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Abstract

This paper shows how two image sequences that have no spatial overlap between their fields of view can be aligned

both in time and in space. Such alignment is possible when the two cameras are attached closely together and

are moved jointly in space. The common motion induces “similar” changes over time within the two sequences.

This correlated temporal behavior, is used to recover the spatial and temporal transformations between the two se-

quences. The requirement of “coherent appearance” in standard image alignment techniques is therefore replaced

by “coherent temporal behavior”, which is often easier to satisfy.

This approach to alignment can be used not only for aligning non-overlapping sequences, but also for handling

other cases that are inherently difficult for standard image alignment techniques. We demonstrate applications of

this approach to three real-world problems: (i) alignment of non-overlapping sequences for generating wide-screen

movies, (ii) alignment of images (sequences) obtained at significantly different zooms, for surveillance applications,

and, (iii) multi-sensor image alignment for multi-sensor fusion.

1 Introduction

The problem of image alignment (or registration) has been extensively researched, and successful approaches have

been developed for solving this problem. Some of these approaches are based on matching extracted local image

features, other approaches are based on directly matching image intensities. A review of some of these methods

�A shorter version of this paper appeared in ICCV 2001 [6].



can be found in [22] and [14]. However, all these approaches share one basic assumption: that there is sufficient

overlap between the two images to allow extraction of common image properties, namely, that there is sufficient

“similarity” between the two images (“Similarity” of images is used here in the broadest sense. It could range from

gray-level similarity, to feature similarity, to similarity of frequencies, and all the way to statistical similarity such

as mutual information [24]).

In this paper the following question is addressed: Can two images be aligned when there is very little similarity

between them, or even more extremely, when there is no spatial overlap at all between the two images? When

dealing with individual images, the answer tends to be “No”. However, this is not the case when dealing with image

sequences. An image sequence contains much more information than any individual frame does. In particular,

temporal changes (such as dynamic changes in the scene, or the induced image motion) are encoded between video

frames, but do not appear in any individual frame. Such information can form a powerful cue for alignment of

two (or more) sequences. Caspi and Irani [5] and Stein [21] have illustrated an applicability of such an approach

for aligning two sequences based on common dynamic scene information. However, they assumed that the same

temporal changes in the scene (e.g., moving objects) are visible to both video cameras, leading to the requirement

that there must be significant overlap in the FOVs (fields-of-view) of the two cameras.

In this paper we show that when two cameras are attached closely to each other (so that their centers of projections

are very close), and move jointly in space, then the induced frame-to-frame transformations within each sequence

have correlated behavior across the two sequences. This is true even when the sequences have no spatial overlap.

This correlated temporal behavior is used to recover both the spatial and temporal transformations between the two

sequences.

Unlike carefully calibrated stereo-rigs [20], our approach does not require any prior internal or external camera

calibration, nor any sophisticated hardware. Our approach bears resemblance to the approaches suggested by [7,

12, 25] for auto-calibration of stereo-rigs. But unlike these methods, we do not require that the two cameras observe

and match the same scene features, nor that their FOVs will overlap.

The need for “coherent appearance”, which is a fundamental assumption in image alignment or calibration meth-

ods, is replaced here with the requirement of “coherent temporal behavior”. Coherent temporal behavior is often

easier to satisfy (e.g., by moving the two cameras jointly in space). A similar idea was used for “hand-eye calibra-

tion” in robotics research (e.g., [23, 13]).

Our approach is useful not only in the case of non-overlapping sequences, but also in other cases where there
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Figure 1: Two video cameras are attached to each other, so that they have the same center of projection, but non-
overlapping fields-of-view. The two cameras are moved jointly in space, producing two separate video sequences I 1; :::; In+1
and I 0

1; :::; I
0

n+1.

is very little common appearance information between images, and are therefore inherently difficult for standard

image alignment techniques. This gives rise to a variety of real-world applications, including: (i) Multi-sensor

alignment for image fusion. This requires accurate alignment of images (sequences) obtained by sensors of different

sensing modalities (such as Infra-Red and visible light). Such images differ significantly in their appearance due

to different sensor properties [24]. (ii) Alignment of images (sequences) obtained at different zooms. The problem

here is that different image features are prominent at different image resolutions [8]. Alignment of a wide-FOV

sequence with a narrow-FOV sequence is useful for detecting small zoomed-in objects in (or outside) a zoomed-

out view of the scene. This can be useful in surveillance applications. (iii) Generation of wide-screen movies from

multiple non-overlapping narrow FOV movies (such as in IMAX movies).

Our approach can handle such cases. Results are demonstrated in the paper on complex real-world sequences,

as well as on manipulated sequences with ground truth.

