine the rank-3 bases, i.e. only rank-3 bases satisfy
the basis constraints. Thus we choose K3 as the largest
number from 1 to Kd/3 for which the linear constraints
(Eq. (9,10,13∼16)) are satisfied.

We now determine K2, the number of rank-2 bases. Ac-
cording to Theorem 2, the rank of the linear constraints is
a quadratic function of K2. Because K3 is known, we can
compute the rank of Eq. (9,10,13∼16) and calculate K2 as
a root of the function. Finally K1, the number of rank-1
bases, is Kd − 2K2 − 3K3.

5.2. An Alternating Linear Solution under the
Existence of Rank-2 Shape Bases

Due to Theorem 2, when rank-2 shape bases exist (K2 > 0),
imposing the metric constraints (Eq. (9,10,13∼16)) leads to
an ambiguous solution space. By definition Qi = g̃ig̃

T
i

is positive semi-definite. According to Eq. (17), if any of
the skew-symmetric matrices (Ymn) in H is not zero, H is
not positive semi-definite and nor is Qi that equals GHGT .
Thus the solution space contains invalid solutions. Ymn’s
have to be zeros so that Qi is a valid solution. We thus
develop an alternating linear method that enforces this con-
straint to uniquely determine a valid solution in the space.

Because the linear solution space has the degree of free-
dom of ND, we represent Qi as a weighted sum of a partic-
ular solution and ND homogeneous solutions,

Qi = Λ0 + ΣND
m=1λmΛm (19)

where Λ0 is the particular solution and Λ1,...,ΛND
are the

homogeneous solutions. The scalars λm are the only un-
knowns to solve for. Our algorithm consists of three steps:

1. Use the particular solution Λ0 as the initial estimate of Qi.

2. Apply SVD on Qi to compute its best possible rank 3 ap-
proximation g̃i g̃i

T .

3. Given g̃i , calculate the coefficients λm in Eq. (19) by the
linear least-square method. Then update Qi via Eq. (19).

The last two linear processes are repeated alternatively
till they converge. Note that the positive semi-definite con-
straint Qi = g̃

i
g̃

i

T is explicitly enforced. Once g̃
i
, i =

1, ...,K3 are determined, according to Eq. (6), we recon-
struct the rotations and the associated coefficients.

So far we have recovered the columns of G that refer
to the non-degenerate bases and the camera rotations. We
now recover the other columns, g3K3+1 , ..., gKd

, which cor-
respond to the degenerate bases. From the second equation
in Eq. (6), we cancel the unknown coefficients and achieve
F constraints on g

j
and rj ,

(M̃2m−1gj Rm,2 − M̃2mgj Rm,1)rj = 0, m = 1, ..., F (20)

where Rm,1 means the first row of the rotation matrix Rm.
Due to Eq. (12), we obtain another 2K3 constraints on g

j
,

M̃mgj = 0, m = 1, ..., 2K3 (21)

We then apply the following alternating linear approach to
determine gj and rj ,

1. Calculate a particular solution of Eq. (21) as the initial esti-
mate of gj .

2. Given gj , calculate the rank-1 null space of Eq. (20) as the
solution of rj .

3. Given rj , solve Eq. (20) and (21) to update gj .

The last two linear processes are repeated alternatively
till they converge. In these processes, we constrain G to
be non-singular by forcing its columns independent on each
other. This way prevents the algorithm from converging to
some trivial solutions, e.g. g

j
and r

j
are both zeros. Now

we have completely recovered the corrective transformation
G. The associated coefficients and the shape bases are com-
puted using Eq. (6) and (5) respectively. Their composition
then reconstructs the non-rigid shapes as in Eq. (1).

5.3. A Unique Solution when Rank-2 Shape
Bases do not Exist

A special case of degenerate deformations, i.e. all the
points on the non-rigid shape either are static or indepen-
dently move along straight lines, often occurs in practice.
For example, cars drive or pedestrians walk independently
along straight lines and beside a house. Several approaches
[1, 7, 17] have been developed specifically for such degener-
ate deformations. However they require strong prior knowl-
edge on either shape or motion. For example, assuming the
camera projection matrices and the feature correspondence
are given across five or more views, [1] presents the trajec-
tory triangulation technique that uniquely reconstructs the
3D shape and motion trajectories.



