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Abstract

This paper gives a new method for image rectification, the process of resampling pairs
of stereo images taken from widely differing viewpoints in order to produce a pair of
“matched epipolar projections”. These are projections in which the epipolar lines run
parallel with the x-axis and consequently, disparities between the images are in the x-
direction only. The method is based on an examination of the fundamental matrix of
Longuet-Higgins which describes the epipolar geometry of the image pair. The approach
taken is consistent with that advocated by Faugeras ([4]) of avoiding camera calibration.
The paper uses methods of projective geometry to determine a pair of 2D projective
transformations to be applied to the two images in order to match the epipolar lines.
The advantages include the simplicity of the 2D projective transformation which allows
very fast resampling as well as subsequent simplification in the identification of matched
points and scene reconstruction.

1 Introduction

An approach to stereo reconstruction that avoids the necessity for camera calibration
was described in [7, 4] In those papers it was shown that the the 3-dimensional configu-
ration of a set of points is determined up to a projectivity of the 3-dimensional projective
space P3by their configuration in two independent views from uncalibrated cameras. The
general method relies strongly on techniques of projective geometry, in which configura-
tions of points may be subject to projective transformations in both 2-dimensional image
space and 3-dimensional object space without changing the projective configuration of
the points. In [7] it is shown that the fundamental matrix, F , ([10]) is a basic tool in
the analysis of two related images. The present paper develops further the method of
applying projective geometric, calibration-free methods to the stereo problem.

The previous papers start from the assumption that point matches have already been
determined between pairs of images, concentrating on the reconstruction of the 3D point
set. In the present paper the problem of obtaining point matches between pairs of
images is considered. In particular in matching images taken from very different loca-
tions, perspective distortion and different viewpoint make corresponding regions look
very different. The image rectification method described here overcomes this problem by
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transforming both images to a common reference frame. It may be used as a preliminary
step to comprehensive image matching, greatly simplifying the image matching problem.
The approach taken is consistent with the projective-geometrical methods used in [4] and
[7].

The method developed in this paper is to subject both the images to a 2-dimensional pro-
jective transformation so that the epipolar lines match up and run horizontally straight
across each image. This ideal epipolar geometry is the one that will be produced by a
pair of identical cameras placed side-by side with their principal axes parallel. Such a
camera arrangement may be called a rectilinear stereo rig. For an arbitrary placement of
cameras, however, the epipolar geometry will be more complex. In effect, transforming
the two images by the appropriate projective transformations reduces the problem to
that of a rectilinear stereo rig. Many stereo algorithms described in previous literature
have assumed a rectilinear or near-rectilinear stereo rig.

After the 2D projective transformations have been applied to the two images, matching
points in the two images will have the same y-coordinate, since the epipolar lines match
and are parallel to the x-axis. It is shown that the two transformations may be chosen in
such a way that matching points have approximately the same x-coordinate as well. In
this way, the two images, if overlaid on top of each other will correspond as far as possible,
and any disparities will be parallel to the x-axis. Since the application of arbitrary 2D
projective transformations may distort the image substantially, a method is described
for finding a pair of transformations which subject the images to minimal distortion.

The advantages of reducing to the case of a rectilinear stereo rig are two-fold. First,
the search for matching points is vastly simplified by the simple epipolar structure and
by the near-correspondence of the two images. Second, a correlation-based match-point
search can succeed, because local neighbourhoods around matching pixels will appear
similar and hence will have high correlation.

The method of determining the 2D projective transformations to apply to the two im-
ages makes use of the fundamental matrix F . The scene may be reconstructed up to a
3D projectivity from the resampled images. Because we are effectively dealing with a
rectilinear stereo rig, the mathematics of this reconstruction is extremely simple. In fact,
once the two images have been transformed, the original images may be thrown away
and the transformations forgotten, since unless parametrized camera models are to be
computed (which we wish to avoid), the resampled images are as good as the original
ones. If ground control points, or other constraints on the scene are known, it is possi-
ble to compute the absolute (Euclidean) configuration of the scene from the projective
reconstruction ([7]).

