
F. Zhao and L. Guibas (Eds.): IPSN 2003, LNCS 2634, pp. 529–544, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Detection, Classification, and Collaborative Tracking of
Multiple Targets Using Video Sensors

P.V. Pahalawatta, D. Depalov, T.N. Pappas, and A.K. Katsaggelos

ECE Dept. Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208
{pesh, depalov, pappas, aggk}@ece.northwestern.edu

Abstract. The study of collaborative, distributed, real-time sensor networks is
an emerging research area. Such networks are expected to play an essential role
in a number of applications such as, surveillance and tracking of vehicles in the
battlefield of the future. This paper proposes an approach to detect and classify
multiple targets, and collaboratively track their position and velocity utilizing
video cameras. Arbitrarily placed cameras collaboratively perform self-
calibration and provide complete battlefield coverage. If some of the cameras
are equipped with a GPS system, they are able to metrically reconstruct the
scene and determine the absolute coordinates of the tracked targets.  A
background subtraction scheme combined with a Markov random field based
approach is used to detect the target even when it becomes stationary. Targets
are continuously tracked using a distributed Kalman filter approach. As the
targets move the coverage is handed over to the "best" neighboring cluster of
sensors.  This paper demonstrates the potential for the development of
distributed optical sensor networks and addresses problems and tradeoffs
associated with this particular implementation.

1 Introduction

In the past few decades, we have seen many advances in wireless communication
techniques and in microsensor technology.  These advances combined with growing
interest in both the military and the civilian domain in using sensor networks for
remote monitoring applications have led to the concept of a wireless sensor network.
A wireless sensor network can consist of a densely distributed set of sensors of
various modalities (e.g., acoustic, seismic, infrared, imaging) that gather data from the
physical environment and then process the data collaboratively to obtain a coherent
high level description of the current state of the system.

Due to their low production costs and low energy consumption, acoustic and
seismic sensors are among the most commonly studied types of wireless microsensors
for battlefield surveillance. However, these sensors have some weaknesses. Since
acoustic sensors depend on the acoustic signature of the target, they will not be able to
detect a vehicle when it becomes stationary with its engines off. They can also be
distracted by acoustic changes caused by gearshifts as well as accelerations and
decelerations of a vehicle. Also, these sensors can be affected by acoustic noise
caused by wind.  Similar problems exist with seismic sensors.
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We propose the use of multiple video sensors to enhance the capabilities of a
wireless sensor network.  Video sensors can track accelerating or decelerating targets
with relative ease.  They continue to “see” targets that become stationary even if the
targets are completely silent.  Also, video sensors can obtain unique attributes of a
target such as its shape, color, and texture that can be used for classification as well as
for pose estimation.

Automatic video-based vehicle surveillance has been studied mainly in the context
of traffic monitoring applications.  We can identify three main approaches that have
been used with some success in these applications.

One approach uses three-dimensional models in order to classify a vehicle as well
as to identify its position and orientation [1,2,3].  In this method, a sample taken from
a database of geometrical wireframe models of possible vehicle shapes is projected on
to the image plane and then compared with the object seen in the image.  The main
advantage of this method is that the vehicle can be classified as a part of the detection
process. A disadvantage is that detailed geometrical models of vehicles must be
available. Also, this approach can be very computationally intensive.

The second approach uses a contour of the motion-segmented image (i.e., pixels
belonging to moving vehicle) to track the dynamics of the vehicle [4][5][8].  The
weakness inherent to this method is that if multiple vehicles are in the field of view of
the camera, and some vehicles are partially occluded by others as they are initially
detected, then the vehicle contours cannot be correctly initialized.

The third approach, which is the one explored in this paper, simply tracks specific
features within the vehicle instead of tracking the entire object.  An example of a
feature-based vehicle tracking system is presented in [6]. An advantage of this method
is that some features of an object will still be visible even under partial occlusion.

