

• Two cases:

- Scene that is planar or distant from the cameras (2D scenes).
 - homographies
- Non-planar scene (3D scenes).
 - fundamental matrix

2D Scenes

• P be a 3D point in the scene, denote by p_i and p_i' its image coordinates in frame I_i and I_i' , and by p_{i+1} and p_{i+1}' its image coordinates in frame I_{i+1} and I_{i+1}' .

$$\begin{aligned} \mathbf{p}'_{i+1} &\cong \mathbf{T}_i \mathbf{p}'_i & \mathbf{p}_{i+1} &\cong \mathbf{T}_i \mathbf{p}_i \\ \mathbf{p}'_i &\cong \mathbf{H} \mathbf{p}_i & \mathbf{p}'_{i+1} &\cong \mathbf{H} \mathbf{p}_{i+1} \end{aligned}$$

• We can derive

 $T'_i \cong HT_i H^{-1}$ or $T'_i = s_i HT_i H^{-1}$

• Therefore

 $eig(T_i') = s_i eig(T_i)$ For 3×3 matrix A, eig(A) = $\begin{bmatrix} \lambda_1, \lambda_2, \lambda_3 \end{bmatrix}^t$

s_i can be estimated by least squares minimization.

 s_iHT_i - $T_i'H=0$

Limitations

- Two cameras share the same center of projection
- Time shift ∆t is constant
- Relative camera motion is constant