A lengthy discussion of other methods of rectification is given in the Manual of Pho-
togrammetry ([11]), including a description of graphical, optical and software techniques.
Optical techniques have been widely used in the past, but are being replaced by software
methods that model the geometry of optical projection. Notable among these latter is
the algorithm of Ayache et. al ([1, 2]) which uses knowledge of the camera matrices to
compute a pair of rectifying transformations. They also give a manner of rectifying a
triple of images using both horizontal and vertical epipolar lines on one of the images.
In contrast with their algorithm, the present method does not need the camera matri-
ces, but relies on point correspondences alone. An additional feature of the algorithm
described in this paper is that it minimizes the horizontal disparity of points along the
epipolar lines so as to minimize the range of search for further matched points.
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Other notable recent papers include [15] which deals with rectification of sequences used
for rover navigation, and [13] which, however, considers only the special case of partially
aligned cameras. In addition, [19, 3, 17, 16] use rectification for various special purpose
imaging situations.

1.1 Preliminaries

Column vectors will be denoted by bold lower-case letters, such as x. Row vectors
are transposed column vectors, such as xT. Thus, the inner product of two vectors is
represented by aTb. On the other hand, abT is a matrix of rank 1. Matrices will be
denoted by upper case letters. The notation ≈ is used to indicate equality of vectors or
matrices up to multiplication by a non-zero scale factor.

If A is a square matrix then its matrix of cofactors is denoted by A∗. The following
identities are well known : A∗A = AA∗ = det(A)I where I is the identity matrix. In
particular, if A is an invertible matrix, then A∗ ≈ (AT)−1.

Given a vector, t = (tx, ty, tz)T it is convenient to introduce the skew-symmetric matrix

[t]× =


 0 −tz ty

tz 0 −tx
−ty tx 0


 (1)

For any non-zero vector t, matrix [t]× has rank 2. Furthermore, the null-space of [t]× is
generated by the vector t. This means that tT[t]× = [t]×t = 0 and that any other vector
annihilated by [t]× is a scalar multiple of t.

The matrix [t]× is closely related to the cross-product of vectors in that for any vectors
s and t, we have sT[t]× = s× t and [t]×s = t × s. A useful property of cross products
may be expressed in terms of the matrix [t]×.

Proposition1.1. For any 3× 3 matrix M and vector t

M∗[t]× = [Mt]×M (2)

Projective Geometry : Real projective n-space consists of the set of equivalence
classes of non-zero real (n + 1)-vectors, where two vectors are considered equivalent if
they differ by a constant factor. A vector representing a point in Pn in this way is known
as a homogeneous coordinate representation of the point.

Real projective n-space contains Euclidean n-space as the set of all homogeneous vectors
with final coordinate not equal to zero. For example, a point in P2 is represented by
a vector u = (u, v, w)T. If w �= 0, then this represents the point in R2 expressed in
Euclidean coordinates as (u/w, v/w)T.

Lines in P2 are also represented in homogeneous coordinates. In particular, the line λ
with coordinates (λ, µ, ν)T is the line consisting of points satisfying equation λu + µv +
νw = 0. In other words, a point u lies on a line λ if and only if λTu = 0. The line
joining two points u1 and u2 is given by the cross product u1 × u2.

A projective mapping (or transformation) from Pn to Pm is a map represented by a linear
transformation of homogeneous coordinates. Projective mappings may be represented by
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matrices of dimension (m+1)×(n+1). The word projectivity will also be used to denote
an invertible projective mapping.

If A is a 3× 3 non-singular matrix representing a projective transformation of P2, then
A∗ is the corresponding line map. In other words, if u1 and u2 line on a line λ, then
Au1 and Au2 line on the line A∗λ : in symbols

A∗(u1 × u2) = (Au1)× (Au2) .

This formula is easily derived from Proposition 1.1.

Most of the vectors and matrices used in this paper will be defined only up to multi-
plication by a nonzero factor. Usually, we will ignore multiplicative factors and use the
equality sign (=) to denote equality up to a constant factor. Exceptions to this rule will
be noted specifically.

Camera Model. The camera model considered in this paper is that of central pro-
jection, otherwise known as the pinhole or perspective camera model. Such a camera
maps a region of R3 lying in front of the camera into a region of the image plane R2.
For mathematical convenience we extend this mapping to a mapping between projective
spaces P3 (the object space) and P2 (image space). The map is defined everywhere in
P3 except at the centre of projection of the camera (or camera centre).