The first phase or our system requires the detection of the moving target in each
camera image.  This can be achieved through background subtraction. An early
approach to background subtraction was to assume that changes in intensity of a pixel
that does not belong to a moving object can only occur due to camera noise and to
model each pixel in the background to have a Gaussian intensity distribution.  Then,
for each pixel in a new frame, a significance test could be used to determine whether
it belonged to the background model, or not [7].  However, this method assumes that
the background image is completely static, which is not true for outdoor scenes
involving foliage, or dust.  One approach to deal with this problem has been to model
each pixel with a mixture of Gaussians instead of as a single mode distribution [8].  In
[9], a non-parametric approach is used to model the statistics of the background.  In
this case, one does not assume that the shape of the pdf of the pixel intensity is
known, but instead, one assumes that the pixel intensities obtained from actual
measurements represent samples taken from the pdf of the distribution.  In this paper,
we have used a simplified version of the approach proposed in [9] with a few
modifications.

The next phase of our system is to compute matching feature points from images of
the target taken by two cameras and by each camera at different points in time. Due to
its key applications in the self-calibration of cameras and in object motion tracking,
feature point correspondence is an area that has received much attention in the field of
computer vision.  The proposed methods can be placed in two broad categories based
on the applications for which they are used.

The first category of methods can be used for applications in which the cameras are
set up with a short baseline (the baseline is the distance between the centers of
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projection of each camera) relative to the viewing distance of the object from each
camera.  In this case, the appearance of the images will be more or less uniform in the
two cameras, and matching feature points will be within a searchable local area of the
image.

In our application, however, the baseline between the cameras is unlikely to be
small compared to the distance from each camera to the target vehicle.  The main
difference in a wide baseline setup is that different cameras will have significantly
different viewpoints of the scene. Therefore, the image of an object will undergo a
perspective transformation when it is viewed from a different camera.  In this case, a
direct correlation of the pixel intensity neighborhood will not provide a correct
measure of the similarity between features. Also, feature detection itself becomes a
much harder problem in a wide baseline setup because it is not guaranteed that
different cameras will detect the same points of the object as feature points.

In [10] and [11], a scale space approach is used to detect scale invariant feature
points in images.  Typically, the points that can be detected consistently in images
from different viewpoints are the points of the object that cause the local pixel
intensities in the image to vary two-dimensionally. Such points are generally referred
to as corners and a measure based on the horizontal and vertical image gradients can
be used as a measure of their “cornerness” [12].

Even if the same feature points are detected from images in both cameras, the
matching task is still difficult due to the significant differences in viewpoint between
the two images.  In [13], the concept of affine Gaussian scale space is introduced
whereby image neighborhoods are smoothed using non-symmetric Gaussians in order
to make them invariant to affine transformations.  It is shown in [14] that affine scale
space methods can be used for feature matching in wide baseline applications.

The feature point correspondences are used for camera calibration.  There are two
main approaches to camera calibration: (i) Calibration using a calibration object,
usually a grid with features of known dimensions [15], and (ii) Self-calibration, which
exploits the constraints contained in the images themselves (epipolar, image of the
absolute conic) [16]. Due to the nature of our problem we must use a self-calibration
technique since it does not require the placement of any foreign object in the scene.

2 Problem Formulation

We consider a scenario in which an approaching vehicle must be continuously
detected and its position and velocity tracked by a set of video sensors located in the
field.  We assume the sensors have been placed arbitrarily in the field and that they
are not calibrated.  We also assume that the sensors are able to communicate with
each other and that they are capable of using GPS or some other method to determine
their position.  We do not assume that the target movement is constrained in anyway
other than that it will be moving on the ground plane.
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While the basic goal of the system is to simply detect and track any target vehicle
that enters the sensor field, we must also consider the issue of power efficiency in the
system.  Wireless sensor nodes have access to a limited power supply, and therefore,
we must utilize the available power in a way that would maximize the lifetime of the
network.  Since video sensors require a relatively large amount of processing, our
system should be such that a video sensor is used only when a target is approaching
the field of view of the sensor. Other less power-consuming sensors such as passive
infrared sensors can be used as tripwires to turn on the video cameras in the perimeter
of the sensor field. Also, due to the large energy cost associated with data
transmission, we must avoid transmitting raw video data, and instead, transmit higher-
level information generated at each sensor node whenever it is possible to do so.