2 Problem Formulation

We examine the case when two video cameras having (approximately) the same center of projection but different

3D orientation, move jointly in space (see Fig. 1). The fields of view of the two cameras do not necessarily over-

lap. The internal parameters of the two cameras are different and unknown, but fixed along the sequences. The

external parameters relating the two cameras (i.e., the relative 3D orientation) are also unknown but fixed. Let

S = I1; :::In+1 and S0 = I 01; :::; I
0

m+1 be the two sequences of images recorded by the two cameras1. When tem-

poral synchronization (e.g., time stamps) is not available, then Ii and I 0i may not be corresponding frames in time.

Our goal is to recover the transformation that aligns the two sequences both in time and in space. Note the term

1The subscript i is used represents the frame time index, and the superscript prime is used to distinguish between the two sequences S
and S0.
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Figure 2: Problem formulation. The two sequences are spatially related by a fixed but unknown inter-camera homog-
raphy H, and temporally related by a fixed and unknown time shift �t. Given the frame-to-frame transformations T 1; :::; Tn
and T 0

1; :::; T
0

m
, we want to recover H and �t.

“alignment” here has a broader meaning than the usual one, as the sequences may not overlap in space, and may not

be synchronized in time. Here we refer to alignment as displaying one sequence in the spatial coordinate system

of the other sequence, and at the correct time shift, as if obtained by the other camera.

When the two cameras have the same center of projection (and differ only in their 3D orientation and their in-

ternal calibration parameters), then a simple fixed homography H (a 2D projective transformation) describes the

spatial transformation between temporally corresponding pairs of frames across the two sequences [11].

If there were enough common features (e.g., p and p0) between temporally corresponding frames (e.g., Ii and I 0i),

then it would be easy to recover the inter-camera homography H , as each such pair of corresponding image points

would provide linear constrains on H: p0 �= Hp. This, in fact, is how most image alignment techniques work [11].

However, this is not the case here. The two sequence do not share common features, because there is no spatial

overlap between the two sequences. Instead, the homography H is recovered from the induced frame-to-frame

transformations within each sequence.

Let T1; :::Tn and T 01; :::T
0

m be the sequences of frame-to-frame transformations within the video sequences S

and S0, respectively. Ti is the transformation relating frame Ii to Ii+1. These transformations can be either 2D

parametric transformations (e.g., homographies or affine transformations) or 3D transformations/relations (e.g.,

fundamental matrices). We next show how we can recover the spatial transformation H and the temporal shift �t

between the two video sequences directly from the two sequences of transformations T1; :::Tn and T 01; :::T
0

m. The

problem formulated above is illustrated in Fig. 2.
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3 Recovering Spatial Alignment Between Sequences

Let us first assume that the temporal synchronization is known. Such information is often available (e.g., from time

stamps encoded in each of the two sequences). Sec. 4 shows how we can recover the temporal shift between the

two sequences when that information is not available. Therefore, without loss of generality, it is assumed that Ii

and I 0i are corresponding frames in time in sequences S and S0, respectively. Two cases are examined: (i) The

case when the scene is planar or distant from the cameras. We refer to these scenes as “2D scenes”. In this case the

frame-to-frame transformations Ti can be modeled by homographies (Sec. 3.1). (ii) The case of a non-planar scene.

We refer to these scenes as “3D scenes”. In this case the frame-to-frame relation can be modeled by a fundamental

matrix (Sec. 3.2).

3.1 Planar or Distant (2D) Scenes

When the scene is planar or distant from the cameras, or when the joint 3D translation of the two cameras is negli-

gible relative to the distance of the scene, then the induced image motions within each sequence (i.e., T1; :::Tn and

T 0

1; :::T
0

n) can be described by 2D parametric transformations [11]. Ti thus denotes the homography between frame

Ii and Ii+1, represented by 3� 3 non-singular matrices. We next show that temporally corresponding transforma-

tions Ti and T 0i are related by the same fixed inter-camera homography H (which relates frames Ii and I 0i).

