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Abstract. We propose a new tracking technique that is able to cap-
ture non-rigid motion by exploiting a space-time rank constraint. Most
tracking methods use a prior model in order to deal with challenging
local features. The model usually has to be trained on carefully hand-
labeled example data before the tracking algorithm can be used. Our new
model-free tracking technique can overcome such limitations. This can
be achieved in redefining the problem. Instead of first training a model
and then tracking the model parameters, we are able to derive trajectory
constraints first, and then estimate the model. This reduces the search
space significantly and allows for a better feature disambiguation that
would not be possible with traditional trackers. We demonstrate that
sampling in the trajectory space, instead of in the space of shape con-
figurations, allows us to track challenging footage without use of prior
models.

1 Introduction

Most of the tracking techniques that are able to capture non-rigid motion use
a prior model. For instance, some human face-trackers use a pre-trained PCA
model or parameterized 3D model, and fit the model to 2D image features. Com-
bining these models with advanced sampling techniques (like particle filters or
multiple hypothesis approaches) result in algorithms capable of overcoming many
local ambiguities. There are many cases where a prior-model is not available. In
fact, often the main reason for performing tracking is to estimate data that can
be used to build a model. In this case, model-free feature trackers have to be
used. Unfortunately many non-rigid domains, such as human motion, contain
challenging features that make tracking without a model virtually impossible.
Examples of such features are points with degenerate or 1D texture (points along
lips and eye contours, cloth and shoe textures).
We propose an innovative model-free tracking solution that can overcome

such limitations. This can be achieved in redefining the tracking problem.

1. Traditional Tracking: Given M → Estimate α:
Standard model-based approaches assume a known (pre-trained) parameter-
ized modelM(α). The modelM stays constant over the entire time sequence
(for exampleM might coincide with a set of basis-shapes). The parameters



α change from time frame to time frame (for example the interpolation coef-
ficients between the basis shapes). Traditional tracking solves by estimating
frame by frame the parameters α(1)..α(F ) that would fitM(α) to the data.

2. Reverse-Order Tracking: Estimate α → Estimate M:
Our new technique first estimates the α(1)..α(F ) without knowing the model.
Given the α parameters, it then estimates the model M.

To reverse the order of computations we have to overcome two major hurdles:
1) How can the parameters α be estimated in a model-free fashion? 2) How can
a model M be derived from the parameters α? We will also demonstrate why
the reverse order tracking is advantageous over the traditional order.
Based on the assumption that the non-rigid motion can be factorized into a

rigid motion and a blend-shape (non-rigid) motion component, we can establish
a global low-rank constraint on the measurement-matrix (of the entire image
sequence). This low-rank constraint allows us to estimate model-free all defor-
mation parameters α over the entire image sequence. It is inspired by recent
work by Irani [8] for the rigid case, and by extensions to non-rigid motion [17].
Since our tracking is based on direct image measurements, we have to mini-

mize over a nonlinear error surface. In traditional tracking the search space grows
with the number of time frames and the degrees of freedom of the model, and is
therefore prone to many local minima (even with the use of nonlinear sampling
techniques). With this new setup, and by fixing α over the entire sequence, we
can show that the model estimation becomes a search in a very low-dimensional
space. Sampling techniques in this small search space allow us to estimate mod-
els with high accuracy and overcome many local ambiguities that would exist in
the traditional tracking framework.
We demonstrate this new technique on video recordings of a human face and

of shoe deformations. Both domains have challenging (degenerate) features, and
we show that the new algorithm can track densely all locations without any
problem.
Section 3 describes the general rank constraint, and section 4 details how to

exploit it for the two-step tracking. In section 5 we summarize our experiments
and we conclude by discussing the results in section 6.

2 Previous Work

Many non-rigid tracking solutions have been proposed previously. As mentioned
earlier, most methods use an a-priori model. Examples are [11, 3, 5, 14, 1, 2, 10].
Most of these approaches estimate non-rigid 2D motion, but some of them also
recover 3D pose and deformations based on a 3D model.
What is most closely related to our approach, and in part inspired this so-

lution, is work by Irani and Anandan [8, 9] as well as methods for non-rigid de-
compositions [4, 17], although these are either in the framework of rigid scenes,
based on preexisting point tracks or related to Lucas-Kanade tracking.