Points in object space will therefore be denoted by homogeneous 4-vectors x = (x, y, z, t)T,
or more usually as (x, y, z, 1)T. Image space points will be represented by u = (u, v, w)T.

The projection from object to image space is a projective mapping represented by a 3×4
matrix P of rank 3, known as the camera matrix. The camera matrix transforms points
in 3-dimensional object space to points in 2-dimensional image space according to the
equation u = Px. The camera matrix P is defined up to a scale factor only, and hence
has 11 independent entries. This model allows for the modeling of several parameters,
in particular : the location and orientation of the camera; the principal point offsets in
the image space; and unequal scale factors in two orthogonal directions not necessarily
parallel to the axes in image space.

Suppose the camera centre is not at infinity, and let its Euclidean coordinates be t =
(tx, ty, tz)T. The camera mapping is undefined at t in that P (tx, ty, tz , 1)T = 0. If P is
written in block form as P = (M | v), then it follows that Mt+v = 0, and so v = −Mt.
Thus, the camera matrix may be written in the form

P = (M | −Mt)

where t is the camera centre. Since P has rank 3, it follows that M is non-singular.

2 Epipolar Geometry

Suppose that we have two images of a common scene and let u be a point in the first
image. The locus of all points in P3 that map to u consists of a straight line through
the centre of the first camera. As seen from the second camera this straight line maps to
a straight line in the image known as a epipolar line. Any point u′ in the second image
matching point u must lie on this epipolar line. The epipolar lines in the second image
corresponding to points u in the first image all meet in a point p′, called the epipole.
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The epipole p′ is the point where the centre of projection of the first camera would be
visible in the second image. Similarly, there is an epipole p in the first image defined by
reversing the roles of the two images in the above discussion.

Thus, there exists a mapping from points in the first image to epipolar lines in the second
image. It is a basic fact that this mapping is a projective mapping. In particular, there
exists ([10, 5, 8]) a 3× 3 matrix F called the fundamental matrix which maps points in
the first image to the corresponding epipolar line in the second image according to the
mapping u �→ Fu. If ui ↔ u′i are a set of matching points, then the fact that u′i lies on
the epipolar line Fui means that

u′i
TFui = 0 . (3)

Given at least 8 point matches, it is possible to determine the matrix F by solving a set
of linear equations of the form (3).

The following theorem gives some basic well known properties of the fundamental matrix.

Proposition2.2. Suppose that F is the fundamental matrix corresponding to an ordered
pair of images (J, J ′) and p and p′ are the epipoles.

1. Matrix FT is the fundamental matrix corresponding to the ordered pair of images
(J ′, J).

2. F factors as a product F = [p′]×M = M∗[p]× for some non-singular matrix M .

3. The epipole p is the unique point such that Fp = 0. Similarly, p′ is the unique
point such that p′TF = 0.

According to Proposition 2.2, the matrix F determines the epipoles in both images.
Furthermore, F provides the map between points in one image and epipolar lines in
the other image. Thus, the complete geometry and correspondence of epipolar lines is
encapsulated in the fundamental matrix.

The fact that F factorizes into a product of non-singular and skew-symmetric matrices
is a basic property of the fundamental matrix. The factorization is not unique, however,
as is shown by the following proposition.

Proposition2.3. Let the 3 × 3 matrix F factor in two different ways as F = S1M1 =
S2M2 where each Si is a non-zero skew-symmetric matrix and each Mi is non-singular.
Then S2 = S1. Furthermore, if Si = [p′]× then M2 = (I + p′aT)M1 for some vector a.

Conversely, if M2 = (I + p′aT)M1, then [p′]×M1 = [p′]×M2.

Proof. If p′TF = 0, then it follows that S1 = S2 = [p′]×. This proves the first claim. Now
suppose that [p′]×M1 = [p′]×M2. Then [p′]× = [p′]×M2M

−1
1 and so [p′]×(M2M

−1
1 −

I) = 0. It follows that each column of M2M
−1
1 − I is a scalar multiple of p′. Therefore

M2M
−1
1 − I = p′aT for some vector a. Hence M2 = (I + p′aT)M1 as desired.

The converse may be verified very easily, using the fact that [p′]×p′ = 0. 
�

As seen, the fundamental matrix provides a mapping between points in one image and
the corresponding epipolar lines in the other image. We now ask which (point-to-point)
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projective transformations from image J to image J ′ take epipolar lines to corresponding
epipolar lines. Such a transformation will be said to “preserve epipolar lines.” The ques-
tion is completely answered by the following result which characterizes such mappings.