Let P be a 3D point in the planar (or the remote) scene. Denote by pi and p0i its image coordinates in frames

Ii and I 0i, respectively (the point P need not be visible in the two frames, i.e., P need not be within the FOV of

the cameras). Let pi+1 and p0i+1 be its image coordinates in frames Ii+1 and I 0i+1, respectively. Then, pi+1 �=

Tipi and p0i+1
�= T 0

ip
0

i. Because the coordinates of the video sequences S and S0 are related by a fixed homography

H , then: p0 �= Hp and p0i+1
�= Hpi+1. Therefore:

HTipi �= Hpi+1 �= p0i+1
�= T 0

ip
0

i
�= T 0

iHpi (1)

Each pi could theoretically have a different scalar associated with the equality in Eq. (1). However, it is easy to

show that because the relation in Eq. (1) holds for all points pi, therefore all these scalars are equal, and hence:

HTi �= T 0

iH: (2)

Because H is non-singular we may write T0i �= HTiH
�1, or

T 0

i = siHTiH
�1 (3)
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where si is a (frame-dependent) scale factor. Eq. (3) is true for all frames, i.e., for any pair of corresponding trans-

formations Ti and T 0i (i = 1::n) there exists a scalar si such that T 0i = siHTiH
�1. It shows that there is a similarity

relation2 (or a “conjugacy relation”) between the two matrices Ti and T 0i (up to a scale factor). A similar observa-

tion was made for case of hand-eye calibration (e.g., [23, 13]), and for auto-calibration of a stereo-rig (e.g. [25]).

Denote by eig(A) = [�1; �2; �3]
t a 3� 1 vector containing the eigenvalues of a 3� 3 matrix A (in decreasing

order). Then it is known ([9] pp. 898.) that: (i) If A and B are similar (conjugate) matrices, then they have

the same eigenvalues: eig(A) = eig(B), and, (ii) The eigenvalues of a scaled matrix are scaled: eig(sA) =

s(eig(A)). Using these two facts and Eq. (3) we obtain:

eig(T 0

i ) = si eig(Ti) (4)

where si is the scale factor defined by Eq. (3). Eq. (4) implies that the two vectors eig(Ti) and eig(T 0i ) are “parallel”.

This gives rise to a measure of similarity between two matrices Ti and T 0i :

sim(Ti; T
0

i ) =
eig(Ti)

t eig(T 0

i )

jjeig(Ti)jj jjeig(T 0

i )jj
; (5)

where jj�jj is the vector norm. For real valued eigenvalues, Eq. (5) provides the cosine of the angle between the two

vectors eig(Ti) and eig(T 0i ). This property will be used later for obtaining the temporal synchronization between

the two sequences (Sec. 4). This measure is also used for outlier rejection of bad frame-to-frame transformation

pairs, Ti and T 0i (Appendix A). The remainder of this section explains how the fixed inter-camera homography H

is recovered from the list of frame-to–frame transformations T1; ::Tn and T 01; ::; T
0

n.

For each pair of temporally corresponding transformations Ti and T 0i in sequences S and S0, we first compute

their eigenvalues eig(Ti) and eig(T 0i ). The scale factor si which relates them is then estimated from Eq. (4) us-

ing least squares minimization (three equations, one unknown)3. Once si is estimated, Eq. (3) (or Eq. (2)) can be

rewritten as:

siHTi � T 0

iH = 0 (6)

Eq. (6) is linear in the unknown components of H . Rearranging the components of H in a 9 � 1 column vector

~h = [H11H12H13H21H22H23H31H32H33]
t, Eq. (6) can be rewritten as a set of linear equations in~h:

Mi
~h = ~0 (7)

2A matrix A is said to be “similar” to a matrix B if there exists an invertible matrix M such that A = MBM�1 (see [9]). The term
“conjugate matrices” is also often used.

3Alternatively, the input homographies can be normalized to have determinant equal to 1, to avoid the need to compute si.
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where Mi is a 9� 9 matrix defined by Ti, T 0

i and si:

Mi =

2
64 siTi

t � T 0

i11
I �T 0

i12
I �T 0

i13
I

�T 0

i21
I siT

t � T 0

i22
I �T 0

i23
I

�T 0

i31
I �T 0

i32
I siT

t � T 0

i33
I

3
75
9�9

and I is the 3� 3 identity matrix.

Eq. (7) implies that each pair of corresponding transformations Ti and T 0i contributes 9 linear constrains in the un-

known homography H (i.e.,~h), out of which at most 6 constraints are linearly independent (see Sec. 6). Therefore,

in theory, at least two such pairs of independent transformations are needed to uniquely determine the homography

H (up to a scale factor). In practice, we use all available constraints from all pairs of transformations to compute

H . The constraints from all the transformations T1; ::; Tn and T 01; ::; T
0

n can be combined into a single set of linear

equations in~h:

A~h = ~0 (8)

where A is a 9n � 9 matrix: A =

2
64

M1

...
Mn

3
75. Eq. (8) is a homogeneous set of linear equations in~h, that can be

solved in a variety of ways [3]. In particular,~hmay be recovered by computing the eigenvector which corresponds

to the smallest eigenvalue of the matrix AtA.