3 Low-rank constraint for non-rigid motion

Our tracking algorithm relies on the assumption that the non-rigid 3D object
motion can be approximated by a 3D rigid motion component (rotation and
translation) and 3D non-rigid basis shape interpolations.
In this section we describe how we can justify a rank bound on the tracking

matrix W without the prior knowledge of a specific object model. This gives
an important insight on the roles of two matrices Q and M resulting from the
decomposition of the tracking matrix. Section 4 shows how this decomposition
is used in the tracking process.

3.1 Matrix Decomposition

The tracking matrix W describes the dense optical flow of P pixel or the tracks
of P feature points over a sequence of F video frames:

W =
[
UF×P

VF×P

]
(1)

Each row of U holds all x-displacements of all P locations for a specific time
frame, and each row of V holds all y-displacements for a specific time frame. It
has been shown that if U and V describe a 3D rigid motion, the rank of [UV ]
has an upper bound, which depends on the assumed camera model [16, 8]. This
rank constraint derives from the fact that [UV ] can be factored into two matrices:
Q×M . Q2F×r describes the relative pose between camera and object for each
time frame, andMr×P describes the 3D structure of the scene which is invariant
to camera and object motion.
In previous works we have shown that a similar rank constraint holds also for

the motion of deforming objects [4, 17]. Assuming the non-rigid 3D deformations
can be approximated by a set of K modes of variation, the 3D shape of a specific
object configuration can be expressed as a linear combination of K basis-shapes
(S1, S2, ...SK). Each basis-shape Si is a 3×P matrix describing the 3D positions
of P points for a specific “key” shape configuration of the object 1. A deformation
can be computed by linearly interpolating between basis-shapes: S =

∑
k lkSk.

Assuming weak-perspective projection, at a specific time frame t the P points
of a non-rigid shape S are projected onto 2D image points (ut,i, vt,i):[

ut,1 ... ut,P

vt,1 ... vt,P

]
= Rt ·

(
K∑

i=1

lt,i · Si

)
+ Tt (2)

where Rt contains the first two rows of the full 3D camera rotation matrix,
and Tt is the camera translation. The weak perspective scaling (f/Zavg) of the
projection is implicitly coded in lt,1, ...lt,K . As in [16], we can eliminate Tt by

1 We want to emphasize that no prior knowledge of the basis-shapes of the object will
be assumed by the method: the K unknown key-shapes will instead be implicitly
estimated by the tracking algorithm.



subtracting the mean of all 2D points, and henceforth can assume that S is
centered at the origin.
We can rewrite the linear combination in (2) as a matrix multiplication:

[
ut,1 ... ut,P

vt,1 ... vt,P

]
=
[
lt,1Rt ... lt,KRt

]
·



S1

S2

...
SK


 (3)

We stack all point tracks from time frame 1 to F into one large tracking
2F × P matrix W. Using (3) we can write:

W =



l1,1R1 ... l1,KR1

l2,1R2 ... l2,KR2

...
lF,1RF ... lF,KRF




︸ ︷︷ ︸
Q

·



S1

S2

...
SK




︸ ︷︷ ︸
M

(4)

Since Q is a 2F × 3K matrix and M is a 3K × P matrix, in the noise free
case W has at most rank r ≤ 3K.
Beyond the important derivation of the rank constraint, the analysis above

allows us to conclude that it is possible to separate the components of non-
rigid motion, represented in Q in form of rotation matrices and deformation
coefficients, from the structure (basis-shape model) of the object stored in M .
In the following sections we will show how we can take advantage of this

decomposition to derive a solution to the tracking problem.

4 Tracking Algorithm

Section 3 described how W can be decomposed into a matrix Q and M . We do
not have the tracking matrix W yet, this is the goal of our tracking algorithm.
As outlined in section 1, we achieve this in reversing the traditional tracking
order: first estimating the motion parameters Q, and then estimating the model
M that fits the data.

4.1 Non-Rigid Motion Estimation

The motion parameters are the interpolation coefficients lt,k and the rotation
matrices Rt that are coded in the Q2F×r matrix of equation (4).