Proposition2.4. Let F be a fundamental matrix and p and p′ the two epipoles. If F
factors as a product F = [p′]×M then

1. Mp = p′.

2. If u is a point in the first image, then Mu lies on the corresponding epipolar line Fu
in the second image.

3. If λ is a line in the first image, passing through the epipole p (that is, an epipolar
line), then M∗λ is the corresponding epipolar line in the other image.

Conversely, if M is any matrix satisfying condition 2, or 3, then F factors as a product
F = [p′]×M .

Proof.
1. F = [p′]×M , so 0 = Fp = [p′]×Mp = p′ × (Mp). It follows that Mp = p′.
2. The condition that Mu lies on Fu for all u is the same as saying that the epipolar
line p′ ×Mu equals Fu for all u. This is equivalent to the condition [p′]×M = F , as
required.
3. Let λ be an epipolar line in the first image and let u be a point on it. Then

λ′ = Fu = M∗[p]×u = M∗(p× u) = M∗λ

as required. 
�

Condition 2 in the above theorem simply states that M preserves epipolar lines. Thus,
the projective point maps from J to J ′ that preserve epipolar lines are precisely those
represented by matrices M appearing in a factorization of F . Since the factorization of
F is not unique, however (see Proposition 2.3), there exists a 3-parameter family of such
transformations.

3 Mapping the Epipole to Infinity

In this section we will discuss the question of finding a projective transformation H of
an image mapping an epipole to a point at infinity. In fact, if epipolar lines are to be
transformed to lines parallel with the x axis, then the epipole should be mapped to the
infinite point (1, 0, 0)T. This leaves many degrees of freedom (in fact four) open for H ,
and if an inappropriate H is chosen, severe projective distortion of the image can take
place. In order that the resampled image should look somewhat like the original image,
we may put closer restrictions on the choice of H .

One condition that leads to good results is to insist that the transformation H should
act as far as possible as a rigid transformation in the neighbourhood of a given selected
point u0 of the image. By this is meant that to first order the neighbourhood of u0 may
undergo rotation and translation only, and hence will look the same in the original and
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resampled image. An appropriate choice of point u0 may be the centre of the image. For
instance, this would be a good choice in the context of aerial photography if the view is
known not to be excessively oblique.

For the present, suppose u0 is the origin and the epipole p = (f, 0, 1) lies on the x axis.
Now consider the following transformation.

G =


 1 0 0

0 1 0
−1/f 0 1


 (4)

This transformation takes the epipole (f, 0, 1)T to the point at infinity (f, 0, 0)T as re-
quired. A point (u, v, 1)T is mapped by G to the point (û, v̂, 1)T = (u, v, 1 − u/f)T. If
|u/f | < 1 then we may write

(û, v̂, 1)T = (u, v, 1− u/f) = (u(1 + u/f + . . .), v(1 + u/f + . . .), 1)T .

The Jacobian is
∂(û, v̂)
∂(u, v)

=
(

1 + 2u/f 0
v/f 1 + u/f

)

plus higher order terms in u and v. Now if u = v = 0 then this is the identity map. In
other words, G is approximated (to first order) at the origin by the identity mapping.

For an arbitrarily placed point of interest u0 and epipole p, the required mapping H is
a product H = GRT where T is a translation taking the point u0 to the origin, R is a
rotation about the origin taking the epipole p′ to a point (f, 0, 1)T on the x axis, and G
is the mapping just considered taking (f, 0, 1)T to infinity. The composite mapping is to
first order a rigid transformation in the neighbourhood of u0.

4 Matching Transformations

We consider two images J and J ′. The intention is to resample these two images according
to transformations H to be applied to J and H ′ to be applied to J ′. The resampling is
to be done in such a way that an epipolar line in J is matched with its corresponding
epipolar line in J ′. More specifically, if λ and λ′ are any pair of corresponding epipolar
lines in the two images, thenH∗λ = H ′∗λ′. (Recall thatH∗ is the line map corresponding
to the point map H .) Any pair of transformations satisfying this condition will be called
a matched pair of transformations.

