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Goal

e Target tracking in a
network of multiple video
cameras (sensors) ,

e Choose the sensors such B IR oyt
that the information utility is |~ /
maximized

e Average energy used is
constrained
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Approach

e Use multiple video cameras

e Overlapping / Non-overlapping Cameras

e Cameras are calibrated

e Active cameras detect target

e Tracker estimates position in 3D world

e Use UKF to obtain confidence in prediction

e Confidence measure as sensor utility measure
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Approach

e Information Ultility is maximized

e Set of sensor that maximize the sum
information utility are enabled
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Main Steps

e Camera Calibration

e Unscented Kalman Filter (UKF)
e Sensor utility measure

e Maximize Information Utility
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Outline

e Camera Calibration
e Filtering Stage
Bayesian Formulation
Kalman Filter
Extended Kalman Filter
Unscented Transformation
Unscented Kalman Filter
e Sensor Utility Measure

e Information utility maximization

KResults /




Camera Calibration
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e Projective camera model Pr, = A, [R; | t]
e Intrinsic parameters

A Matrix (f, aspect ratio, principal point and skew)
e Extrinsic parameters

R rotation Matrix

t translation vector
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Useful Filters for Tracking

e Bayesian Approach

Recursive probabilistic model (predict & update)
e Kalman Filter

Approximation of Bayesian Model

Different variants for linear & non-linear cases
e Particle Filter

Monte-Carlo Approach

e Joint Probabilistic Data Association Filter

&Multiple Hypothesis Tracker /




Bayesian Tracking Approach

e Recursive Model
Linear case
Non-Linear case

State Vector: X = [-’L‘, Loy Y, Yus 2, Zv]T

. T
Observation vector: Zi = [u?;, ’Ui]
(for sensor i)

Observations up to time k:  Zk

Bayesian Tracking Approach

Prior distribution (predict stage):
POX(K)1Z*7) = [ pOx(k) | x(k 1)) p(x(k ~1)| Z*)x(k -1)

Posteriori distribution (update stage): Pxalto) = pixo)

oz — PERIXE)Px()|Z5)
ploc(h)2¥) = PR

Normalizing factor:

P(2()127) = [ p(2() | X(K)) p(x(K) | Z*)dx(K)
I

K Likelihood Function J




Kalman Filter

e Kalman filter can be used to approximate
optimal linear Bayesian solution.
e Kalman filter is recursive
Predict (Time Update)
Correct (Measurement Update)

State vector: X = [z, xv,y Yo, 2, Zv]m

Measurement vector: Zj — [’U:i, Uz Time Updae Messyomeat Uodte
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Kalman Filter

State update equation
(A Linear Stochastic Difference Equation)

x(k) = Ax(k —1) + w(k —1)

Measurement Equation

2(K) = Hx(k) +v(K)

where,

random variables w(k-1) and v(k) represent process and
measurement noise with zero mean Normal distribution

p(w)~N(0,Q),
p(v)~N(O,R).

H relates the state to the measurement and A relates the state at
time k and k-1




Kalman Filter - Example

e Multi-frame feature tracking

e For each feature Kalman Filter can estimate
Position
Confidence
e State Vector
X(K) = X Yio Vi Vy IT
e Measurement/Observation
z(k) =[xy »Yil
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Kalman Filter - Example

State update equation
© Xy = Xeq F Vot Qg ————, O

° Vi = Vg + By

x(k) = Ax(k —1) + w(k -1) A{

o O O B+
o O » O
o - O
= O +—» O

|

Measurement Equation 1000
2(k) = Hx(K) +Vv(K) _[ }

0100
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Kalman Filter - Example

Kalman Filter

Measurement Update (**Correct™)

Time Update (“Predict™)

(1) Project the state ahead
X, = Ax,_ | +Bu,_,

(2) iject the error covariance ahead

P= AP, _ AT+ Q

Initial estimates for &, | and P, _|

(1) Compute the Kalman gain
. - -1
K, = PLHT(HPHT +R)
(2) Update estimate with measurement z;
B o= &+ K (7, - H3Y)
(3) Update the error covariance
P, = (I-K,H)P,

€= X — Xy

€= X — Xy
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Problem with Kalman Filter

e Linear case (Kalman Filter)

State update equation
x(K) = Ax(k =) +w(k —1)

Measurement Equation
z(k) = Hx(k) +v(K)

e Non-Linear case (Extended Kalman Filter)
x(K) = f (x(k —1), w(k —1))

z(k) = h(x(k), v(k))

wre, f and h are non-linear functions J

Extended Kalman Filter (EKF)

e Linearizes about current mean and
covariance

e Using first order terms from Taylor series
expansion of non-linear functions

e Linearize around current estimate
through partial derivates of

State update function

\ Measurement function /




= SO W)
e = h(x.vy) Approximation of original
model (w, v unavailable)

Linearizing through
Taylor series

= A expansion
X=X+ Al =X )+ Ww P

L=+ H(x —X,) + V.