In such cases, the shape bases are either rank-3 or rank-
1. In the above example, the bases referring to the inde-
pendent motions of cars or pedestrians are of rank 1 and the
basis corresponding to the static house is of rank 3. Because
K2 = 0, according to Theorem 2, enforcing the linear met-
ric constraints (Eq. (9,10,13∼16)) leads to a unique solution
of Qi. Using SVD, we can factorize Qi to compute g̃

i
. Then

the camera rotations can be recovered using Eq. (6).
Under the weak-perspective projection model, given the

recovered rotations, we can construct the projection matrix
up to a scalar,

Ωi =

(
Ri

0
0

0 0 1 0

)
(22)

where the translation has been eliminated by moving the ori-
gin to the center of all points. We then apply the trajectory
triangulation technique [1, 11] to uniquely reconstruct the
3D shapes and motion trajectories. For details of the trajec-
tory triangulation technique, refer to [1, 11]. Note that we
do not require the assumptions as previous approaches did.

6. Performance Evaluation
The performance of our approach is evaluated in a number
of experiments. First, we evaluate its robustness and accu-
racy quantitatively on synthetic data. Second, we apply it
on real image sequences to examine it qualitatively.

6.1. Quantitative Evaluation on Synthetic
Data

Our approach is first quantitatively evaluated on the syn-
thetic data. We test its accuracy and robustness on two
factors: number of degenerate bases and strength of noise.
Since the number of the unknowns involved in the alter-
nating linear algorithm only depends on the number of the
rank-2 bases, we choose all the degenerate bases to be of
rank 2 in the experiments. Thus more degenerate bases re-
sult in a more complex optimization process. Assuming a
Gaussian white noise, we represent the noise strength level
by the ratio between the Frobenius norm of the noise and
the measurement, i.e. ‖noise‖

‖W̃‖ . In general, when noise ex-

ists, the larger the number of degenerate bases is, the more
complicated the optimization process is and thus the worse
its performance is.

Figure 3 shows the evaluation on a 10 bases setting. The
number of degenerate bases is respectively 1,..., or 9, shown
as the horizontal axes. Four levels of Gaussian white noise
are imposed. Their strength levels are 0%, 5%, 10%, and
20% respectively. We test a number of trials on each setting.
The average reconstruction errors on the rotations and 3D
shapes relative to the ground truth are shown in Figure 3. In
the experiments when the noise level is 0%, regardless of
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Figure 3: The relative reconstruction errors under differ-
ent levels of noise and various number of degenerate bases.
Each curve refers to a respective noise level.

how many bases are degenerate, our method converges to
the exact rotations and shapes with zero error. When there
is noise, it achieves reasonable accuracy, e.g. the maximum
reconstruction error is less than 20% when the noise level is
20% and 9 out of 10 bases are degenerate. As we expected,
under the same noise level, the performance is better when
more bases are non-degenerate.

6.2. Qualitative Evaluation on Real Video Se-
quences

We then examine our approach qualitatively on a number of
real video sequences. One example is shown in Figure 4.
The sequence was taken of an indoor scene by a handhold
camera. The dynamic scene consisted of a static table and
two boxes moving on top of the table. The boxes moved in-
dependently along the straight borders on the table top and
at varying velocities. The scene structure is thus composed
of three shape bases, one representing the static table and
the initial locations of the two boxes and the other two rep-



resenting the two linear motion vectors respectively. Since
the boxes vertices and the table corners are not located in
the same plane, the first shape basis is of rank 3. The other
two bases are both of rank 1. Thus the rank of the image
measurement W̃ is 5.