3.2 3D Scenes

When the scene is neither planar nor distant, the relation between two consecutive frames of an uncalibrated camera

is described by the fundamental matrix [11]. In this case the input to our algorithm is two sequences of fundamental

matrices between successive frames, denoted by F1; :::Fn and F 0

1; :::F
0

n. Namely, if pi 2 Ii and pi+1 2 Ii+1 are

corresponding image points, then: pti+1Fipi = 0. Although the relations within each sequence are characterized by

fundamental matrices, the inter-camera transformation remains a homography H . This is because the two cameras

still share the same center of projection (Sec. 2).

Each fundamental matrix Fi can be decomposed into a homography + epipole as follows [11]:

Fi = [ei]�Ti
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(a) (b)

(c)
Figure 3: Alignment of non-overlapping sequences. (a) and (b) are temporally corresponding frames from sequences
S and S 0. The correct time shift was automatically detected. (c) shows one frame in the combined sequence after spatio-
temporal alignment. Note the accuracy of the spatial and temporal alignment of the running person. For full sequences see
www.wisdom.weizmann.ac.il/NonOverlappingSeqs.
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(a) (b)

(c)

Figure 4: Wide-screen movies generation (a) and (b) are temporally corresponding frames from sequences S and S 0.
The correct time shift was automatically detected. (c) shows one frame in the combined sequence. Corresponding video frames
were averaged after spatio-temporal alignment. The small overlapping area was not used in the estimation process, but only
for verification (see text). Note the accuracy of the spatial and temporal alignment of the soccer player in the overlapping
region. For full sequences see www.wisdom.weizmann.ac.il/NonOverlappingSeqs.

where ei is the epipole relating frames Ii and Ii+1, the matrix Ti is the induced homography from Ii to Ii+1 via any

plane (real or virtual). [�]� is the cross product matrix ([v]� ~w = ~v � ~w).

The homographies, T1; :::; Tn and T 01; :::; T
0

n, and the epipoles e1; :::; en and e01; :::; e
0

n, impose separate con-

straints on the inter-camera homography H . These constraints can be used separately or jointly to recover H .

(i) Homography-based constraints: The homographies T1; ::; Tn and T 01; ::; T
0

n (extracted from the fundamental

matrices F1; ::; Fn and F 0

1; ::; F
0

n, respectively), may correspond to different 3D planes. In order to apply the al-

gorithm of Sec. 3.1 using these homographies, we need to impose plane-consistency across the two sequences (to

guarantee that temporally corresponding homographies correspond to the same plane in the 3D world). One pos-

sible way for imposing plane-consistency across (and within) the two sequences is by using the “Plane+Parallax”

approach [17, 15, 19, 18]. However, this approach requires that a real physical planar surface be visible in all video

frames. Alternatively, the “threading” method of [1] or other methods for computing consistent set of camera ma-

trices (e.g., [2]), can impose plane-consistency within each sequence, even if no real physical plane is visible in

any of the frames. Plane consistency across the two sequences can be obtained, e.g., if [1] is initiated at frames
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which are known to simultaneously view the same real plane in both sequences. This can be done even if the two

cameras see different portions of the plane (allowing for non-overlapping FOVs), and do not see that plane at any

of the other frames. This approach is therefore less restrictive than the Plane+Parallax approach.

(ii) Epipole-based constraints: The fundamental matricesF1::Fn andF 0

1::F
0

n also provide a list of epipoles e1; :::; en

and e01; :::; e
0

n. These epipoles are uniquely defined (there is no issue of plane consistency here). Since the two cam-

eras have the same center of projection, then for any frame i: e0i
�= Hei, or more specifically:

(e0i)x =
[h1h2h3] ei
[h7h8h9] ei

(e0i)y =
[h4h5h6] ei
[h7h8h9] ei

(9)

Multiplying by the dominator and rearranging terms yields two new linear constrains on H for every pair of cor-

responding epipoles ei and e0i: "
ei
t ~0t (e0i)xei

t

~0t ei
t (e0i)yei

t

#
2�9

~h = 0 (10)

where~0t = [0; 0; 0]. Every pair of temporally corresponding epipoles, ei and e0i, thus imposes two linear constraints

on H . These 2n constraints (i = 1; ::; n) can be added to the set of linear equations in Eq. (8) which are imposed

by the homographies. Alternatively, the epipole-related constraints can be used alone to solve for H , thus avoiding

the need to enforce plane-consistency on the homographies. Theoretically, four pairs of corresponding epipoles ei

and e0i in general position (no 3 on the same line) are sufficient.