The system we propose performs two main functions.  The first is to automatically
calibrate the video cameras in the sensor network based on point correspondences
obtained from the moving target. The other is to use feature point correspondences
obtained from subsequent frames in the video sequence combined with the camera
calibration parameters, to detect the exact position of the target in the field.  Then, we
use this information to track the target over time and determine its velocity and
predict its future state. A general block diagram of the proposed system is given in
figure 1.

If any uncalibrated
cameras in cluster

Target detected by low-
level sensor

Activate camera cluster within range

Return sensor to
sleep mode

Collaboratively assign leader
node

Calibrate cameras Track Target

Segment target region in
image of each camera

Target
Detected?

No Yes

Detect corresponding feature
points in target

Fig. 1. Block diagram of system.
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3 Background Subtraction

In our method, an initial estimate of the moving target region is obtained using a non-
parametric model for the background — a method originally proposed in [9]. Then,
this estimate is refined using spatial and temporal constraints within a Markov
random field framework that has previously been used for image and video
segmentation applications [17,18].

We can identify a few main requirements for the background subtraction
algorithm.  They are:

1. Adaptability to gradual changes in illumination
As the time of day or weather conditions change, the lighting conditions of

the system will also change.  Therefore, it is essential that the background model
be updated temporally based on the current lighting conditions of the scene.

2. Robustness to vacillations in background
In outdoor scenes, trees waving in the wind can cause a particular pixel in the

image frame to be a projection of a part of a leaf (green), a branch of the tree
(brown), or the sky (blue).  In all these cases, the particular pixel should be labeled
as background although its intensity may differ significantly between successive
frames.

3. Small training period
Due to energy considerations in a wireless sensor network, the camera should

not be expected to be on at all times. Therefore, the background subtraction
algorithm needs to initialize and generate a background model within a few
seconds.

4. Maintaining detection of objects that become stationary
In our application, it is important to continue to detect a target vehicle for as

long as possible even if it comes to a complete stop.

An approach based on the kernel density estimation technique presented in [9] can
satisfy most of the requirements specified above. The basic idea behind this technique
is that the underlying pdf of any distribution can be approximated by a weighted
average of a set of kernel functions defined around sample data points taken from the
distribution.

In this technique, we let xs(q) be an intensity value at location q, and time s, that
takes values from the set {0,…,255}. Then, we can estimate the probability that a new
pixel at time t, has intensity )(qtx  if it belongs to the background (B) by,
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where SN is a set of N time instances prior to the current time t. Note that the pixel
location q is omitted for clarity. Here, the kernel function is assumed to be a Gaussian
with width σ . A suitable kernel width can be estimated from the sample data in the
background pixels [9].

If the estimated probability is greater than a threshold, then the pixel can be
labeled as a background pixel. Otherwise, it can be assumed that it belongs to a
moving target.

3.1   Spatial and Temporal Constraints

We use a three-dimensional Markov random field (or equivalently, Gibbs random
field) approach, previously used in image segmentation [17,18], to further refine the
foreground segmentation.  In this approach, each pixel in the image is modeled as
belonging to two regions- background ( BX t = ) and foreground ( BX t ′= ).  Then,

by Bayes theorem, the a posteriori probability density that a given pixel, tX , is in the
background can be expressed using the a priori density of the background process as:

)()|()|( ttttt XpXxpxXp ⋅∝ (2)

where tx  is the intensity of the pixel.  We have already shown how the density

)|( BXxp tt =  can be found using kernel density estimation.  The a priori density,

)( tXp , can be found by modeling the background region using a 3D Gibbs random

field.  This is done by assuming that the region process satisfies the Markov property.
That is, if )(sN t  is the spatio-temporal neighborhood of a pixel in location s at time t,

then
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If this property is satisfied, the Gibbs density for the process can be expressed as

∑
=

−
C

tC XV

t e
Z

Xp
)(1

)(
(4)

where Z is a normalizing constant, and )( tc XV  is the clique potential for a given
clique C.  We only use two-point cliques (spatial and temporal) and assume that all

Spatial Temporal

Fig. 2. Spatial and temporal clique shapes
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one-point cliques have an equal potential of zero.  The clique shapes are shown in
figure 2. This amounts to an assumption that the probability of classification of the
pixel depends only on the immediate (3x3 pixel) spatial neighborhood of the pixel,
and temporally only on the previous and next pixel at the same location.

