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ABSTRACT

The use of wireless sensor networks for target tracking is an active
area of research. Imaging sensors that obtain video-rate images
of a scene can have a significant impact in such networks, as they
can measure vital information on the identity, position, and veloc-
ity of moving targets. Since wireless networks must operate under
stringent energy constraints, it is important to identify the optimal
set of imagers to be used in a tracking scenario such that the net-
work lifetime is maximized. We formulate this problem as one
of maximizing the information utility gained from a set of sensors
subject to a constraint on the average energy consumption in the
network. We use an unscented Kalman filter framework to solve
the tracking and data fusion problem with multiple imaging sen-
sors in a computationally efficient manner, and use a lookahead
algorithm to optimize the sensor selection based on the predicted
trajectory of the target. Simulation results show the effectiveness
of this method of sensor selection.

1. INTRODUCTION

Video-based tracking for applications, such as surveillance and
traffic analysis, is a well-studied topic in computer vision. Sys-
tems with multiple cameras can be used to detect and localize mov-
ing objects while also providing vital information on the objects,
such as shape, color, and size, which can be used for identifica-
tion. [1] and [2] are examples of multiple camera tracking systems
proposed for wired networks of cameras. The computational cost
associated with image and video processing, however, has driven
recent research on tracking with wireless sensor networks towards
less complex and less energy consuming sensors.

An analysis of the energy consumption and information rate
of visual sensors relative to other sensors is provided in [3]. It is
shown in [3] that, while visual sensors cost more in terms of energy
consumption per sample than acoustic or seismic sensors, they can
still be valuable partners in a wireless sensor network. Therefore, it
is important to develop scalable schemes for collaboratively using
multiple imaging sensors in a sensor network.

In this paper, we demonstrate a method for selecting the opti-
mal set of imaging sensors to use for tracking a moving target such
that the energy consumed in the network is within a reasonable
constraint. In order to achieve this, we use the concept of sensor
utility [4]-[6]. In [4], this idea is introduced in terms of selecting
subsets of sensors at each time step such that the sum utility gain
over the total time is maximized subject to a total power constraint
for each sensor. However, they use a simple model for the utility

function where it is assumed to monotonically increase with the
number of sensors.

In [5], and [6], the tracking problem is formulated in a Bayesian
framework and the information utility of a sensor is defined in
terms of the posterior state distribution of the target given that a
particular sensor is used. Since a measurement from the sensor
is not available at the time that the decision to pick the sensor is
made, an expected posterior state distribution is found for each
sensor. In [7], it is shown that the expected posterior uncertainty
in the target state estimate can be quantified as a conditional en-
tropy conditioned on all the previous measurements and the new
measurement. They also show that the expected posterior entropy,
given a particular sensor is used, is inversely related to the mutual
information between the target state and the sensor measurement.
If a Gaussian state space model is assumed, then the posterior en-
tropy does not depend on a measurement taken from the sensor,
and it is directly related to the covariance of the posterior estimate.

The above method of calculating the information utility has
been used in [8] and [9]. In [9], a multistep lookahead algorithm
is used which maximizes the sum of the information gain over a
finite horizon. This enables the system to continue to track a target
through regions which may not be covered by any sensor in the
network.

In the above work, the sensing is performed by one leader
node at each time step. A significant difference in using imag-
ing sensors is that measurements from at least two sensors at a
time are required in order to continue to accurately triangulate the
position of the target. Therefore, our algorithm must choose the
best subset of two or more sensors from among all the sensors that
could potentially be able to sense the target. Another important
difference is that imaging sensors generally rely on motion seg-
mentation in order to detect the target in the scene. Since motion
segmentation algorithms require some initialization time, our al-
gorithm must look ahead over an adequate number of steps so that
it can turn on a potentially useful sensor prior to the time when
the sensor is actually utilized. Here, we assume that sensors use
energy for processing as well as the transmission of information.