It is possible to estimate Q without the full availability of W . It is based on
the following observation (inspired by [8]): if the rank of W 2F×P is r, a subset
of r point tracks (non-degenerate columns in W ) will span the remaining tracks
of W .
We reorder W into a set of m known “reliable” tracks Wrel, and a set of n

unknown “unreliable” tracks Wunrel (n = P −m):



W 2F×P = [W 2F×m
rel |W 2F×n

unrel ] = Q2F×r · [Mr×m
rel |Mr×n

unrel] (5)

Usually r is significantly smaller than P and it is easy to find at least m > r
reliable tracks [17] that can be computed for the entire image sequence. Assuming
Wrel is of rank r, we can estimate a matrix Q̂2F×r with following factorization:

W 2F×m
rel = Q̂2F×r · M̂r×m

rel (6)

The factorization is not uniquely defined. Any invertible matrix Gr×r defines
another valid solution: Q̂2 = Q̂ · G and M̂rel2 = G−1M̂rel. Since Wrel has rank
r, the original matrix Q for the full W matrix (in equation (4) and (5)) is also
related to Q̂ with an invertible matrix G: Q = Q̂ ·G. In [4, 17] several methods
are described for how to calculate G (specifically for non-rigid reconstruction).
In the context of our tracking problem here, we do not have to know G, since it
does not change W . We only need to know that Q̂ and Q are related by some
(unknown) invertible G. The model M that we obtain in section 4.2 is then just
multiplied by G−1 to get a correct 3D model (using results from [17]).

We calculate Q̂ and M̂rel in the standard way with SVD:

svd(Wrel) = U · S · V T = U · C︸ ︷︷ ︸
Q̂

·C · V T︸ ︷︷ ︸
M̂rel

(7)

where C is the upper r × r sub-block of
√
S.

This factorization gives us (up to unknown G) the motion parameters Q̂ and
the 3D shape coordinates of the reliable points M̂rel.

4.2 Non-Rigid Shapes Estimation

The task we have left is that of estimating the shape elements in the r×n matrix
Munrel.
The corresponding image features for point i has degenerate texture, and

no reliable feature extraction and tracking schema for those points is assumed
to work. Even probabilistic point tracks (as assumed in [9]) with uncertainty
measures are not available. Nonlinear probabilistic trackers (e.g. particle filter-
based) fail since the density for each feature location has too much spread or
is a-priori uniformly distributed. Obviously in those cases, a known basis-shape
model would help dramatically and would constrain the possible feature locations
in a reliable way, but we do not have such a model Munrel yet.
Let us consider a single column mi of Munrel which represents the spatial

(unknown) positions of point i for the K main deformations of the object. It
turns out that if we multiply Q̂ with mi, we obtain an r-dimensional family
of image trajectories wi = Q̂ · mi. Now we have a very strong parameterized
model for the unreliable point, but along the time axis instead of the space
axis: the low-dimensional variability is expressed as temporal variations of the
trajectory curve of a single point across time. In a sense we have a very accurate
high resolution “dynamical model” of the point, without having the “kinematic



constraints” in place yet. The probability of each possible trajectory in this
constrained (r-dimensional) subspace can be computed much more reliably from
the image data. As local texture might be ambiguous in a single frame, it is
unique across the entire sequence of F frames, if constrained in the trajectory
subspace. For instance, the famous aperture problem of 1D texture vanishes in
this framework, as noted by [8] already.

Sampling in trajectory space Since we only use the image sequence itself as
features, the probability density for our trajectory family is nonlinear. Also any
possible initialization heuristic for the trajectory of the unknown point track i
might be far of. We therefore adopt a stochastic estimation technique based on
factored sampling [7] to find the most likely values for mi.
Factored sampling is a Monte Carlo technique for estimation of conditional

probability densities. Let us assume we are trying to estimate the function
p(X|Z) where X and Z are continuous random variables statistically related
by some unknown dependency. When p(X|Z) cannot be sampled directly but
the function p(Z|X = x) can be computed for any x, factored sampling proposes
the following recipe. Let x1, ..., xN be N samples drawn from the prior p(X)
and let us generate a third random variable Y by choosing samples y = xs at
random with probabilities

ps =
p(Z|X = xs)∑N

k=1 p(Z|X = xk)
(8)