Our strategy in choosing a matched pair of transformations is to choose H ′ first to be
some transformation that sends the epipole p′ to infinity as described in the previous
section. We then seek a matching transformation H chosen so as to minimize the sum-
of-squares distance ∑

i

d(Hui, H ′u′i)
2 . (5)

The first question to be determined is how to find a transformation matching H ′. That
question is answered in the following theorem.

Theorem4.5. Let J and J ′ be images with fundamental matrix F = [p′]×M , and let
H ′ be a projective transformation of J ′. A projective transformation H of J matches H ′
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if and only if H is of the form

H = (I +H ′p′aT)H ′M (6)

for some vector a.

Proof. If u is a point in J , then p× u is the epipolar line in the first image, and Fu is
the epipolar line in the second image. Transformations H and H ′ are a matching pair if
and only if H∗(p×u) = H ′∗Fu. Since this must hold for all u we may write equivalently
H∗[p]× = H ′∗F = H ′∗[p′]×M or, applying Proposition 1.1,

[Hp]×H = [H ′p′]×H ′M (7)

which is a necessary and sufficient condition for H and H ′ to match. In view of Propo-
sition 2.3, this implies (6) as required.

To prove the converse, if (6) holds, then

Hp = (I +H ′p′aT)H ′Mp

= (I +H ′p′aT)H ′p′

= (I + aTH ′p′)H ′p′

≈ H ′p′ .

According to Proposition 2.3, this, along with (6) are sufficient for (7) to hold, and so H
and H ′ are matching transforms. 
�

We are particularly interested in the case when H ′ is a transformation taking the epipole
p′ to a point at infinity (1, 0, 0)T. In this case, I + H ′p′aT = I + (1, 0, 0)TaT is of the
form

A =


 a b c

0 1 0
0 0 1


 (8)

which represents an affine transformation. Thus, a special case of Theorem 4.5 is

Corollary 4.6. Let J and J ′ be images with fundamental matrix F = [p′]×M , and let H ′

be a projective transformation of J ′ mapping the epipole p′ to the infinite point (1, 0, 0)T.
A transform H of J matches H ′ if and only if H is of the form H = AH0, where
H0 = H ′M and A is an affine transformation of the form (8).

Given H ′ mapping the epipole to infinity, we may use this corollary to make the choice
of a matching transformation H to minimize the disparity. Writing û′i = H ′u′i and
ûi = H0ui, the minimization problem (5) is to find A of the form (8) such that∑

i

d(Aûi, û′i)
2 (9)

is minimized.

In particular, let ûi = (ûi, v̂i, 1), and let û′i = (û′i, v̂i, 1). Since H ′ and M are known,
these vectors may be computed from the matched points u′i ↔ ui. Then the quantity to
be minimized (9) may be written as∑

i

(aûi + bv̂i + c− û′i)
2 + (v̂i − v̂′i)

2 .

8



Since (v̂i − v̂′i)
2 is a constant, this is equivalent to minimizing∑

i

(aûi + bv̂i + c− û′i)
2 .

This is a simple linear least-squares parameter minimization problem, and is easily solved
using known linear techniques ([14]) to find a, b and c. Then A is computed from (8) and
H from (6). Note that a linear solution is possible because A is an affine transformation.
If it were simply a projective transformation, this would not be a linear problem.

5 Quasi-affine Transformations

In resampling an image via a 2D projective transformation, it is possible to split the image
so that connected regions are no longer connected. Such a projective transformation is
called a non-quasi-affine projectivity. (A more precise definition is given below.) An
example is given in Figure 1 which show an image of a comb and the image resampled
according to a non-quasi-affine projectivity. Resampling an image via such a projectivity
is obviously undesirable. Therefore we will consider methods of avoiding such cases.

In real images, the whole of the image plane is not visible, but usually only some rectan-
gular region of the image plane. Accordingly, we introduce the concept of a view window.
The view window is the part of the image plane that contain all available imagery, in-
cluding matched points (but not necessarily the epipole). In resampling an image, only
points in the view window will be resampled. The view window is assumed to be a convex
subset of the image plane.