This paper is organized as follows. In the next section, we
briefly describe the tracking method based on the Unscented Kalman
filter [10], [11] that was utilized in our work. We show how the
sensor utility measure can be calculated as part of the tracking ap-
proach. Section 3 describes the sensor network that is envisioned,
and provides the problem formulation. In section 4, we show some
simulation results where we compare the proposed approach to
other possible approaches for sensor selection, and then we pro-
vide our conclusions in section 5.
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2. THE TRACKING METHOD AND SENSOR UTILITY

2.1. Bayesian Formulation

In a Bayesian framework, the problem of tracking a target can be
expressed as the task of finding the a posteriori distribution of the
current target state (at time k) x(k), denoted, p(x(k)|Zk), where,
Z

k denotes all the measurements taken up to time k. The above
distribution can be written recursively as:

p(x(k)|Zk) =
p(z(k)|x(k))p(x(k)|Zk−1)

p(z(k)|Zk−1)
(1)

where z(k) is a vector of measurements taken by the subset of
sensors that is active at time k. We consider the target state, x,
to consist of the x,y, and z coordinates of the target and the asso-
ciated velocities, xv , yv and zv in each direction. Thus, the state
vector can be written as:

x = [x, xv, y, yv, z, zv]T (2)

The observations will be the u, v coordinates of the target as ob-
served by the image plane of each sensor. Therefore, the observa-
tion vector for each sensor i can be written as:

zi = [ui, vi]
T (3)

The observation function can be described using the projective ma-
trix Pri, obtained by calibrating the sensor. In previous work, we
have demonstrated a method for self-calibrating a set of imaging
sensors in a network [12]. Therefore, we can represent the rela-
tionship between the observations and the target state as follows:
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From eq. (4), it is clear that the observation (u, v) at each sensor is
a non-linear function of the target state since the scaling parameter,
S, depends on the target state.

2.2. The Unscented Kalman Filter

Due to the non-linearity of the observation model, a standard linear
Kalman filter approach cannot be used to solve our tracking prob-
lem. While a possible approach would be to linearize the obser-
vation model and develop an extended Kalman filter framework,
an alternative method that is simple to implement and produces
better estimates of the first and second order statistics of the tar-
get state is presented in [10], and [11]. In this paper, we will not
delve into extensive details of this approach, which is termed the
Unscented Kalman Filter (UKF). The basic idea of the UKF can
be stated as that of generating a set of samples of a known prob-
ability distribution (i.e., a set of samples that will have the same
mean and covariance), and then of transforming the sample set ac-
cording to the dynamic and observation models of the system. The
transformation, which is termed an unscented transformation, sat-
isfies certain properties that ensure the resulting statistics will be
consistent and the resulting estimates will be unbiased. Since a
Gaussian distribution is completely described by its mean and co-
variance, the number of samples required in order to represent the
distribution is finite and small.

We assume that the dynamic model for the target state x and
the observation model for the sensors can be specified respectively
as:

x(k + 1) = f(x(k),v(k)), (5)

and,
zC(k + 1) = hC(x(k + 1),w(k + 1)) (6)

where noise vectors v(k) and w(k) are zero mean, uncorrelated
Gaussian processes. The observation function, hC , is a non-linear
function defined by (4) where C denotes the subset of sensors
whose measurements are taken.

Now, given the current state x(k), current state covariance
P(k), and a set of sensors C, the UKF can output PC(k + 1),
which is the covariance of the posterior distribution of x(k + 1)
given that the UKF is updated with measurements from the sensor
subset C. As with the standard linear Kalman filter, the actual sen-
sor measurements are not required in the calculation of PC(k+1).
Once the actual sensor measurements are obtained, the UKF can
be used to estimate the mean x̂(k + 1).

2.3. Sensor Utility Measure

A larger covariance in the posterior distribution of x(k+1) implies
a greater uncertainty in the estimate x̂(k + 1) that would be given
by the tracker. Therefore we can use the trace of the covariance
matrix PC(k + 1) as a measure of the uncertainty in the estimate
x̂(k + 1) given that observations are to be taken from the sensor
subset C. Thus, we can quantify the information utility, ψC(k+1),
of the sensor set C.

ψC(k + 1) = −trace[PC(k + 1)] (7)

3. PROBLEM FORMULATION

3.1. The Sensor Network

We consider a network of N arbitrarily placed and arbitrarily ori-
ented imaging sensors. Each sensor is assumed to have a limited
field of view, defined by the intrinsic parameters and orientation of
that sensor. The sensors are assumed to be calibrated prior to the
tracking task.