18 feature points, consisting of the table corners and vis-
ible vertices of the boxes, across 30 images are given for
reconstruction. Two of them are shown in Figure 4.(a,b).
The numbers of the three types of bases are determined as
described in Section 5.1. The camera rotations and dynamic
scene structure are then reconstructed by the alternating lin-
ear algorithm. To evaluate the reconstruction, we synthe-
size the scene appearance viewed from one side, as shown
in Figure 4.(c,d). The wireframes show the structure and
the yellow lines show the trajectories of the moving boxes
from the beginning of the sequence until the present frames.
The recovered structure is consistent with our observation,
e.g. the boxes approximately move along the table top bor-
ders. Figure 4.(e,f) show the reconstructed scene viewed
from the top. Because the scene structure is composed of
rank-1 and rank-3 bases, we also tested the unique solu-
tion described in Section 5.2 on this setting and achieved
the similar results. Occlusion was not taken into account
when rendering these images. So in the regions that should
be occluded, e.g. the areas behind the boxes, the stretched
texture of the occluding objects appears. Our approach as-
sumes the weak-perspective projection model that requires
the scene to be far from the camera. However in this ex-
periment, the images were not taken from a long distance.
Due to the perspective effect, the recovered object shapes
are somewhat distorted, e.g. the shapes of the boxes are not
precisely cuboid.

Human faces are highly non-rigid objects and 3D face
shapes can be represented as linear combinations of certain
shape bases that refer to various facial expressions. Un-
der some facial motions, e.g. eye opening, the deforma-
tions along horizontal and vertical directions are dominant
and those along depth direction are relatively subtle. Under
the expressions where these degenerate motions are accom-
panied with other facial deformations such that the corre-
sponding bases for the entire face shape are non-degenerate,
the non-rigid shapes can be recovered using the method in
[18]. Under some expressions, e.g. yawning and blinking,
the facial deformations are mainly composed of these de-
generate motions and thus the corresponding bases are close
to degenerate. In such cases, we have to utilize the alter-
nating linear method. One example is shown in Figure 5.
The sequence consists of 180 face images that contain ex-
pressions like blinking and smiling. 68 feature points were
tracked using an efficient Active Appearance Model (AAM)
method [2]. Figure 5.(a,b) display two input images with
marked features. Their corresponding shapes are recon-
structed and shown from a novel view in Figure 5.(c,d). The

(a) (b)

(c) (d)

(e) (f)

Figure 4: Reconstruction of two boxes independently mov-
ing along the borders of a static table top. (a)&(b): Two in-
put images with marked features. (c)&(d): Reconstructed
scene appearance viewed from one side. The wireframes
show the structure and the yellow lines show the trajecto-
ries of the boxes from the beginning of the sequence until
the present frames. (e)&(f): Reconstructed scene appear-
ance viewed from the top.

overlapped wireframes demonstrate the recovered facial de-
formations such as mouth widening when smiling and eye
closure when blinking.

7. Conclusion and Discussion
This paper studies the problem of non-rigid structure from
motion under degenerate deformations. We quantitatively
demonstrate that when rank-2 bases exist, imposing only
the linear metric constraints (Eq. (9,10,13∼16)) results in
an ambiguous solution space. To eliminate the ambiguity,
we develop an alternating linear approach that combines the
metric constraints with the positive semi-definite constraint.
When the points on the shape either are static or indepen-
dently move along straight lines, we present a unique solu-
tion to reconstructing the 3D shape and motion trajectories.



(a) (b)

(c) (d)

Figure 5: Reconstruction of face shapes with expressions of
blinking and smiling. (a)&(b): Input images with marked
features. (c)&(d): Reconstructed face structures seen from
a novel view. The overlapped wireframes demonstrate the
recovered facial deformations such as mouth widening and
eye closure.

A limitation of our approach is the assumption of the
weak-perspective projection model. When the depth vari-
ance of the scene points is not small relative to the distance
from the scene to the camera, the reconstructed shape will
be distorted due to the perspective effect. An example is
shown in Figure 4. To compensate for this effect, we are
working on the extension of our method to the full perspec-
tive projection model. Another problem is how to deal with
outliers such as occlusion and missing data that often occur
in practice. One idea is to combine the factorization process
with a robust estimator that detects and handles the outliers
[8]. An alternative way is to incorporate a prior knowledge
on the specific object structure, e.g. symmetry, into the fac-
torization process.
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