The line at infinity L∞ in the projective plane P2 consists of all points with final coor-
dinate equal to 0. Let W be a convex region of the plane. A projective transformation
H is said to be quasi-affine with respect to W if H(W ) ∩ L∞ = ∅. It is clear that if
the epipole p lies outside of the convex view-window W , then there exists a projectivity,
quasi-affine with respect to W , taking p to (0, 0, 1)T. In fact, any line through p not
meeting W may be chosen as the line H−1(L∞). The perspectivity (4) maps the line
u = f to infinity – that is, the line through the epipole parallel to the vertical image axis.
If the epipole lies sufficiently far away from the view window, then this mapping will be
quasi-affine.

If the epipole lies inside the view window of an image, the techniques of this paper may
still be applied by considering a smaller view window. It is possible that the projectivity
H ′ constructed in Section 6 is not quasi-affine, in which case the view window should be
shrunk, or some other projectivity chosen.

We now turn to the question of when it is possible to find a pair of matched projectivities
H and H ′ each one quasi-affine with respect to the view window of the respective image.
It is not to be expected that this will always be possible even when the epipoles lie outside
of both view windows. However, one can do almost as well, as the following theorem
shows.

Theorem5.7. Consider images J and J ′ with view windows W and W ′. Suppose the
epipole p′ in image J ′ does not lie in W ′. Let H ′ be a projectivity of J ′, quasi-affine
with respect to W ′, and mapping p′ to infinity, and let H be any matching projectivity.
Then there exists a convex subwindow W+ ⊆W such that H is quasi-affine with respect
to W+ and such that W+ contains all points in W that match a point in W ′.
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If our purpose in resampling is to facilitate point matching, then W+ contains all the
interesting part of the image J . The theorem asserts that H is quasi-affine with respect
to W+, and so W+ may be resampled according to H with satisfactory results. Before
providing the proof of Theorem 5.7 some preliminary material is necessary.

A set of image correspondences is called a defining set of image correspondences if equa-
tions (3) have a unique solution. Thus, a defining set of correspondences is one that
contains sufficiently many matches to determine the epipolar structure of the image pair.

Given a set of image correspondences u′i ↔ ui. Let P and P ′ be camera matrices and
{xi} be a set of points in P3. The triple (P, P ′, {xi}) is called a realization of the set
of correspondences u′i ↔ ui if ui = Pxi and u′i = P ′xi. Note that it does not follow
that P and P ′ are the actual camera matrices, or that the points xi represent the actual
point locations in space. Indeed, without camera calibration, the actual structure of
the point set {xi} may be determined from image matches only up to a 3D projective
transformation ([7, 4]).

The following theorems are based on an analysis of cheirality, that is, determination of
which points are behind and which points are in front of a camera. Proofs are given in
[9], which contains a thorough investigation of cheirality.

Note that when equality of vectors (=) is considered in the following theorems, we mean
exact equality, and not equality up to a factor.

Theorem5.8. Let H be a 2D projectivity and H(ui, vi, 1)T = αi(ûi, v̂i, 1)T for some set
of points ui = (ui, vi, 1)T ∈ R2. Then H is quasi-affine with respect to {ui} if and only
if all αi have the same sign.

Theorem5.9. Let (P, P ′, {xi}) be a realization of a defining set of image correspon-
dences u′i ↔ ui derived from a physically realizable 3D point set. Let xi ≈ (xi, yi, zi, ti)T,
ui ≈ (ui, vi, wi)T and (ui, vi, wi)T = P (xi, yi, zi, ti)T. Let primed quantities be similarly
defined. Then the sign of wiw′i is constant for all i.

Now, we can prove Theorem 5.7.

Proof. Consider matching projectivities H and H ′ for a pair of images J and J ′, and
suppose H ′ is quasi-affine with respect to W ′. Let u′i ↔ ui be a defining set of cor-
respondences with ui = (ui, vi, 1)T ∈ W and u′i = (u′i, v

′
i, 1)

T ∈ W ′ for all i. Let
H(ui, vi, 1)T = αi(ûi, v̂i, 1)T and H ′(u′i, v

′
i, 1)

T = α′i(ûi + δi, v̂i, 1)T. Since H ′ is quasi-
affine, all α′i have the same sign. We wish to prove that all αi have the same sign.

A realization for u′i ↔ ui is given by setting P = H−1(I | 0), P ′ = H ′−1(I | (1, 0, 0)T)
and xi = (ûi, v̂i, 1, δi)T. Indeed we verify that

Pxi = H−1(I | 0)(ûi, v̂i, 1, δi)T = H−1(ûi, v̂i, 1)T = α−1
i (ui, vi, 1)T

and

P ′xi = H ′−1(I | (1, 0, 0)T)(ûi, v̂i, 1, δi)T = H ′−1(ûi + δi, v̂i, 1)T = α′−1
i (u′i, v

′
i, 1)

T .