The two-point spatial and temporal clique potentials are defined such that for any
two points s and q in a clique C, and for 0>β ,
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3.2   Implementation

An important step in the model generation process is that of updating the background
model. In our application, we wished to continue to detect a target even when it
becomes stationary. We solve that problem by only updating the background pixels
that do not belong to the detected foreground object.

Fig. 3. Some results of background subtraction algorithm.  Vehicle traveling at 20mph.

Before After Before After

Fig. 4. Sequence of background frames before and after applying MRF
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As input to the algorithm, we use the previously classified frame (background and
foreground) and obtain the new classifications for the current and future frame based
on the non-parametric model without GRF constraints. Then, a new classification for
the current and future frame is found by adding spatial and temporal constraints as
specified above. This is iterated until the number of pixels whose classification is
changed over a new iteration is below a given threshold. The newly classified frame is
now fixed and is used as input for the next iteration of the algorithm.

Figures 3 and 4 show some results of the background subtraction algorithm.  In
figure 4, we show the improvements made by including spatial and temporal
constraints based on Markov random fields.

4 Feature Point Detection and Matching

This method uses a Harris detector [12] for the initial detection of affine invariant
feature points.  The Harris feature point detector attempts to detect points of interest
within the image around which the image intensities change two-dimensionally.  The
image intensity variation is represented by the second moment matrix, , which is

calculated using image gradient statistics over a neighborhood of each point.

qqqqxx
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where ()g  is a Gaussian window with a scale of sσ , I is the image intensity

function, and 

)(*)(),( qLq dd g σσ =∇ (7)

where )( dg σ  is a Gaussian and L(q) is the image gradient function evaluated at q.

The Gaussian function is used to smooth the noise in the original image.
It has been shown in [12] that we can define a corner strength measure, C(x),

which represents a point whose neighborhood exhibits significant intensity variations
in both dimensions as,

))(())(det()( 2 xxx tracekC ⋅−= (8)

where k is an empirically determined constant.  Points with corner strengths above a
given threshold could be considered to be interest points.

We can determine the best feature points in the image by choosing the points that
give the maximum corner strength according to the Harris measure over all
integration and derivation scales.  However, since the error in the localization of a
feature point is increased with increasing scale, we localize the detected interest point
in the smallest scale using a method similar to that proposed in [19].
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4.1   Affine Gaussian Scale Space

Affine Gaussian scale space is presented in [14], as a framework within which to
solve the wide baseline correspondence problem.  An important assumption in using
this method is that locally smooth regions of the image of an object will only undergo
an affine transformation when viewed from different viewpoints.

The difference between affine Gaussian and linear scale space is that in the former,
the Gaussian functions used for convolution of the image prior to finding the second
moment matrix will not be rotationally symmetric.  Therefore, the scale parameter for
an affine Gaussian window will be a covariance matrix instead of a scalar variance.

Then, the second moment matrix of a point in affine Gaussian scale space is,

qqqqxx
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ddssd ),(),(),();;( ∇⋅∇⋅−= ∫

∈
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where, d , and s are the covariance matrices associated with the scales of

derivation and integration.
Assume that the second moment matrix in affine Gaussian scale space of a given

image L, is shown to be LM , and

1
LLd, M−= t and 1

Ls,L M−= s (10)

Then, if Rq  is a point in a transformed image, R, such that LR Aqq =  and,

RR M= , it can be shown [13] that,

1
RR, M −= td , and 1

RR, M −= ss
(11)

Therefore, the fixed point conditions are preserved under linear transformations.
Moreover, it is shown in [14] that if we define L′  to be a square root transformed

image of L, such that x)L(M(x)L 2

1

L ⋅=′
−

, then

II)Iq( LL =′′ st ,; (12)

Since the same would be true for images R and R′ , and assuming that the affine
transformation from L′  to R′  can be written as A′ , we get,

IAAAI)Iq(AII)Iq( T
RR

T
LL =′′=′′′′==′′ stst ,;,; (13)

Therefore, A′  is a rotation matrix.  This implies that, if we are given two images
where one is a linear transformation of the other, and we can find the fixed points for
each image, then the square root transformed versions of the two images will be
related by a simple rotation.