It has been shown that the probability distribution of Y tends to p(X|Z) as
N → ∞ [7]. An approximation of the mean of the posterior can be computed as

E[X|Z] =
N∑

s=1

xsps (9)

In our case p(X|Z) = p(mi|Z) where Z are measurements derived from the
image sequence. We evaluate each hypothesis (sample)m(s)

i formi by computing
for each frame f the sum of squared differences between a small window around
the point i in the reference frame and the corresponding window in frame f

translated according to m
(s)
i :

p(Z|mi = m
(s)
i ) ∝ exp{−

F∑
f=1

∑
(x,y)εROIi

(I0(x, y)− If (x+ u
(i,s)
f , y + v

(i,s)
f ))2

2σ2
}

(10)
where u(i,s)

f = q
(f)
u ·m(s)

i , v(i,s)
f = q

(f)
v ·m(s)

i , and q
(f)
u , q(f)

v are the f -th rows of
Qu and Qv, with Q̂ = [Qu

Qv
].

Alternatively, the outputs of a set of steerable filters tuned to a range of
orientations and scales could be used to compare image patches [6, 13].



At the end of this density estimation process, each column mi of Munrel is
computed as the expected value of the posterior using equation (9).
Note again how each hypothesis is tested against all the frames of the se-

quence. This large amount of measurements per sample is the key reason of the
robustness of this approach.
The speed of convergence to the posterior density depends on how well the

samplesm(s)
i are chosen with respect to the unknown distribution p(mi|Z). Also,

evaluating the likelihood is computationally expensive. Ideally we would like to
draw the m(s)

i from areas where the likelihood p(Z|mi) is very large instead of
wasting computational resources on samples with negligible ps, that are clearly
of little contribution for a first approximation of the unknown density. This is
the intuitive idea underlying the theory of importance sampling [15].
Suppose we are given an auxiliary function gi(x) describing the areas of the

random variable space that are believed to better characterize the posterior.
Now we can use the importance function gi(x) to draw the samples m

(s)
i and

thus achieve faster convergence. We simply need to introduce a correction term
in equation (8) to reflect our use of a different sampling distribution:

ps =
p(Z|X = xs)p(xs)/g(xs)∑N

k=1 p(Z|X = xk)p(xk)/g(xk)
(11)

In this case we define the importance function gi(x) by assuming the object
has smooth surface2: we compute µMi , for i = 1, ..., n, by interpolation from the
shapes of the reliable points. gi(x) is then defined as a Gaussian around µMi :

gi(x) =
1

(2π)r/2|Σi|1/2
exp{−1

2
(x− µMi)

TΣ−1
i (x− µMi)} (12)

We apply this technique for each of the n unreliable mi separately.
Again, it is important to emphasize the fact that by sampling in the space

of deformations as opposed to estimating the inter-frame relationships, we fully
exploit the information in the sequence by evaluating each sample on ALL of the
images. Whereas for conventional approaches the number of frames represents
the number of sub-problems to solve, with this technique images are only mea-
surements. The longer the sequence the more data we have available to constrain
the solution.

5 Experiments

The method presented in this article has been tested on two separate video
recordings of human motion with different types of deformations. The first se-
quence was originally employed in [17] to evaluate the algorithm of tracking and

2 The smoothness assumption is clearly violated at depth discontinuities, but this
hypothesis is not critical for the convergence of the method. It is used here only to
speed up the process of density estimation.



non-rigid 3D reconstruction described in that article. Here we show the improved
tracking performance that is achievable with this new approach. The video con-
sists of a 500 frames-long sequence of a shoe undergoing very large rotations
and non-rigid deformations. While the reliable points are features with 2D tex-
ture tracked using the technique of Lucas-Kanade [12], the other 80 points are
edges or degenerate features whose optical flow cannot be recovered using local
operators. In order to prevent drifting along edges and 1D texture the solution
in [17], based on an integration of the rank constraint and the Lucas-Kanade
linearization, had to be augmented with a regularization term enforcing smooth
flow among neighboring features. We have tried to run the tracking solution pre-
sented in this article on the shoe sequence making sure that parameters (r = 9)
and feature points were the same as those used in the original experiment. Al-
though we are now not using any spatial smoothness heuristic, we found the
results derived with the new technique even more accurate than those presented
in the previous work. Figure 1 shows some examples of the non-rigid motion
characterizing the sequence, together with the tracks recovered by our new so-
lution based on sampling trajectories with rank constraints.