4 Recovering Temporal Synchronization Between Sequences

So far we have assumed that the temporal synchronization between the two sequences is known and given. Namely,

that frame Ii in sequence S corresponds to frame I0i in sequence S0, and therefore the transformation Ti corresponds

to transformation T 0i . Such information is often available from time stamps. However, when such synchronization

is not available, we can recover it. Given two unsynchronized sequences of transformations T1; :::Tn and T 01; :::T
0

m,

we wish to recover the unknown temporal shift �t between them. Let Ti and T 0i+�t be temporally corresponding

transformations (namely, they occurred at the same time instance). Then from Eq. (4) we know that they should

satisfy eig(Ti) k eig(T 0

i+�t) (i.e., the 3�1 vectors of eigenvalues should be parallel). In other words, the similarity

measure sim(Tti ; T
0

t0
i
+�t

) of Eq. (5) should equal 1 (corresponding to cos(0), i.e., an angle of 0� between the two

vectors). All pairs of corresponding transformations Ti and T 0i+�t must simultaneously satisfy this constraint for
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the correct time shift �t. Therefore, we recover the unknown temporal time shift �t by maximizing the following

objective function:

SIM(�t) =
X
i

sim(Ti; Ti+�t)
2 (11)

The maximization is currently performed by an exhaustive search over a finite range of valid time shifts �t. To ad-

dress larger temporal shifts, we apply a hierarchical search. Coarser temporal levels are constructed by composing

transformations to obtain fewer transformation between more distant frames.

The objective function of Eq. (11) can be generalized to handle sequences of different frame rates, such as se-

quences obtained by NTSC cameras (30 frame/sec) vs. PAL cameras (25 frames/sec). The ratio between frames

corresponding to equal time steps in the two sequences is 25 : 30 = 5 : 6. Therefore, the objective function that

should be maximized for an NTSC-PAL pair of sequences is:

SIM(�t) =
X
i

sim(T
5(i+1)

5i
; T 0

6(i+1)+�t

6i+�t
)2 (12)

Where T j
i is the transformation from frame Ii to frame Ij . In our experiments, all sequences were obtained by PAL

video cameras. Therefore only the case of equal frame-rate (Eq. (11)) was experimentally verified. We found this

method to be very robust. It successfully recovered the temporal shift up to field (sub-frame) accuracy. Sub-field

accuracy may be further recovered by interpolating the values of SIM(�t) obtained at discrete time shifts.

5 Applications

This section illustrates the applicability of our method to solving some real-world problems, which are particularly

difficult for standard image alignment techniques. These include: (i) Alignment of non-overlapping sequences for

generation of wide-screen movies from multiple narrow-screen movies (such as in IMAX films), (ii) Alignment

of sequences obtained at significantly different zooms (e.g., for surveillance applications), and (iii) Alignment of

multi-sensor sequences for multi-sensor fusion. We show results of applying the method to complex real-world

sequences. All sequences which we experimented with were captured by “off-the-shelf” consumer CCD cameras.

The cameras were attached to each other, to minimize the distance between their centers of projections. The joint

camera motion was performed manually (i.e., a person would manually hold and rotate the two attached cameras).

No temporal synchronization tool was used.
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Wide view Zoomed View Aligned Views

(1.a) (1.b) (1.c)

(2.a) (2.b) (2.c)

(3.a) (3.b) (3.c)

Figure 5: Finding zoomed region. This figure displays three different examples (one at each row), each one with different
zoom factor. The left column (1.a, 2.a, 3.a) display one frame from each of the three wide-FOV sequences. The temporally
corresponding frames from the corresponding narrow-FOV sequences are displayed in the center column (1.b, 2.b, 3.b). The
correct time shift was automatically detected for each pair of narrow/wide FOV sequences. Each image on the right col-
umn shows super-position of corresponding frames of the two sequences after spatio-temporal alignment, displayed by color
averaging (1.c, 2.c, 3.c). For full sequences see www.wisdom.weizmann.ac.il/NonOverlappingSeqs.

The frame-to-frame input transformations within each sequence (homographies T1; :::; Tn and T 01; :::; T
0

n) were

extracted using the method described in [16]. Inaccurate frame-to-frame transformations Ti are pruned out by using

two outlier detection mechanisms (see Appendix A). The input sequences were usually several seconds long to

guaranty significant enough motion. The temporal time shift was recovered using the algorithm described in Sec. 4

up to field accuracy. Finally, the best thirty or so transformations were used in the estimation of the inter-camera

homography H (using the algorithm described in Sec. 3.1).