The network also includes low-power sensors (eg., passive
infra-red) that can act as triggers to initially power on the imaging
sensors when a target is approaching the perimeter of the sensor
field. Each low-power sensor is assumed to be capable of trigger-
ing its neighboring imaging sensors. We also assume that the tar-
get state estimates are maintained by a set of processing nodes that
are located within each cluster of sensors. Each processing node
can send and receive transmissions to and from all its neighboring
imaging sensors as well as its neighboring processing nodes.

For the purposes of this paper, we assume that the sensors can
transmit at only one power level with which they are able to com-
municate with all the sensors within their neighborhood, and also
that the sensors are homogeneous in terms of their processing and
transmission energy consumption.

Since a sensor cannot transmit any useful information while
it is still in its initialization stage, we assume that each imaging
sensor i can be in one of three possible states, πi, at time k. They
are:

• πi[k] = 0: Sensor is off (inactive)

• πi[k] = 1: Sensor is on and processing but not transmitting
(initializing)
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• πi[k] = 2: Sensor is on and transmitting

We can assume that each sensor needs an initialization time of T
time steps. Therefore, the energy used by each sensor i at time k
is a function of the sensor state πi[k], which in turn is constrained
by the sensor state over T previous time steps.

3.2. Problem Definition

We define the optimal sensor selection problem as that of selecting
the states of the set of sensors throughout the tracking period such
that the sum information utility provided by the active sensors will
be maximized subject to a constraint on the average energy that
can be used by the network. The average energy constraint allows
the network to limit the number of sensors that will be active and
transmitting at any given time while still allowing for some flexi-
bility in order to maintain the tracking accuracy.

min
∑K

k=1
−U(π[k], k)

πN

s.t.
∑K

k=1

∑

i∈N
Ei(πi[k]) ≤ K · Eave

(8)

where, U(π[k], k) is the information utility provided by the net-
work state π[k] at time k. K is the total time the target remains
within the field of view of the network, and Eave is the average
energy constraint. Note that if C is the set of sensors i such that
πi[k] = 2 (i.e. on and transmitting at time k), then U(π[k], k)
would be equal to ψC(k) as provided by (7).

Since the network can potentially consist of a large number
of sensors, the above problem is difficult to solve in a centralized
manner. The total time the target remains within the network can
also be long, and the information utility of the sensors can only be
tracked over a finite time based on the accuracy of the target dy-
namic model. Therefore, it is important to solve the above problem
in a distributed manner over finite lengths of time. Our proposed
approach solves the problem in a distributed manner by using the
processing nodes in the network. We make the problem tractable
by optimizing over a finite window, W = T + 1, in time, where
T is the initialization time for each sensor. Therefore, in the pro-
posed method, this optimization is performed at each time step by
the processing node that is closest to the target based on the pre-
viously estimated target state. The processing node calculates the
current target state, and hands over the processing to the next node
that will be closest to the target. Each processing node has the
capability of receiving transmissions only from the sensors in the
network that are within its range. Now, the problem can be stated
as follows:

At each time step, k, pick the processing node closest (based
on the previous state estimate) to the target. Let the sensors within
range of the processing node be in the set R. Then, we define the
objective to be minimized by the processing node at each time step
as:

min −U(πR[k], k) −
∑k+W−1

j=k+1
Û(πR[j], j)

πR[k]
s.t.

∑k

j=k−W+1

∑

i∈N
Ei(πi[j]) ≤W · Eave

∑

i∈N
Ei(πi[j]) ≤ Epk

(9)
Here Epk is a peak energy constraint that essentially limits the
maximum number of sensors that can be used at any time. The

term Û(πR[j], j) denotes the estimated information utility for fu-
ture time steps, which will depend on future choices of the network
state π. The above minimization problem is solved using a tree-
pruning algorithm. Since the computational complexity of the al-
gorithm increases exponentially withW , and since our confidence
in the expected utility measure decreases with time, we also limit
the number of nodes in the tree that are preserved at each time step
to be within a maximum bound M . Essentially, at each time step,
the nodes of the tree are sorted according to their sum information
utility values up to that time step, and only the top M nodes are
preserved.