Fig. 1. Example tracks of the shoe sequence. The blue circles are the reliable points
utilized to derive Q. The red crosses are edge features: their optical flow is determined
by estimating the model M .

The second group of experiments was carried out on equally challenging
data. We extracted 400 frames of digital footage from a Charlie Chaplin film
originally recorded in 1918. The old technology used for the recording as well
the non-uniform light of the outdoor scene make the sequence very difficult for a
tracking task. We focused on a segment of the movie containing a close-up of the
actor with the goal of capturing his famous facial expressions. The rigid head



motion is very large and causes considerable changes in the features appearance.
The non-rigid deformations are similarly extreme and mostly due to eyebrow,
lips and jaw motion. We restricted the tracking to important facial features such
as eyebrows, eyes and the moustache: most of these points are edges and they
are virtually impossible to track with conventional model-free techniques without
incurring in features drifting. We could find only 9 features that could be tracked
over the entire sequence with the technique of Lucas-Kanade employing affine
transformations for the local windows centered at these points. The locations
of these reliable points are marked with pink circles in figure 2. These points
proved to be anyway sufficient for capturing the main modes of deformations
of the face. All the results on this footage reported in the article were obtained
with r = 4 or r = 5. The tracks of these points were used to estimate Q and
to consequently recover the main elements of non-rigid motion. Figure 2 shows
the reprojections onto the image of the shape samples for different non-reliable
features in example frames. It is very apparent how the search for the best feature
match takes place along the direction of the occurring non-rigid motion encoded
in the Q matrix. The samples in the left frame are spread vertically because
of the large deformation along that direction picked up by the reliable point
located on the left eyebrow. Similarly the sample distributions in the right image
match the occurring head rotation. This experimentally validates the motion-
shape decomposition expressed by equation (4) and shows the reduced size of
the search space.

Fig. 2. Samples distribution. The shape samples are reprojected onto the images ac-
cording to the occurring non-rigid motion. This is reflected in the sample distributions
in the two frames: the principal motion is eyebrow deformation in the first image and
head rotation in the second.

The shape initialization extrapolated from the reliable points provides only a
very rough initial approximation, especially in frames where the non-rigid com-
ponent of the motion is large. The optical flow resulting from the initialization
that is shown on the left of figure 3 misses completely to capture deformation



Fig. 3. Eyebrow detail. The left figure shows the initialization of the tracking with
shapes extrapolated from the reliable points. The final optical flow recovered by tra-
jectory sampling is shown on the right.

and correct 3D position of the right eyebrow. This initialization is not critical
for the convergence of the algorithm as exemplified in the right image.
Using our unconventional approach we could track reliably and accurately

all of the 29 degenerate features throughout the whole sequence of 400 frames,
a task extremely difficult to achieve without the use of prior models. Example
frames taken from the footage together with their estimated tracks are shown in
figure 4. See http://movement.stanford.edu/nonrig for mpeg or quicktime
video showing the results of tracking on the entire sequence.
The tracking algorithm described in this article was implemented in inter-

preted Matlab code and tested on a PC Pentium 3 with a 900MHz CPU and
512M RAM. The number of samples per feature point was chosen to be 500 for
all the experiments presented. With this setup the average time to estimate the
trajectory of one feature in a video of 400 frames is 2-3 seconds.

6 Discussion

We have presented a new algorithm that is able to track non-rigid object motion
and disambiguate challenging local features without the use of a prior model.
The key idea of the algorithm is the exploitation of a low-rank constraint that
allows us to perform a sampling-based search over trajectory subspaces instead
of over the space of shape configurations. From this result we derive a robust
solution for tracking without models.
We demonstrated the algorithm on tracking of film footage of Charlie Chap-

lin’s facial expressions, and of sport-shoe deformations. In both cases, model-free
point trackers are able to track only a few corner features. With the use of this
new technique we were able to track challenging points suffering from the aper-
ture problem and other degenerate features.
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Fig. 4. Tracking of degenerate features on the Chaplin footage. The pink circles are
reliable points.
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