5.1 Alignment of Non-Overlapping Sequences

Fig. 3 shows an example of alignment of non-overlapping sequences. The left camera is zoomed-in and rotated

relative to the right camera. The correct spatio-temporal alignment can be seen in Fig. 3.c. Note the accurate align-

ment of the running person both in time and in space.
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Visible IR Output

(a) (b) (c)

Figure 6: Multi-sensor Alignment. (a) and (b) are temporally corresponding frames from the visible-light and IR se-
quences, respectively (the temporal alignment was automatically detected). The inside of the building is visible only in the
visible-light sequence, while the IR sequence captures the details outdoors (e.g., the dark trees, the sign, the bush). (c) shows
the results of fusing the two sequences after spatio-temporal alignment. The fused sequence preserves the details from both
sequences. Note the high accuracy of alignment (both in time and in space) of the walking lady. For more details see text.
For full sequences see www.wisdom.weizmann.ac.il/NonOverlappingSeqs.

Our approach to sequence alignment can be used to generate wide-screen movies from two (or more) narrow

field-of-view movies (such as in IMAX movies). Such an example is shown in Fig. 4. To verify the accuracy of

alignment (both in time and in space), we allowed for a very small overlap between the two sequences. However,

this image region was not used in the estimation process, to imitate the case of truly non-overlapping sequences.

The overlapping region was used only for display and verification purposes. Fig. 4.c shows the result of combining

the two sequences (by averaging corresponding frames) after spatio-temporal alignment. Note the accurate spatial

as well as temporal alignment of the soccer player in the averaged overlapping region.

5.2 Alignment of Sequences Obtained at Different Zooms

Often in surveillance applications two cameras are used, one with a wide FOV (field-of-view) for observing large

scene regions, and the other camera with a narrow FOV (zoomed-in) for detecting small objects. Matching two such

images obtained at significantly different zooms is a difficult problem for standard image alignment methods, since

the two images display different features which are prominent at the different resolutions. Our sequence alignment

approach may be used for such scenarios. Fig. 5 shows three such examples. The results of the spatio-temporal

alignment (right column of Fig. 5) are displayed in the form of averaging temporally corresponding frames after

alignment according to the computed homography and the computed time shift. In the first example (top row of

Fig. 5) the zoom difference between the two cameras was approximately 1:3. In the second example (second row)

it was �1:4, and in the third example (bottom row) it was �1:8. Note the small red flowers in the zoomed view

(Fig. 5.2.b). These can barely be seen in the corresponding low resolution wide-view frame (Fig. 5.2.a). The same
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(a) (c) (d)

Figure 7: The sequence used for empirical evaluation. (a,b,c) are three frames (0,150,300) out of the original 300
frames. This sequence was used as the base sequence for the quantitative experiments summarized in Table 1.

holds for the Pagoda in Fig. 5.3.b

5.3 Multi-Sensor Alignment

Images obtained by sensors of different modalities, e.g., IR (Infra-Red) and visible light, can vary significantly in

their appearance. Features appearing in one image may not appear in the other, and vice versa. This poses a problem

for image alignment methods. Our sequence alignment approach, however, does not require coherent appearance

between the two sequences, and can therefore be applied to solve the problem. Fig. 6 shows an example of two such

sequences, one captured by a near IR camera, while the other by a regular video (visible-light) camera. The scene

was shot in twilight. In the sequence obtained by the regular video camera (Fig.6.(a)), the outdoor scene is barely

visible, while the inside of the building is clearly visible. The IR camera, on the other hand, captures the outdoor

scene in great detail, while the indoor part (illuminated by “cold” neon light) was invisible to the IR camera (Fig.

6.(b)). The result of the spatio-temporal alignment is illustrated by fusing temporally corresponding frames. The IR

camera provides only intensity information, and was therefore fused only with the intensity (Y) component of the

visible-light camera (using the image-fusion method of [4]). The chrome components (I and Q) of the visible-light

camera supply the color information.

The reader is encouraged to view color sequences at www.wisdom.weizmann.ac.il/NonOverlappingSeqs.

6 Analysis

In this section we evaluated the effectiveness and stability of the presented approach both empirically (Sec. 6.1)

and theoretically (Sec. 6.2).

6.1 Empirical Evaluation

In order to empirically verify the accuracy of our method, we took a real video sequence (see Fig. 7) and generated

from it pairs of sequences with known (ground truth) spatial transformation H and temporal shift �t. We then
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Applied Recovered Max Residual
Transformation Transformation Misalignment

Horizontal shift
of 352 pixels

Horizontal shift
of 351.6 pixels

0.7 pixels

Zoom factor = 2 Zoom factor = 1.9992 0.4 pixels
Zoom factor = 4 Zoom factor = 4.0048 0.4 pixels
Rotation by 180o Rotation by 180:00o 0.01 pixels

Table 1: Quantitative results. This table summarizes the quantitative results with respect to ground truth. Each row corre-
sponds to one experiment. In each experiment a real video sequence (Fig. 7) was warped (“manipulated”) by a known homog-
raphy, to generate a second sequence. The left column describes the type of spatial transformation applied to the sequence, the
center column describes the recovered transformation, and the right column describes the residual error between the ground-
truth homography and the recovered homography (measured in maximal residual misalignment in the image space). In all 4
cases the correct temporal shift was recovered accurately. See text for further details.

applied our algorithm and compared the recovered H and �t with the ground truth.