Once the correct sensor states are chosen, the processing node
will transmit a command to each relevant sensor to configure its
state. The processing node will then update its estimate of the tar-
get state based on measurements received from the selected sen-
sors. Once the estimate is updated, the processing node will either
hand-off the processing task to a new node that is closer to the tar-
get than itself, or, if it is still the closest node, it will continue the
tracking and sensor selection process.

4. SIMULATIONS

To demonstrate the feasibility of the proposed sensor selection ap-
proach, we simulated a network with imaging sensors laid out in
a 50m x 50m area, divided into 10m x 10m blocks. Each block
contained 2 randomly placed and oriented imaging sensors. The
center of each block contained a processing node. We assumed
that each processing node could communicate with any sensor or
processing node within its own block, or its 8 neighboring blocks.
A processing node becomes active and begins to optimally select
sensor states only when the estimated target position is within its
block.

For our experiments, the sensor frame rate was assumed to be
30fps. The resolution of the sensors was set at 1280x1024 pixels,
and the focal lengths were set at 5.4mm. The target was assumed to
be about the size of a medium-sized car with dimensions of about
4.8m x 1.8m x 1.5m (length, width, height). The observation from
each sensor was the perceived centroid of the target for that sensor.
The target speed was set between 30-60m/sec, and the tracking
period was 50sec.

Figure 1 shows an example setup of the sensor network. We
also show the estimated target trajectory, vs the ground truth using
our tracking and sensor selection method for a specific realization
of sensor placements and target trajectory. For this simulation, we
set the initialization time to 2 time steps.

To demonstrate the advantages of the proposed approach, we
first compared the proposed method to a random selection ap-
proach. In the random approach, the transmitting and initializing
sensors were chosen randomly from the set of sensors for which
the target would be within the field of view based on its estimated
location. The initialization time was set to one time step. The
comparison was based on results averaged over 100 complete in-
dependent runs with each run having a random sensor placement
and target trajectory. A complete run was considered to be a run
in which neither method lost track of the target. A target track was
assumed to be lost if the target was not seen by any sensor for at
least 5 time steps. The results for each method are shown in fig.
2. The actual average energy used by the random sensor selection
method tends to be lower than the optimal method since it does not
initialize sensors that could potentially be of use in the next time
step. The rmse values are averaged over only the realizations in
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Fig. 1. The sensor network: the dashed lines indicate the field of
view of each sensor, and the circles indicate the positions of the
processing nodes. The ’+’ indicates the ground truth for the target
trajectory, and the ’x’ indicates the estimated trajectory.

Optimal Selection Random Sensor Selection
Ave. E 4.93 2.41
rmse 0.40 0.52
% lost tracks 6.3 58.0

Fig. 2. Comparison between proposed sensor selection approach
based on predicted utility gain over three steps, and random sensor
selection approach. The average energy threshold was set at 5.5,
and initialization time was set at 1 time step.

which both approaches were able to track the target throughout its
entire trajectory.

We also compared our approach with a different approach that
uses the distance from the estimated target position to the position
of each sensor as a measure of the sensor utility. In this method,
the sensors closest to the target are assumed to have the greatest
utility in observing its location. The two approaches were com-
pared under similar conditions with the the same constraints on
energy, and an initialization time of two time steps. The results
for the two approaches are shown in fig. 3. Again, the results are
averaged over 100 complete independent runs with each run hav-
ing a different random sensor placement and target trajectory. The
information utility based approach performs better in terms of the
tracking accuracy when compared with the other approach.

Optimal Selection Closest Sensor Selection
Ave. E 4.87 4.41
rmse 0.44 0.52
% lost tracks 10.3 11.2

Fig. 3. Comparison between information based utility approach
and distance based utility approach. The average energy threshold
was set at 5.5, and initialization time was set at 2 time steps.

5. CONCLUSIONS
In this paper, we have developed a feasible approach for target
tracking in a wireless sensor network using imaging sensors. We
have developed a method that takes into account the initialization
time required by imaging sensors in order to perform motion seg-
mentation for target detection and tracking. We have shown the
gain in terms of tracking accuracy that can be acheived by selecting
imaging sensors based on an information utility criterion subject to
the energy constraint. We have also demonstrated that the sensor
utility can be obtained in a computationally efficient manner using
an unscented Kalman filter.
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