It follows from Theorem 5.9 that (αiα′i)
−1 and hence αiα

′
i has the same sign for all i.

However, by hypothesis, H ′ is quasi-affine with respect to all u′i, and so all α′i have the
same sign, and therefore so do all αi. This means that all ui lie to one side of H−1(L∞).
We define W+ to be the part of W lying to the same side of H−1(L∞) as all ui, and the
proof is complete. 
�
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6 Resampling

Once the two resampling transformations H and H ′ have been determined, the pair
of images may be resampled. There are two steps, first determine the extent of the
resampled images, and second, carry out the resampling.

6.1 Determining the Dimensions of the Output Image

Assume that the range of the resampling projectivities H and H ′ are the same plane
Ĵ . Suppose that the projectivity H ′ is quasi-affine with respect to the window, W ′.
Then H ′(W ) will be a convex region in Ĵ . In fact, if W is a polygonal region, then
so is H ′(W ′), and it may be easily computed. As for H(W ), if H is quasi-affine with
respect to W , then H(W ) will also be a bounded convex set. On the other hand, if
H is not quasi-affine with respect to the whole window W , then H(W ) will split into
two parts, H(W+) and H(W−) stretching to infinity, along with points at infinity in Ĵ .
According to Theorem 5.7, only one of the two regions W− and W+ (let us suppose W+)
contains points that match points in W ′. It is a matter of straight-forward geometrical
programming to determine the intersection H ′(W ′) ∩H(W+). The resampling window
Ŵ in Ĵ may then be chosen. Normally, Ŵ should be a rectangular region aligned with
the coordinate axes in Ĵ . It is a matter of choice whether Ŵ is chosen as the smallest
rectangle containing H ′(W ′)∩H(W+) or whether Ŵ should be a rectangle contained in
H ′(W ′) ∩H(W+).

6.2 Resampling

Once the window Ŵ is chosen, it is a simple matter to resample each of the images.
Consider resampling the first image. For each pixel location (that is, point with integer
coordinates) û in Ŵ , the corresponding location u = H−1û in J is computed, and
the “colour” or image intensity at u is determined. Pixel û is then coloured with this
colour. If u lies outside the view window W , or W+, then pixel û is coloured some
chosen background color. Since point u will not have integer coordinates, it is necessary
in determining the colour of u to interpolate. In the images shown in this paper, linear
interpolation was used, and gave adequate results. In other cases, such as if aliasing
becomes an important issue, some more sophisticated method of interpolation should be
used ([20]).

7 Scene Reconstruction

We assume that the images have been resampled, point matches have been made and
it is required that the 3D scene be reconstructed point by point. Without knowledge
of camera parameters, the scene can be reconstructed up to a 3D projectivity. Suppose
a point xi is seen at locations ui = (ui, vi, 1)T in the first resampled image and at
u′i = (ui + δi, vi, 1)T in the second resampled image. Note that disparities are parallel
to the x-axis. It was seen in the proof of Theorem 5.7 that a possible reconstruction is
with P = (I|0), P ′ = (I|(1, 0, 0)T) and xi = (ui, vi, 1, δi)T.
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Looking closely at the form of the reconstructed point shows a curious effect of 3D pro-
jective transformation. If the disparity δi is zero, then the point xi will be reconstructed
as a point at infinity. As δi changes from negative to positive, the reconstructed point
will flip from near infinity in one direction to near infinity in the other direction. In other
words, the reconstructed scene will straddle the plane at infinity, and if interpreted in a
Euclidean sense will contain points in diametrically opposite directions.

A different reconstruction of the 3D scene is possible which avoids points at infinity and
diametrically splitting the scene. In particular, if one of the images is translated by a
distance α in the x direction, then a disparity of δi becomes a disparity of δi + α. It
follows that the scene may be reconstructed with xi = (ui, vi, 1, δi + α)T are positive,
that is δi +α > 0 for all i. Note that the eye makes this adjustment automatically when
viewing a stereo pair of images such as Figure 3, resulting in a sensible perception of the
scene.