For the case of non overlapping sequences, the real sequence of Fig. 7 was split in the middle, producing two

non-overlapping sub-sequences of half-a-frame width each. The true (ground truth) homography H therefore corre-

sponds to a horizontal shift by the width of a halved frame (352 pixels), and �t in this case is 0. The “inter-camera”

homography H was recovered up to a misalignment error of less than 0.7 pixel over the entire image. The temporal

shift (�t = 0) was recovered accurately from the frame-to-frame transformations.

To empirically verify the accuracy of our method in the presence of large zooms and large rotations, we ran the

algorithm on following three manipulated sequences with known (ground truth) manipulations: We warped the

sequence of Fig. 7 (once by a zoom factor of 2, once by a zoom factor of 4, and once rotated it by 180o) to generate

the second sequence.

The results are summarized in Table 1. The reported residual misalignment was measured as follows: The re-

covered homography was composed with the inverse of the ground-truth homography: H�1trueHrecovored. Ideally,

the composed homography should be the identity matrix. The errors reported in Table 1 are the maximal residual

misalignment induced by the composed homography over the entire image. In all the cases the correct �t was

recovered (not shown in the table).

6.2 Uniqueness of Solution

This section studies how many pairs of corresponding transformations Ti and T 0i are required in order to uniquely

resolve the inter-camera homography H . To do so we examine the number of constraints imposed on H by a single

pair of transformations via the similarity equation Eq. (3). Since we can extract the scale factor si directly from Ti

and T 0i (see Sec. 3.1) we can omit the scale factor si and study the following question: How many constraints does
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an equation of the form G = HBH�1 impose on H? (e.g., B = Ti and G = T 0i )
4.

The following notations are used: Denote by �1; �2 �3 the eigenvalues of the matrix B in decreasing order

(j�1j � j�2j � j�3j). Denote by ~ub1 ; ~ub2 ; ~ub3 the corresponding eigenvectors with unit norm (jj~ub1 jj = jj~ub2 jj =

jj~ub3 jj = 1). Denote by rj the algebraic multiplicity5 of the eigenvalue �j , and denote by Vj = f~v 2 Rn : B~v =

�j~vg the corresponding eigen subspace.

6.2.1 Basic Constraints

Similar (conjugate) matrices (e.g., B and G) have the same eigenvalues but different eigenvectors. Their eigen-

vectors are related by H. If ub is an eigenvector of B with corresponding eigenvalue �, then Hub is an eigenvector

of G with the same eigenvalue �: G(Hub) = �(Hub). The same holds for eigen subspaces. If V is an eigen

subspace of B corresponding to an eigenvalue �, then H(V ) is an eigen subspace of G with the same eigenvalue �.

We investigate the number of constraints imposed on H by B and G according to the dimensionality of their eigen

subspaces. Let V be the eigen subspace corresponding to an eigenvector ub of B. We investigate three possible

cases, one for each possible dimensionality of V , i.e., dim(V ) = 1; 2; 3.

Case I: dim(V ) = 1. This case mostly occurs when all three eigenvalues are distinct, but can also occur if some

eigenvalues have algebraic multiplicity two or even three. In all these cases, V is spanned by the single eigenvector

ub. Similarly H(V ) is spanned by the eigenvector ug of G. Therefore:

Hub = �ug (13)

with an unknown scale factor �. Eq. (13) provides 3 linear equations in H and one new unknown �, thus in total

it provides two new linearly independent constraints on H .

Case II: dim(V ) = 2. This occurs in one of the following two cases: (a) when there exists an eigenvalue with

algebraic multiplicity two, or (b) when there is only one eigenvalue with algebraic multiplicity three, but the eigen

subspace spanned by all eigenvectors has dimensionality of two6. When dim(V ) = 2 then two eigenvectors span

4A general analysis of matrix equations of the form GH = HB may be found in [10].
5If �1 6= �2 6= �3 then the algebraic multiplicity of all eigenvalues is 1 (rj = 1). If �1 = �2 6= �3 then the algebraic multiplicity of

�1 and �2 is 2, and the algebraic multiplicity of �3 is 1 (r1 = r2 = 2 and r3 = 1). If �1 = �2 = �3 then the algebraic multiplicity of
�1,�2;and �2 is 3 (r1 = r2 = r3 = 3).