K A, W, H, V are Jacobians and u,_, is known input J

Problems with EKF

® Only first order terms from Taylor
expansion

e Probability densities of various random
variables are no longer Normal after
nonlinear transformation

e EKF is an ad hoc state estimator
e Use Unscented Kalman Filter (UKF)
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Unscented Kalman Filter (UKF)

e A minimal set of carefully chosen points
(sigma vectors)

e Captured accurately to the 3 order of
Taylor expansion

e Based on Unscented Transformation
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Unscented Transformation (UT)

e A method for calculating the statistics of
a random variable which undergoes a
nonlinear transformation

Random Variable x (dimension L, mean ¥, covariance P,)
y = g(x) where g is non-linear transformation function
e For statistics of y

Form matrix X of 2L+1 sigma vectors X (with corresponding weights
W)

. J

11



Unscented Transformation (UT)

(m)
Wo™ —apz+ N

X, =%
X, :i+(\/m){ i=1,...,L W(:} =Af(L+A)+1:1—(13+ﬁ)
(1]
Xi =—x-(JT+rP. i=L+41,...,2L
) (V( e )‘*" i=1,... 2L

im =W =1/02(L + 2)

Scaling Parameter *=a*(L+#)—L
« determines the spread of the sigma points around &

2L
7 = W
=0

2L

\ Py 3w i -9}{X-9)" /

Example

Actual {sampling) Linearized (EKF) uT
covariance = DW‘S\"O
\\ .
]
L]
|
¥ =10%) ¥ =1x)

— AT
¥ = f(x) P? =A'PA weighted sample mean
l and cavariance

transfarmed

' 4
f(x)
true mean QF/ sigma pairts
% ‘
; ATP. A
/

UT cavariance

Gaussian prior is. f)ropagated through an arbitrary highly nonlinear
function. Monte-Carlo sampling, Extended Kalman Filter (EKF) and
Unscented Transformation (UT) results are shown in the figure above.




Unscented Kalman Filter (UKF)

e UKF is extension of UT to the recursive
Kalman Filter approach.

e State random variable is defined with
augmented state vector and augmented
covariance matrix

xt = <] ¥ "
0
P

P
pa=| 0
\ 0 0

>
o O

<

v

UKF Algorithm

Initialize with:
%o = E[xo]
Py = E[(xo0 — %o)(xo — %0)"]
xg = Bfx"] = [ 0 0]
P,
Pj = E[(x§ - %5)(x§ —%5)"]= | 0
0

=
D:UD

:UDD
—
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UKF Algorithm

For ke {1,... ,00},
Calculate sigma points:

i = [5‘;—1 ¥t v L+ )‘)P.i‘—l

Xi“c—l =FA7 &0 ]

Time update:

2L
X = ZWI(M)X:HIG—I
=0

2L
N G o T

P = ZW:(E,[A?,H*A =X ][X:k\k—l - %]

i=0
Vije—r = H[X 1, X5 ]

2L

=3 WV ke
i=0

Measurement update equations:

2L
Py5, = W Dkko1 = F Dbk — 7217
=0

Mean state o
vector Pow = Z Wf )IA’;,H&A = i;][y'l,k\k—l = S’[]T

=0
\ K =Py Pyl
% = %5 + Klyx —97)

P, =P, —KPy,5, K"

X7 = [(Xz)r (X”}T (Xn)T]T

A = composite scaling
parameter,

L = dimension of
augmented state vector,
P, = process noise
covariance,

P, = measurement noise
covariance

Covariance output ‘

Sensor Utility Measure

ek +1) = —trace[Pe(k + 1)]

e P (k+1) is the covariance matrix for error
e Larger the error small the sensor utility

- %
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Information Utility (IU)

e Sensor state 11,[K]
Off/Initializing/On
e Energy used by sensor i E(1[k])
e Information Utility
U k], k) & e (k)

min Z?ﬂ =U(w[k], k)

TN

5.1
K A Sien B(milk]) < K - Euve

J

Information Utility (IU)

e W future time window
e Sensors in range R
e U7 is the estimated IU for future

min —U(mr[k], k) — Zj::‘_;' U(rr 7. 9)
(k]
st
Shokowir Tien Bilmlj]) S W - Bave

Lien Ei(milj]) < Epr

e |U maximization problem solved using
Qree pruning algorithm

J
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Simulations

K{m)

Simulations

e Optimal Selection is turning on predicted
suitable sensors in advance.

Optimal Selection | Random Sensor Sgfection
Ave. E 4.93 241
rinse 0.40 0.52
‘e lost tracks 6.3 S8.0
Optimal Selection | Closest Sensor Selection
Ave. E 4.87 4.41
rmse 044 1 052
10.3 11.2

G lost tracks
K rmse: Root Mean Square Error

%
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Issues

e Calibration of all cameras
e Multiple target tracking

e Goodness of avg. energy constraint on
‘information utility’

E; should incorporate local usage history
e Selection of IlU maximization algorithm

e Processing Node energy consumption

\NOT considered J
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