8 Algorithm Outline

The resampling algorithm will now be summarized. The input is a pair of images con-
taining a common overlap region. The output is a pair of images resampled so that
the epipolar lines in the two images are horizontal (parallel with the u axis), and such
that corresponding points in the two images are as close to each other as possible. Any
remaining disparity between matching points will be along the the horizontal epipolar
lines. A top-level outline of the image is as follows.

1. Identify a seed set of image-to-image matches ui ↔ u′i between the two images.
Seven points at least are needed, though more are preferable. It is possible to find
such matches by automatic means.

2. Compute the fundamental matrix F and find the epipoles p and p′ in the two
images. The linear method of computation of F as the least-squares solution to
equations (3) can be used, requiring eight point matches or more. For best results,
the linear solution can be used as a basis for iteration to a least-squares solution.

3. Select a projective transformation H ′ that maps the epipole p′ to the point at
infinity, (1, 0, 0)T. The method of Section 3 gives good results.

4. Find the matching projective transformation H that minimizes the least-squares
distance ∑

i

d(Hui, H ′u′i) . (10)

The method used is a linear method described in Section 4.

5. Resample the first image according to the projective transformation H and the
second image according to the projective transformation H ′. A simple method is
given in Section 6.
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9 Examples

9.1 A pair of aerial images

The method was used to transform a pair of images of the Malibu area. Two images
taken from widely different relatively oblique viewing angles are shown in Figure 2. A set
of about 25 matched points were selected by hand and used to compute the fundamental
matrix. The two 2D projective transformations necessary to transform them to matched
epipolar projections were computed and applied to the images. The resulting resampled
images are shown side-by-side in Figure 3 As may be discerned, any disparities between
the two images are parallel with the x-axis. By crossing the eyes it is possible to view the
two images in stereo. The perceived scene looks a little strange, since it has undergone
an apparent 3D projective transformation. However, the effect is not excessive.

9.2 A pair of images of an airfield

In the next example (see Figure 4), the the pair of images taken on different days are
rectified to create a stereo pair. These two images may be merged to create a 3D im-
pression. This example suggests that rectification may be used as an aid in detecting
changes in the two images, which become readily apparent when the images are viewed
stereoscopically.

9.3 Satellite images

Although satellite images are not strictly speaking perspective images, they are suffi-
ciently close to being perspective projections that the techniques described in this paper
may be applied. To demonstrate this, the algorithm was applied to two satellite images,
one Landsat image and one SPOT image. These two images have different resolutions
and different imaging geometries. In this case, a set of seed matches were found, this
time automatically, and the two images were resampled. (The method of finding seed
matches for differently oriented images is based on local resampling.) The results are
shown in Figure 5 which shows the images after resampling.

9.4 Non-aerial images

The method may also be applied to images other than aerial images. Figure 6 shows
a pair of images of some wooden block houses. Edges and vertices in these two images
were extracted automatically and a small number of common vertices were matched by
hand. The two images were then resampled according to the methods desribed here. The
results are shown in Figure 7. In this case, because of the wide difference in viewpoint,
and the three-dimensional shape of the objects, the two images even after resampling
look quite different. However, it is the case that any point in the first image will now
match a point in the second image with the same y coordinate. Therefore, in order to
find further point matches between the images only a one-dimensional search is required.
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10 Conclusion

This paper gives a firm mathematical basis as well as a rapid practical algorithm for the
rectification of stereo images taken from widely different viewpoints. The method given
avoids the necessity for camera calibration and provides significant gains in speed and
ease of point matching. In addition, it makes the computational of the scene geometry
extremely simple. The time taken to resample the image is negligeable compared with
other processing time. Because of the great simplicity of the projective transformation,
the resampling of the images may be done extremely quickly. With carefully program-
ming, it is possible to resample the images in about 20 seconds each for 1024 × 1024
images on a Sparc station 1A.
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Figure 1: Picture of a comb and a non-quasi-affine resampling of the comb

Figure 2: A pair of images of Malibu from different viewpoints.
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Figure 3: Pair of resampled images of Malibu
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Figure 4: Above : A pair of images of an airfield scene taken on different days. Below
: Rectified sections of the two images.
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Figure 5: Resampled Landsat Image and SPOT images

Figure 6: A pair of images of a house

Figure 7: Resampled images of the pair of houses
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