6Eigenvalues with algebraic multiplicity 2 and 3 are not rare. For example a homography defined by pure shift (�x;�y) has the form:

H =

"
1 0 �x
0 1 �y
0 0 1

#
. This matrix has a single eigenvalue �1 = �2 = �3 = 1 with algebraic multiplicity three. The corresponding

eigen subspace has dimensionality 2. It is spanned by two linearly independent eigenvectors [1; 0; 0]t and [0; 1; 0]t.
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V (w.l.o.g.,ub1 and ub2). Then every linear combination of ub1 and ub2 is also an eigenvector ofB with the same

eigenvalue. Similarly, every linear combination of ug1 and ug2 is an eigenvector of G with the same eigenvalue.

Therefore:

Hubj = �jug1
+ �jug2 (14)

where �j and �j are unknown scalars (j = 1; 2). Hence, each of the two eigenvectors ub1 and ub2 provides 3

linear equations and 2 new unknowns. Therefore, in total, together they provide 2 new linear constraints on H .

Case III: dim(V ) = 3. In this case any vector is an eigenvector (all with the same eigenvalue �). This is the case

when B �= G �= �I are the identity transformation up to scale, i.e., no camera motion. In this case (as expected)

B and G provide no additional constraints on H .

6.2.2 Counting Constrains

So far we counted the number of constraints imposed on H by a single eigen subspace. In order to count the total

number of linear constraints that B and G impose on H , we analyze every possible combination of eigen subspaces

according to the algebraic multiplicity their eigenvalues:

1. �i 6= �j 6= �k. This implies Vi 6= Vj 6= Vk and dim(Vi) = dim(Vj) = dim(Vk) = 1.

2. �i = �j 6= �k (Vi = Vj 6= Vk). There are two such cases:

(a) dim(Vi = Vj) = 2, and dim(Vk) = 1.

(b) dim(Vi = Vj) = 1, and dim(Vk) = 1.

3. �i = �j = �k. In this case there is only a single eigen subspace V = Vi = Vj = Vk. Its dimensionality may

be 1,2, or 3.

The following table summarizes the number of linearly independent constraints for each of the above cases:

Eigenvalue Eigen # of linearly
Case Algebraic Subspace independent

Multiplicity Dimensionality constraints
(1) �i 6= �j 6= �k jVij = jVjj = jVkj = 1 6
(2.a) �i = �j 6= �k jVi = Vjj = 2; jVkj = 1 4
(2.b) �i = �j 6= �k jVi = Vjj = 1; jVkj = 1 4
(3.a) �i = �j = �k jVi = Vj = Vkj = 1 2
(3.b) �i = �j = �k jVi = Vj = Vkj = 2 2
(3.c) �i = �j = �k jVi = Vj = Vkj = 3 0

17



To summarize: When B (and G) have either two or three distinct eigenvalues (which is typical of general frame-

to-frame transformations), then two independent pairs of transformations suffice to uniquely determine H . This is

because each pair of transformations imposes 4 to 6 linearly independent constraints, and in theory 8 independent

linear constraints suffice to uniquely resolve H (up to arbitrary scale factor). In practice, however, we use all avail-

able constraints from all pairs of transformations, for increased numerical stability.

7 Conclusion

This paper presents an approach for aligning two sequences (both in time and in space), even when there is no

common spatial information between the sequences. This was made possible by replacing the need for “coherent

appearance” (which is a fundamental requirement in standard images alignment techniques), with the requirement

of “coherent temporal behavior”, which is often easier to satisfy. We demonstrated applications of this approach

to real-world problems, which are inherently difficult for regular image alignment techniques.
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Appendix A: Outlier Rejection

Inaccurate frame-to-frame transformations Ti are pruned out by using two outlier detection mechanisms.

(i) The transformation between successive frames within each sequence are computed in both directions. We then

measure the deviation of the composed matrix TiTReverse
i from the identity matrix in terms of the maximal induced

residual misalignment of pixels, i.e.,

Reliability(Ti) = max
p2Ii

jjTiT
Reverse
i p� pjj (15)

(ii) The similarity criterion of Eq. (5) can also be used to verify the degree of “similarity” between Ti and T 0i . After

�t has been estimated and before H is estimated, an unreliable pair of transformations can be detected and pruned

out by measuring the deviation of Sim(Ti; T
0

i ) from 1. However, the first outlier criterion proved to be more pow-

erful.

19