In the wide baseline matching application, we can obtain the local neighborhoods
of points detected by the multi-scale Harris feature detector, and find their
corresponding square root transformed image neighborhoods.  Then, we can use
conventional rotation invariant descriptors to represent the transformed images and
match them using the minimum distance between such descriptors.
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4.2   Implementation

In our implementation, we calculated the corner strength of each point in the image at
multiple values of sσ  and dσ .  The values of dσ  were kept proportional to sσ , and

sσ  was chosen to be in the range [2.0, 16.0].  The points with the maximum corner

strengths across all possible scales were considered to be feature points of the image.
Then, the goal was to transform the local neighborhood, L, around each feature

point, x, to a fixed point and to find its square root form.  This transformation, A, is
accomplished by iterating through the following basic steps.

1) Set IA =)0( .

2) Set q)L(A(q)L ⋅=′ )(k .

3) Find ),; II(xL st′  where t,s are kept constant and equal to the characteristic

scales found by the multi-scale Harris detector.
4) Normalize L′  to have a unit determinant.

5) If IL ≠′ , then set )()1( kk A)(A 2

1

L ⋅′=
−+ .

6) Normalize )(kA  by its largest eigenvalue.
7) If IL =′ , then stop.  Otherwise, return to step 2.

The normalization of the second moment matrix in step 2 amounts to a rescaling of
the local intensity values in the neighborhood of the pixel and the normalization of the
transformation matrix in step 6 will ensure that the original image will not be under-
sampled.

4.3   Feature Point Correspondence

Before matching the transformed image neighborhoods around the feature points
obtained using the above method, they need to be made invariant to changes in
intensity since they are viewed by different cameras from different viewpoints.  We
have used a simple approach, which consists of normalizing each pixel in the feature
neighborhood by the maximum intensity value for the neighborhood.

Then, since the images obtained from the two viewpoints will be similar only up to
a rotation, the next step is to obtain rotation invariant feature descriptors for each of
the images. The descriptors we use are based on a method suggested in [14] and
consist of a vector of 15 elements, which correspond to higher order derivatives of the
image.

Once the descriptors are obtained we match them using the minimum Mahalanobis
distance between each two descriptors taken from different viewpoints.  If a point in
one image is close to multiple points in another image with a larger spatial variance,
then we discard the point since the matching is too ambiguous.  Also, if a point does
not have any points in the other image which are within a threshold distance, that
point is discarded since it may not exist at all in the other image.
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4.4   Results

The feature point matching algorithm is successful if the difference in viewpoint
between two images is within reasonable limits. For example, the matching algorithm
detected 20 corresponding points between figure 5(a) and figure 5(b).  Of them, 17
were correct matches.  However, of the 17 detected correspondences between 5(a)

and 5(c), only 9 were correct matches. This shows that, in order to be used for self-
calibration, we will need to take images of the target from cameras that have
relatively similar viewpoints. On the other hand, if the cameras are already calibrated,
then we can use the epipolar constraint to find better correspondences, and a relatively
low number of correct correspondences will be sufficient to perform feature point
based tracking.

5 Camera Calibration

The sensors need to be calibrated for their intrinsic and extrinsic parameters. Intrinsic
camera parameters describe image formation, and they are focal length, aspect ratio,
principal point and skew. Extrinsic camera parameters describe position and
orientation of the cameras relative to some reference frame and they are described in
terms of translation and rotation.

We assume that the relationship between the world coordinates, [x y z], and the
pixel coordinates, [u v], is linear projective. This allows for use of projective
geometry, which greatly simplifies mathematical representation. In the new
generation of cameras distortion is reasonably small, and this model is a good
approximation.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Results of corner detection.  White crosses indicate position of detected corners.
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[ ] [ ]′=′ 1zyxsvu P , [ ]t|RAP = (14)

Here A is the intrinsic parameter matrix and R, t, describe the rotation and translation
parameters.

In addition, we can use several more simplifying assumptions about the camera
model that will ease our calibration task and will not seriously degrade the accuracy
of reconstruction. Skew can be assumed to be equal to zero, θ=π/2, (reasonable for
new generations of cameras), and the principal point, [u0,v0], can be assumed to be at
the center of the image. It is well known that variation in location of the principal
point of several pixels does not affect the reconstruction in a great manner [15].
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If aspect ratio is known in advance (from manufacturers specifications,) and if we
have a good guess for the focal lengths of each camera, we are then able to
reconstruct the scene from one snapshot of the stereo pair.

Scene reconstruction involves obtaining pixel correspondences between a pair of
images, which are used to estimate the fundamental matrix, F [20]. The fundamental
matrix defines an epipolar constraint between images in terms of pixels. Since the
estimation of the fundamental matrix is very sensitive to errors in feature point
correspondences, and our Harris feature based matcher can produce some false
matches, we use the random sample and consensus algorithm (RANSAC) [21] using
the epipolar constraint as a criterion to detect false matches and eliminate outliers.
For corresponding points m2 and m1 in two images, the epipolar constraint is
expressed as,

0=1
T
2 Fmm (16)

F is calculated using a normalized eight-point algorithm [22].
Knowing the intrinsic parameters and the fundamental matrix we can calculate the

essential matrix, which can further be decomposed into rotational and translational
components to obtain initial guesses for the extrinsic parameters [23]. We then
optimize the results in terms of the discrepancy from the epipolar constraint by
solving a nonlinear least squares problem [15].
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Here T is a skew symmetric matrix made from the translation vector, A2, and A1 are
the intrinsic matrices of the two cameras, and m2, m1 are corresponding points.
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If we do not have an accurate guess for the focal lengths, we can obtain them by
self-calibrating the cameras. Since we have only one unknown intrinsic parameter for
each camera, we need only one synchronized snapshot from each camera to be able to
solve for the focal lengths. To self-calibrate cameras, we need to solve the set of
Kruppa equations.  Kruppa equations require the fundamental matrix to be known and
they relate the correspondence of epipolar lines tangent to a dual image of the
absolute conic [24].

In the more general case, if we do not know the aspect ratio in advance, then we
can still self-calibrate the cameras by using two snapshots of a moving target taken
from each camera.  Then, if we only obtain correspondence points detected within the
target, we can equate the motion of the target to a motion of the stereo rig.  It has been
shown in [25] that this provides enough additional constraints to solve for the
unknown intrinsic parameters.

Since with this approach we can only reconstruct the scene up to an unknown scale
factor, we need some external information to perform the metric reconstruction. For
example, if the cameras are equipped with GPS device, then we can obtain the scale
factor by calculating the baseline distance between the cameras. Figure 6 shows
results of the camera calibration algorithm and metric reconstruction procedure.

6 Tracking Results

For the tracking experiment, we used a sequence of images taken from two cameras in
a wide baseline setup.  The images were taken with a resolution of 1024x768 pixels
and they consisted of two moving objects in an indoor environment.  We assumed that
the focal lengths of the cameras were known and that aspect ratios were equal to one.

Fig.6. Original images and reconstructed scene using two cameras
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After the cameras were calibrated, the detected feature points on the target were
tracked over the entire sequence.  The tracking was performed using a Kalman filter.
We assume a linear constant velocity dynamic model for the Kalman filter.  Figure 7
shows an example of a tracked point as the object moves in the field of view of both
cameras.

The position and velocity plots of the point are shown in figure 8.  The position of
the point is shown relative to the XZ plane in the camera coordinate system. This
corresponds to viewing the trajectory of the point from above. There are some
missing points in the position plot that correspond to frames in which the feature
points could not be extracted with sufficient certainty. There are also a couple of
outliers that are caused by false point correspondences between the images. The
velocity plot shows some deviation from the ground truth due to errors in the metric
reconstruction.

7 Conclusions

We have concluded that computer vision based target tracking is a viable approach for
a wide-baseline configuration involving multiple cameras. Feature point based
tracking algorithms enable real time operation, and also reduce communication
requirements between sensors. The main difficulty in this approach is establishing
wide-baseline feature point correspondences from uncalibrated camera views for the
purpose of camera calibration.  We plan to further investigate this topic in the future.

Fig. 7. Tracked Feature Point. Top: right camera view, bottom: left camera view
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Fig. 8. Position and velocity estimates of tracked point.
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